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Addition of velocities and
electromagnetic interaction:
geometrical derivations using

3D Minkowski diagrams

Călin Galeriu
Dept. of Physics, Worcester Polytechnic Institute
100 Institute Rd., Worcester, MA 01609, USA

This article presents intuitive, geometrical derivations of

the relativistic addition of velocities, and of the elec-

tromagnetic interaction between two uniformly moving

charged particles, based on 2 spatial + 1 temporal dimen-

sional Minkowski diagrams. We calculate the relativis-

tic addition of velocities by projecting the world-line of

the particle on the spatio-temporal planes of the reference

frames considered. We calculate the real component of

the electromagnetic 4-force, in the proper reference frame

of the source particle, from the Coulomb force generated

by a charged particle at rest. We then obtain the imagi-

nary component of the 4-force, in the same reference frame,

from the requirement that the 4-force be orthogonal to the

4-velocity. The 4-force is then projected on a real 3 dimen-

sional space to give the Lorentz force.
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Introduction

Special Relativity, as presented in today’s textbooks, is an
advanced mathematical theory. The 1 spatial + 1 temporal di-
mensional Minkowski diagrams , which initially introduce the
Lorentz transformation, the time dilatation and the length con-
traction, are soon put aside in favor of an approach based on
differential calculus and linear algebra. One gets little intu-
itive understanding of the law of relativistic addition of veloci-
ties, and of the fact that ”magnetism is a kind of ’second-order’
effect arising from relativistic changes in the electric fields of
moving charges” [1]. This article goes beyond the usual 2D
Minkowski space diagrams [2], and presents intuitive, geomet-
rical derivations of the relativistic addition of velocities, and of
the electromagnetic interaction between two uniformly moving
charged particles, based on 2 spatial + 1 temporal dimensional
Minkowski diagrams. The geometrical approach to special rela-
tivity [3] provides us with strong motivation to investigate alter-
native theories of the electromagnetic interaction, which allow
for the variation of the electron’s rest mass.

Relativistic addition of velocities

Consider a reference frame K ′ which is moving with a veloc-
ity V = V x̂ relative to another one K, and a particle moving
with a velocity v′ = v′

xx̂
′ +v′

yŷ
′ +v′

zẑ
′ in the reference frame K ′.

The reference frames are chosen such that their origins and the
particle coincide at the space-time point O, as shown in Fig. 1.
Notice that ŷ = ŷ′ and ẑ = ẑ′, because V has a component only
in the x direction. The Oz axis is not plotted, but is similar to
the Oy axis. We have to find the velocity v = vxx̂ + vyŷ + vzẑ
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of the particle in the reference frame K.

Figure 1. Relativistic addition of velocities. The world-line OP is projected

on various spatio-temporal planes. OA is the projection on (y’,O,ict’), OB is

the projection on (y,O,ict), and OC is the projection on (x,O,ict). The planes

(x,O,ict) and (x’,O,ict’) coincide.

The world-line OP of the particle is projected on the complex
planes (x, O, ict), (y, O, ict), (z, O, ict), (x′, O, ict′), (y′, O, ict′),
(z′, O, ict′), and the resulting angles from the respective projec-
tions give the components of the velocity of the particle in the
two reference frames considered. For the situation considered
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the planes (x, O, ict) and (x′, O, ict′) coincide. It is seen from
Fig. 1 that

EF

OE
=

V

i c
= tan(−iα) ⇒ tan(iα) =

i V

c
, (1)

DC

OD
=

v′

x

i c
= tan(−iβ) ⇒ tan(iβ) =

i v′

x

c
, (2)

DA

OD
=

v′

y

i c
= tan(−iγ) ⇒ tan(iγ) =

i v′

y

c
, (3)

EB

OE
=

vy

i c
= tan(−iδ) ⇒ tan(iδ) =

i vy

c
, (4)

EC

OE
=

vx

i c
= tan(−iθ) ⇒ tan(iθ) =

i vx

c
. (5)

In order to express the velocities vx and vy as functions of
V,v′

x, and v′

y we need to express the angles iδ and iθ as functions
of iα,iβ, and iγ.

In the plane (x, O, ict) of the Lorentz boost the addition of
velocities is based on the addition of angles:

iθ = iα + iβ, (6)

tan(iθ) = tan(iα + iβ) =
tan(iα) + tan(iβ)

1 − tan(iα) tan(iβ)
. (7)

From (7), by substitution of the tangents (1)-(5), it follows that

vx =
V + v′

x

1 + V v′

x/c
2
. (8)
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Two rectangles, APCD and BPCE, result from the projection
process. It is evident that

CP

OC
=

EB

OC
=

EB

OE

OE

OC
= tan(−iδ) cos(−iθ), (9)

CP

OC
=

DA

OC
=

DA

OD

OD

OC
= tan(−iγ) cos(−iβ). (10)

From (9)-(10) it follows that

tan(iδ) =
cos(iβ) tan(iγ)

cos(iα + iβ)
=

tan(iγ)

cos(iα)[1 − tan(iα) tan(iβ)]
. (11)

By substitution of the tangents (1)-(5) and of cos(iα) = [1 +
tan2(iα)]−1/2 we get

vy =
v′

y(1 − V 2/c2)1/2

1 + V v′

x/c
2

. (12)

A similar expression is obtained for the vz component.

Electromagnetic interaction between two uniformly
moving charged particles

Consider two charged particles (with charges Q1 and Q2) at
some arbitrary positions, moving with arbitrary, but uniform,
velocities. We orient our 3D reference frame in such a way that
the first particle (which generates the field) is initially at the
origin, moving along the Ox axis with velocity V = V x̂, and
the vector R = RR̂ = R[cos(θ)x̂ + sin(θ)ŷ] connecting the two
particles lies in the (x, O, y) plane. The angle between R and the
Ox axis is θ. The second particle (subject to the electromagnetic
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field generated by the first one) is moving with velocity v =
vxx̂ + vyŷ + vzẑ. The world-lines of the particles (CO and AG)
are plotted in Fig. 2.

Analytical calculation of the Lorentz force The electric
field (in Gaussian units) generated by the first particle at the
position of the second particle is [4, 5]

E =
Q1

R2
(1 −

V 2

c2
)[1 −

V 2

c2
sin2(θ)]−3/2R̂. (13)

The magnetic field generated by the first particle is

H =
1

c
V × E. (14)

The Lorentz force acting on the second particle is

F = Q2E +
Q2

c
v × H. (15)

From (13)-(15) the Cartesian components of the force are ob-
tained [6]

Fx =
Q1Q2

R2
(1 −

V 2

c2
)[1 −

V 2

c2
sin2(θ)]−3/2[cos(θ) + sin(θ)

vyV

c2
],

(16)

Fy =
Q1Q2

R2
(1 −

V 2

c2
)[1 −

V 2

c2
sin2(θ)]−3/2 sin(θ)(1 −

vxV

c2
), (17)

Fz = 0. (18)

Geometrical derivation of the Lorentz force The force
components (16)-(18) can be obtained in a more graphical way,
if we start with the Coulomb force generated by a charged par-
ticle at rest. One key assumption or experimental fact is that
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in a frame where all the source charges producing an electric
field E are at rest, the force on a charge q is given by F = qE
independent of the velocity of the charge in that frame [7].

Figure 2. Electromagnetic interaction between two uniformly moving

charged particles. CO is the world-line of the source particle, and AG is the

world-line of the test particle. In the proper reference frame of the source

particle there is a Coulomb force directed along the BA radial direction.
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The reference frame K ′ in which the source particle is at rest
is moving with velocity V relative to the original frame K.

In the reference frame K the particle at A is observed to
interact with the particle at O. The distance between particles
is R, the length of the segment OA.

In the reference frame K ′ the particle at A is observed to
interact with the particle at B, where the segment BA is a
position vector R′ parallel to the plane (x′, O, y′). The following
construction gives the position of point B: the segment AE is
parallel to Oy and intersects the Ox axis at E, whereas the
segment EB is parallel to Ox′ and intersects the world-line CO
at B. BD projects the point B on the Ox axis at D.

Relative to K ′, the particle at B exerts a radial Coulomb
force on the particle at A. This force (in Gaussian units) is

F′ =
Q1Q2

R′2
R̂′, (19)

where R′ = R′R̂′ = R′[cos(θ′)x̂′ + sin(θ′)ŷ′].
The key point in getting the force F in the reference frame

K is to notice that the force, in any reference frame considered,
is given by the projection on the real 3D space of that frame of
the 4-force F (which is a Minkowski-space vector), that is

F = Freal + Fimag = γ(v)F + γ(v)
P

c
î, (20)

F = F
′

real + F
′

imag = γ(v′)F′ + γ(v′)
P ′

c
î′, (21)

where γ(v) = (1 − v2/c2)−1/2, P = F · v, and î is an imaginary
unit vector (̂i · î = −1) along the time axis.
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We will obtain the 4-force F from its real and imaginary
components (F′

real and F
′

imag) in the reference frame K ′, then
we will decompose the same 4-force into its real and imaginary
components (Freal and Fimag) in the reference frame K. The
Lorentz force we are looking for is just F = Freal/γ(v).

From (19)-(21) it follows that

F
′

real = γ(v′)
Q1Q2

R′2
R̂′. (22)

To get the imaginary component F
′

imag we use the orthogonality
between the 4-force and the 4-velocity, F · V = 0, where the 4-
velocity is V = γ(v′)v′ + γ(v′)ĉi′. This orthogonality condition
leads to

F
′

imag = γ(v′)
Q1Q2

R′2

v′

rad

c
î′, (23)

where the radial component of the velocity is

v′

rad = v′ · R̂′ = v′

x cos(θ′) + v′

y sin(θ′). (24)

It is possible to give a geometrical interpretation [3] to (22)-
(23), within the framework of time-symmetric electrodynamics
[8]. The expressions (22)-(23) exhibit an explicit dependence on
the velocity of the test particle, and an implicit dependence on
the velocity of the source particle (we work in its proper ref-
erence frame). But, from a geometrical point of view, a point
in Minkowski space is just a fixed point, it does not have a
velocity! The theory therefore considers interactions between
segments of finite length along the world-lines of the particles.
A key result of the theory [3] is that, when accelerated motion is
considered, the rest mass of the electron is no longer constant,
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but its averaged variation is still null. Therefore the geometrical
approach to special relativity provides us with strong motiva-
tion to investigate alternative theories of the electromagnetic
interaction, which allow for the variation of the electron’s rest
mass. Other authors are investigating theoretically [9, 10, 11,
12] or experimentally [13, 14, 15] alternative expressions for the
electromagnetic force. See [16] for a review article.

The components of the force F in the reference frame K are
given by the projection of the 4-force F on the 3D real space of
K. An easy way to do this is to notice that we can decompose
F
′

real (which has the direction of the segment BA) and F
′

imag

(which has the direction of the segment BO) into sums of 4-
vectors, each of the 4-vectors being parallel to one of the axes
of the reference frame K:

BA = BD + DE + EA, (25)

BO = BD + DO. (26)

Because these expansions do not involve any component along
the Oz axis, this simply means that Fz = 0. The projections of
the 4-force on the Ox and Oy axes are

γ(v)Fx = F ′

real

DE

BA
+ F ′

imag

DO

BO
, (27)

γ(v)Fy = F ′

real

EA

BA
, (28)

where F ′

real and F ′

imag are the magnitudes of the 4-vectors (22)-
(23). The lengths of the various segments needed above are as
follows:

AO = R, (29)
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EA = AO sin(θ) = R sin(θ), (30)

OE = AO cos(θ) = R cos(θ), (31)

BE = OE cos(iα) = R cos(θ) cos(iα), (32)

DE = BE cos(iα) = R cos(θ) cos2(iα), (33)

AB = (AE2 +BE2)1/2 = R cos(iα)[1+tan2(iα) sin2(θ)]1/2 = R′,
(34)

We also notice that DO/BO = sin(−iα). The force components
in (27)-(28) become

Fx =
γ(v′)

γ(v)

Q1Q2

R2

cos(θ)

cos(iα)[1 + tan2(iα) sin2(θ)]3/2

+i
γ(v′)

γ(v)

Q1Q2

R2

v′

rad

c

sin(−iα)

cos2(iα)[1 + tan2(iα) sin2(θ)]
, (35)

Fy =
γ(v′)

γ(v)

Q1Q2

R2

sin(θ)

cos3(iα)[1 + tan2(iα) sin2(θ)]3/2
. (36)

We can also calculate

sin(θ′) =
EA

AB
=

sin(θ)

cos(iα)[1 + tan2(iα) sin2(θ)]1/2
, (37)

cos(θ′) =
BE

AB
=

cos(θ)

[1 + tan2(iα) sin2(θ)]1/2
. (38)

If the velocity of the particle at A has the components vx, vy, vz,
as measured in the reference frame K, and K is moving with the
velocity V′ = −V x̂′ relative to K ′, then the particle will have
the following components of the velocity in the reference frame
K ′:

v′

x =
vx − V

1 − V vx/c2
, (39)
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v′

y =
vy(1 − V 2/c2)1/2

1 − V vx/c2
, (40)

v′

z =
vz(1 − V 2/c2)1/2

1 − V vx/c2
. (41)

With these components we find that

γ(v′) =

(

1 −
v′

x
2 + v′

y
2 + v′

z
2

c2

)

−1/2

= γ(v)
1 − V vx/c

2

(1 − V 2/c2)1/2
,

(42)
and the radial velocity (24), with the help of (37)-(38), becomes

v′

rad =
(vx − V ) cos(iα) cos(θ) + vy(1 − V 2/c2)1/2 sin(θ)

(1 − V vx/c2) cos(iα)[1 + tan2(iα) sin2(θ)]1/2
. (43)

Substituting γ(v′) and v′

rad in (35)-(36), and then using the fact
that sin(iα) = i(V/c)γ(V ), cos(iα) = γ(V ), and tan(iα) = iV/c,
we finally obtain the components in (16)-(17).

Conclusions

We have given geometrical derivations, based on 3D Minkow-
ski diagrams, of the relativistic addition of velocities, and of
the electromagnetic interaction between two uniformly moving
charged particles. The geometrical approach to special relativ-
ity provides us with strong motivation to investigate alternative
theories of the electromagnetic interaction, which allow for the
variation of the electron’s rest mass.
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