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Abstract

We introduce reactive Kripke models for intuitionistic logand show that
the reactive semantics is stronger than the ordinary seécsaritVe develop Beth
tableaux for the reactive semantics.

1 Introduction

In [1] we introduced the idea of reactivity and studied reactivipke models for modal
logics. In many subsequent papers we studied other reastdtems such as reactive
argumentation frames, reactive automata, reactive grasymeactive preferential log-
ics, reactive contrary to duties, reactive inheritancevoeks, and many more.

The purpose of this paper is to introduce reactive intuiita frames (Kripke
frames and Beth frames) and study their expressive powepprties.

We begin by briefly introducing the idea of reactive netwofikeluding reactive
Kripke models). Consider the network of Figure 1.

Let us first ignore the double arrow in Figure 1. Without theiblle arrow, Figure
1 is a three point Kripke model for intuitionistic logic. Sorfexample if we want to
evaluatea ¥ p — ¢, we must check whether there exists a higher pstota (including
aitself) with x £ p butx £ g.

The above definition is set-theoretical. The notior A is defined inductively,
and the graph of Figure 1 without the double arrow is just @hsuggesting a Kripke
model with a reflexive and transitive binary relation.

To be more precise, Figure 1 (without the double arrow) satggses = {a, b, ¢},
a relationR = {(a, b), (b, c)} and the reflexive and transitive closureR®beingR* =
{(a,a), (a,b),(ac),(b,b),(bc),(cc). If we use an explicit formula foR*, we get:
xRy iff x = y or XRyor for somek > 1 and soméy, . .., ty, we havexRi At1RL A ... A
tk-1Rt& A tkRy.

The assignmerttto the atoms is also indicated in the Figure.



c p=T.0=1

b p=1.0g=1
a p=L1,=1
Figure 1: E1

So the Kripke model is§, R, a, h), with h(p) = {c} andh(q) = @.

So to check whethea ¥ p — g we simply ask set-theoretically whethéx(aR*x
andx k£ pandx £ ).

To introduce the reactive approach we envisage ourselvigingalong the arrows
of the graph from poin& onwards and at each poirthat we pass, we evaluate- p
andx £ g and compare. This is an actual walk and search along the graph

Of course, the end result is the same. If there ixanch thaBR*x andx £ p and
x ¢ qthen we will walk into it sooner or later and vice versa.

Now given this ‘walk along the graph’ point of view, the rei@etdouble arrow
makes sense. What it does is the following: As we cross fadab, the double arrow
gets activated and disconnects the path fioto c. So we do not get to the poimt
wherec £ p andc ¥ g. Without getting toc, we will report thata £ p — q holds,
beause we cannot get to the counterexample, etc. So in tbidveemodel of Figure 1
with the double arrow, we hawer p — q.

We now sum up. We introduced two ideas here.

1. Evaluation in Kripke models is done by ‘walk along the arscand check and
report’ policy.

2. Double arrows along the way can disconnect connectioti€antrol where we
can got

Consider now Figure 2. In this Figure, when we walk alang b — ¢ we cannot
continue fromd to e, because — e gets disconnected. However, when we walk along
a — ¢ — d, we can continue te because there is no double arrow along the path.

1There are more complex options for reactivity:

(a) Double arrows can switch arrows on arftl o
(b) Double arrows can emanate from other double arrows.
(c) We can have an inductively iterated version of the above.

In this paper we are keeping the reactivity simple.



a

Figure 2: E2

Section 2 gives the formal definitions involved and introeluithe reactive models.
We also show that we get a richer semantics than ordinankinipodels.

The idea of reactivity is a general one and can apply to Bettieisoas well. Beth
models are like Kripke models except the inductive truthrdedin is diferent. We
need the notion of an Belt anti-chain of points. Giv&)K, a, h), andt € S then a
setT C Sis a Belt anti-chain fot if all points of T areR* not comparable and every
maximalR* chain beginning at must meet the Bell.

We havet £ Aiff there exists an antichaihfor t such that foralk e T, x  A.

Turning a model reactive is even easier, if we give the codetinition of a reactive
path. A reactive path beginningtas a trace of a walk along the arrows frarmnwards,
where all double arrows are taken into account. So hopefudlycan define reactive
Beth models as well.

In Figure 2 there are two maximal reactive pathss b > danda—»c—d— e

2 Reactive Kripke Frames

This section introduces reactive Kripke frames for intuniistic logic and shows that
intuitionistic propositional logic is complete for suctafes. We also show that there
are intermediate logics which are complete for a class aftreaKripke frames but are
not complete for any class of ordinary Kripke frames.

Thus reactive Kripke frames is aricher and stronger serogititan ordinary frames.

The above also means that we can study a richer class of ietkate logics, e.g.
intermediate logics generated by finite reactive frames. s\l see in Remark 3.8
what kind of Heyting like algebras one gets from finite reaeframes.

To appreciate the opportunities opening for us through ttien of reactive Kripke
frames for intuitionistic logic, consider a famous beaulttheorem of L. Maksimova.



e There are only seven intermediate logics which have intatjpm

Is this still true if we take into account logics generatedégctive frames? The notion
of ‘logic’ may not be the same!

A later section will provide tableaux for logics defined byitéenframes.
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Definition 2.1 (Ordinary Kripke models for intuitionistic p ropositional logic) A Kripke
model has the fornrm = (S,R R*,a,h) where S is a non-empty set of worlds and
R C S x S is a binary relation on S. ‘Rs the reflexive and transitive closure ofR,
a € S is the actual world and h is an assignment, giving for eacmat q a subset
h(g) cS.

The systerk = (S, R, R, a) is called a Kripke frame.

The following holds

te h(g) AtR*'s= se h(q). (%)

The satisfaction relation is defined as follows, fer & and a propositinal formula A.
1. te qifft € h(qg), for g atomic

2. te AABiffte Aandte b
te AVBIifte Aorte B.

. te A— Biffforall s such that tRs, if s Athen s= B
. te A ifffor all s such that tRs we have & A.

. We say A holds in the modgla  A.

o o b~ W

. Note we have notused R at all, onfy R

This presentation is for later comparison.
T22
Theorem 2.2 Intuitionistic propositional logic is complete for the samics of Defi-

nition 2.1.

Proof. Well known result. [ |
D23

Definition 2.3 (Pre-reactive Kripke models) A pre-reactive Kripke model has the form
(S,S*,R a,h) where S is a non-emtpy seteaS,R C S x S is a binary relation (not
necessarily reflexive nor transitive) and 8 the set of all R increasing sequengasf
elements from S of the fogn= (ap, &, ..., an) suchthatg = aandfori=0,...,n-1

we have Ra,;. We denote @by |8]. h is an assignment giving for each atomic q a
subset [g) € S such that

t € h(g) A tRs= s e h(g).

We define satisfaction fg#, a sequence in'$ as follows. (We need the notion
of: B is an extension g8 iff 8 is an initial sequence ¢¥, i.e.8 = (aty,...,t) and
B =@, .. tkn)n=0).

2We havexR'y iff x = y or xRyor 3ty, .. ., tm(XRt A t1RE A ... tm-1Rim A tmRY), for somem > 1.




1. B e qif|Bl € h(q), for g atomic.

2. BEAABIifBE Aands = B.
BEAVBIfBeEAorgEeb.

3. B A — Bifffor every extensiog’ of 8, we have that i’ £ A theng’ = B.
4. B e -Aifffor all extensiorp’ of 8 we haves’ ¢ A.

5. A holds in the model if a A.

L24
Lemma 2.4 Letm = (S, S*, R, a, h) be a model. Let Rbe the reflexive and transtivie

closure of R. Consider the modek (S, R R, a, h). Then we have for eveg/e S*
BEAINM iff|Bl E Ainn.

Proof. By induction onA. The crucial point isA — B.

1. AssumesB £ A — B. Then for allg’ extending3 we have tha’ £ A implies
B e B.

By the induction hypothesis we have|ff| = A then|s’| £ B. We now show
I8 £ A— B.

Let s be such thalg|R*s, then|B] = s or sRp)| or there exists, S, . . ., Sn such
thatsy = |8l andsy = sand fori = 0,...,m- 1 we havesRs,;. Hence
B =pB*(sy,...,Sn) is an extension gf with |'| = s, = s. Therefore ifs E A
then|8’| £ A, hences’ = A by the induction hypothesis, henge = B, hence
8’| E B,i.e.sk B.

2. Now assuméB| £ A — B. Letp’ extendB. Hencelg|R"|8’|. So if 8 £ Athen
|8l E Ahencég’| £ B hences’ E B.

The proof for-Ais similar. [

R25
Remark 2.5 The second type of model is easier to turn reactive. In thig type of

model, we view the evaluation of-A B at a node t as ‘going along the relation R and
at whatever point’'twe reach, ift £ A then t £ B So in this definition we actually
have to traverse the arcs of the model.

Note that R needs not be reflexive nor transitive. We get fhregerties from the
evaluation process. So consider Figures 3 and 4.

Figure 3 gives $ = {t, s}, Ry = {(t, 9)}. Figure 4 gives $ = {t, s}, Rx = {(t, 1), (t, 9)}.
We have $ = {(1),(t,9)} and S = {(1), (t,m.ﬁ.n%es, t,gim=0,1,2,..}. S corresponds

to the ordinary Kripke model with two linear poinis< 2 (as in Figure 3) and $
corresponds to the ordinary Kripke model with the infinitentoof Figure 5 such that
the assignments to the points{idy 1,...} are all indentical (representing the point t
and also the assignment to the pointguws, wi, Wo, ..., W, ...} are all identical, (rep-
resenting the point s).



Figure 3: Al

Figure 4: A2

Figure 5: A3



Figure 6: A5

D26
Definition 2.6 (Reactive intuitionistic Kripke frame) A reactive intuitionistic Kripke

frame has the fornfS, R, a), where ac S andR is a set of pairs of the form
1. (x,y) € Sx S called arrows

2. ((x.Y), (u,v)) € S? x S? called reactive double arrows.
E27
Example 2.7 A reactive frame, see Figure 6.
We haveR = {(t, s), (t, 1), ((t. 1), (t, s))} and a=t
D28
Definition 2.8 (How reactivity operates) 1. Letm = (S,R,a) be a frame. Let

(t,s) € R be an arrow. Defin® ¢ to beRgg =R - {(X,y) | ((t,9), (X y)) € R}.
Ry is the result of traversing the arc+> s and cancelling all connections as
indicated by double arrows emanating frormt s.

2. Letg = (a,ty,...,t). We now defin®; by induction on k. For k= 1, we let
Rg = Rat,), provided(a, t;) € R.
AssumeRg has been defined f@ = (a,ty, ..., t) and assumety, ti.1) € Rg.
DefineRy for 8/ = (a,ty, ..., tr1) 1o beRy = (Rg) @ tien)-

3. LetRg be a reactive relation as defined in (2) wh@re: (a, ty, .. ., ).

Let
Br=@t,. .., k1)

,Bn = (a1 tl& LY tk+n)
We sayBy, is a legitimate extension @fiff the following holds.

o (tk,tr1) € Rg
e Ryg, is obtained fronRs as in (1) above

L4 (tk+n—l, tk+n) € R,Bn—l



e Ry is obtained fronRs, , as in (1) above.
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Lemma 2.9 Let(S,R(y), @) be a reactive Kripke frame. Lgtbe a legitimate extension

of (a). Write = (a,t1,...,t%). Then we have aRt1Rb,...,t_1Rt, where R=
{(xYI(xy) e SxSNR}.

Proof. By induction onk. Fork = 1 we do havaRt,.
We see from the construction of aRy that we haveRg C R.
Hence if8’ = B * (tk.1) With |8] = t and {«, tk+1) € Rg, then we havé Rl 1. [
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Definition 2.10 (Satisfaction in a reactive model)

1. Let(S,R, a) be areactive frame. Let R {(X,y)|x,y € S and(x,y) € R}. Let h be
an assignment such that
t € h(g) and tRs implies & h(q).

Lets be a legitimate extension ¢(d). LetR; be the corresponding relation. Let
mg = (S, Rg, 8], h). Note that ify = (8], 11, . . ., tm) is a legitimate extension ¢4
in mg, theng! = B = (t1, ..., tm) is a legitimate extension of (a) {{$, R, a).

2. We define satisfaction as follows:

e BEQqIiff|Bl € h(qg), for g atomic
e BEAABIfSEAandBE B
e BEAVBIfBEAOrg:B

3. B £ A— Binmg ifffor every legitimate extensigst of 8, if 8’ £ A in mg then
B EBinmg.
4. B e -AiInmg iff for all legitimate extensions’ of 8 we haves’ ¥ Ainmg.
5. WesayS,R,a,h)E Aiff(a) £ A.
L211

Lemma 2.11 Let(S, R, a, h) be a model and assume that A in mg and thats’ is a
legitimate extension ¢, thens’ £ A inmg.

Proof. By induction onA.
1. ForA atomic, this follows from a previous Lemma 2.9.
2. The cases of andv are immediate.

3. AssumeB £ A — B, then for any legitimate extensigh of 8, if 8’ £ Ain mg
theng’ £ Bin mg.
But now since any legitimate extensigti of 8’ is also a legitimate extension of
Bwe getthap’ E A— Binmg.

4. The case of is similar.
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Example 2.12 (Satisfaction in the frame of Figure 6)Let q be atomic. Let(qg) be
{s}. Then

1. MEq
2. (1) £ —-Q
3. ()e-q—q.

(1) and (2) are clear. To show (3), note that (i, t) is a legitimate extension ¢ff) and
R(t,t) is
{(t, 1), ((t, 1), (t, 9)}.

In (S, Ry, (t, t) we havet, t) = —q but(t, t) £ .

L213
Lemma 2.13 The logic defined by reactive satisfaction is intuitiorastigic.
Proof.
1. Since ordinary pre-reactive models are reactive modeisDefinition 2.3 and
Lemma 2.4) the logic is not stronger than intuitionisticitog
2. From Lemma 2.11 we see the logic is not weaker either.
]
T214

Theorem 2.14 The logic of the frame Figure 6 is not complete for any clagsdihary
intuitionistic Kripke frames.

Proof. The proof has four parts, (A)—(D).
(A) The following formula holds in the frame of Figure 6, umdayh,

1. xv (x— (gV —Q)), x, qatomic
2. (x—>Yy)V(y— X),XYyatomic.

We check (1).

If x = 1 at () then to falsifyx — (qV —q) we need to go tot(s) wherex can hold.
We cannot go tot(t) becauset(t) ¥ x. At (t, s) clearlyg v —q holds.

We check (2).

Assumex — Yy is false at{). Then we have either

(t, ... ,)exand¢, ... ,t)ryor
m times m times

(t, ....t,9exandg, ... ,t,9ry,mn=>0.
n times n times

In the first case, we have) (£ x and hencetf F y — x.
In the second case we haved) £ X, (t, ) ¥ y. Hencef) F -=yand so) Fy — X.



t,9) (t, 1)

t

Figure 7: A6

(B) We now show that any ordinary frame which satisfies (1) @)dinder anyh must
be either a single point or the frame of Figure 3.

This is well known because otherwise either (1) or (2) candisified. (1) is
falsified by a 3 point chain and (2) by a two point anti-chairo V& can have
neither.

(C) We now show that in Figure 3 or in a single point (3) musthol
3. XV =XV (=X > X).

To falsify xv -x we need Figure 3 with# x ands k x but from the latter it follows
thatt £ ——x holds and hencer —=x — x.

(D) Our proof is concluded because Example 2.12 shows thata(3 be falsified in
the frame of Figure 6.

]
R215

Remark 2.15 It is helpful to have another view of Figure 6. The frame has paths,
as in Figure 7

We can view Figure 7 as an ordinary 3 point Kripke model with timderstanding
that the assignment at t arfd t) is the same, i.e. for every aeth(q) iff (t,t) € h(q).

This is common to reactive models, that they can be ‘unfolkechodels of paths
with restrictions on the assignment] studies such models. We examine this notion
in the next section.

3 Folding reactive frames

We saw in the last section that the reactive frame of Figurar6 lwe unfolded into
the ordinary frame of Figure 7, with the added understantliag the pointstj and
(t,t) must give the same values to the atoms. This unfolding ggcan be done in a
systematic manner, and it seems to have significance folajsng Beth tableaux for
reactive intuitionistic logics. So in this section we stutlin detail. We are going to
unfold and then fold again.

Let (S,R,a) be a reactive frame. L&t be a legitimate path of the foria =
(aty,...,t%). We saw that we can calculdig C R. LetFg = (S, Rg, |8]).

10



If Sis finite andB ranges over all legitimate paths, we get only a finite numlber o

different frameg$3. Let us take advantage of this.
D31
Definition 3.1 (Path equivalence relation)Letm = (S, R, a, h) be a reactive model.

Define an equivalence relaton on the paths of the model asifsil

e B=yiffIBl = Iyl andRs = R,
LetQ be the set of equivalence classgh = |8 a legitimate path extendin@)}.

ThenQ is finite.
Definep onQ as follows:

e 8| = py| = iff for someB; = g andy; = y we havey; is a legitimate extension of
B
Lemma 3.2 p is reflexive and transitive.

L32

Proof. Reflexivity is not a problem. We show transitivity.

Claim: If B; is a legitimate extension af; andB; = B2 andy; is a legitimate extension
of B,, then there exists & = y, such thaty, is a legitimate extension af;.
We now prove the claim:

1. We haved; = ag = (11, ..., t) where|a1|Ry A 1Rb A ... tk_1Rt and|By| = t«.

2. SinceB; = B> we get thalRg, = Rg,.

3. We also haved,, ..., sn) such thaty, = B2 * (S1,..., Sm) and|B2]Rg A IR A
... Sm-1Rsn andlyz| = sm.

Consider the path

'}’1 = al* (t].’""tk) * (S].’""STI)'
Itis clear thaty;| = |yal.
We want to show that

Ry, =Ry,

Observe thaRg, = Rg,. Sincey; is an extension of; along the sequence of
nodes §, ..., Sn) andy; is the extension g8, along the sequencey(..., Sm)
(same sequence) and they both staiBdt= |8.| with Rs, = Rg,, then they end
up at the same relation, namey, = R,,. Hencey; = y».

We now finish the proof of the theorem:
4. Sincey; = y, andy; extendsy;, we getai/ = p y2/ =

[
L33
Lemma 3.3 Letm = (S,R,a h) and let=,Q,p be as in Definition 3.1. Consider

u = (Q,p, h), as an ordinary Kripke model, whekeis defined by
a/ =€ h(q) iff o] € h(q).

Then for any A we have:

ar Ainmifa/= EAinu.

11



Proof. By induction onA.
1. Forqgatomic this holds by the definition ef.
2. The key case is that eb.

Assumea ¥ A — B, then for someB which is a legitimate extension of we have
B E Aandp ¥ B. But we also have in this case that = pB/ = and by the iduction
hypotheisg/ = = Aandg/ = ¢ B.

Now assumer/ = ¥ A — B. Then for somey/, = we havea/ = p y/ =
andy/ = £ Aandy/ =¢ B. Therefore for some&; = a andy; = y we have
v1 = ag = (t1,...,t) andy; is a legitimate extension aof;. Hence since; = y, we get
v1i/ = k Aandy;/ = ¥ B. By the induction hypothesis we haygr Aandy; ¥ B.

Now look at the two modelsn, = (S,R,,|e|) andm,, = (S,Rq,,la1l). Since
a1 = a, these two models are the same. So having aj = (t1,...,t%) with y; £ A
andy; ¥ Bin m,, implies that for§ = a * (t1,...,t) we also haveé = Aadné ¥ Bin
m,. Hencex ¥ A — Binm. [ |

R34
Remark 3.4 (Folding reactive frames) We started with a reactive modal= (S, R, a, h)

and converted it to a special model= (Q,p,a/ =, h). This model is special and we
want to highlight some of its properties.
The elements &b are equivalence classes of legitimate sequefadsn. We have

o a =Bifflal =8 andR, = Rg.
Consider the new relatios onQ

e o/ = =p/=ifflal = |l

We can have that manyffirent= classesy/ =,3/ = are ~ equivalent. This is
because to be in the sameclass we also ne€ll, = Rg.

Formally we now have a Kripke mod?, p, ~, h) with an equivalence relatios
and the property

x~y— xeh(q)ifyeh(q) (%)

What other properties does it have? How deeaglate top?

Let us check.

Supposer/ = p Bi/ =,i = 1,2 andpB;/ = is ~ equivalent tg3,/ = but they are
different points. This means th&g, # Rg,. This means that there are twoff@irent
sequences of pointsy, ..., t), (S, ..., Sm) such thatR,.¢,.. 1) # Res(s,..s) anda =
(ta,...,t) =Branda = (S, ..., Sn) = Be.

This means that the following holds from the point of viel(dp, ~, a/ =, h).

(**) [Xoy1AX0Y2AY1 = Yo] = [there are two dfferent sequencesy .., Uk, V1, . .., Vim
such that pu; A Uipuz A ... Ugoyr and dovi A VipVo A ... A ViVinoYo] .

D35
Definition 3.5 (Folded Kripke models) 1. A folded Kripke model has the form

(Sp, ~,a,h). Itis a Kripke mode(Sp, a, h) with an equivalence relatios satis-
fying condition (*) of Remark 3.4.

12



Figure 8: tabl

2. Afolded Kripke model is reactive if it satisfies also (*f)Remark 3.4.
Such models are the results of folding a reactive Kripke rhode

C36
Conjecture 3.6 Every reactive folded Kripke model can be obtained from atiga
Kripke model by the process described above.
Proof. We shall not prove this now. [

E37

Example 3.7 (Figure 6) We saw that the reactive Kripke frame of Figure 6 can be
presented as the folded Kripke frame of Figure 7. We havegargi7:

Q {ts )l
P = {(t’ t)’ (t’ S)’ (S, S)’ (t’ (t’ t))’ ((t’ t)’ (t’ t))}

and we have & (t,1).

R38
Remark 3.8 Let us see what is the status of folded Kripke fames in terrakeyting

algebras. An ordinary Kripke framm = (Q, p) gives rise to a free Heyting algebra
Hm. When we add an egivalence relatisrto formu = (Q, p, ~) we are adding some
equalities among the free generatorsthf,. These equalities generate a congruence
relation= onHy,. If we letH, = Hyn/ = then we get the algebra correspondingto
Itis not a free algebra.

4 Reactive Tableaux

We begin by explaining the intuitive idea of tableaux foratze logics. Consider the
tableau of Figure 8

The label of the tableau ts This is usually the name of the possible world we are
dealing with.A is on the left and so we want to make A andC — D is on the right
hand side of the tableau, so we want to makeé&C — D.

To do the latter we need an accessible warlduch thatR*'sands = A ands# B.

This means that we move into the following tableau in Figure 9

A carries on intass and ins, we putC on the left and on the right.

This is the usual tableau process for intuitionistic lodfave haveA andv in the
language, we might getfilerent alternatives (tableau splitting). Let us assumean |
guage contains only so that we can concentrate on thé&eliences between ordinary
tableaux and reactive tableaux, without the complexityegeted by the presence of
andv.

13
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Figure 9: tab2

In the case of reactive semantics the tableau will have sab@ which are paths.
Sot = @ ands = 8. This is not an essentialféérence. The dierence is essential in
the reactive case because we must requiregligia legitimate extension @f. To do
that we must record whéi; is.

So to simplify even further and allow us to present the esslddeas of the reactive
tableau let us assume our logic has a fixed finite reactivedr#nR, a).

In this case we get the following simplifications:

(S1.) Since the frame is finite and for any legitimate seqagni; is smaller tharR,
there is only a finite number of frameS,R;),i = 1, ..., n, that are at play,

(S2.) We can move to the finite folded Kripke frame= (Q,p,~,a) and do our
tableaux oru. This is significantly simpler becaugsis like an ordinary Kripke
frame with the additional simple condition (simple from ttableaux point of
view) imposed byv.

The next definition gives the notion of Beth tableaux for thplicational fragment.
Note three facts:
Fact 1
Every wftf can be putin the form
E=[AA—>(..>(A—0)..)]
whereq is atomic and each is of the same form ak.

Fact 2

We need only two tableaux rules:

e To makeE false E on the right) at world, find a worlds such thatps and put
all A; on the left andy on the right.

e To makeE true on the left at whenq is on the right at, we must move one of
A to the right oft to make it false.

14



Fact 3

To accommodate we make some adjustments to the usual intuitionistic taixeales.
D41
Definition 4.1 (Beth tableaux for folded Kripke frames) Letu = (Q, p, ~) be a folded

frame.

1. Atableau fop is a pair of functiongr™, v~) from Q into the set of s satisfying
the following conditions:

(a) If tos holds inu thent™(t) C t*(9)
(b) Ift = s holds therr*(t) andr*(s) contain the same atoms (respectively)

2. LetT be a family of tableaux as in (1). Letr € T. We define an operation
which will split r into several alternatives and we will replagen T by these
alternatives to obtain a new familly .

Right hand operation
Choose & Q and choose E in~(t). Get the following alternatives! to replace
7 by{rsse Q and tR$ where

B B 77 (X), forx # s
() = tt(x)u{gforx~sx#t
75 (t) () - {Eju{qlifx=t

TH(X)ifx s
75(X) {

7H(X) U {Aj|A atomig if x * sand x# s
TP U{A-i}ifx=t

Left hand operation
Choose t Q and choose E in*(t) such that ge 7 (t).

Recall that E= [A; = (... = (Ay — Q)].
For each Aform the following tablea;.

(X)) = 7(X),xeQ
{ 7~ (X) U {A}, if A; is atomic and x t.

() if x %t
() U{A}If X =t.

7 (X)

3. Atableaur is closed if for some¢ Q we haver*(t) N7 (t) # @.

4. T is closed jfall of its alternatives are closed.
T412
Theorem 4.2 (Completeness)rhe above procedure is complete for the logic defined

by the fameu.

Proof. Modify a proof for the case of an ordinary intuitionistic fne. ]
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