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Abstract

I present an account of deterministic chance which builds upon the physico-mathe-
matical approach to theorizing about deterministic chance known as the method of
arbitrary functions. This approach promisingly yields deterministic probabilities
which align with what we take the chances to be—it tells us that there is approx-
imately a 1/2 probability of a spun roulette wheel stopping on black, and approx-
imately a 1/2 probability of a flipped coin landing heads up—but it requires some
probabilistic materials to work with. I contend that the right probabilistic mate-
rials are found in reasonable initial credence distributions. I note that, with some
rather weak normative assumptions, the resulting account entails that determinis-
tic chances obey a variant of Lewis’s ‘principal principle’. I additionally argue that
deterministic chances, so understood, are capable of explaining long-run frequen-
cies.

1 Introduction

You have a better chance of winning at blackjack than at craps (even if you happen
to win at neither). You have a better chance of getting into an accident at an
intersection than at a roundabout (even if you happen to make it through the
intersection unscathed and crash at the roundabout). A peacock with large and
colorful feathers has a better chance of reproducing than a similar peacock with
small and lackluster feathers (even if both of them end up finding a mate).

I take these truths to be evident. I am a compatibilist about chance. I
believe that fundamental physical determinism is compatible with non-trivial
chance. For instance, I believe that the outcome of a coin toss in a Newtonian
universe—an outcome which is uniquely determined by the initial conditions of
the tossed coin—is a matter of chance. According to compatibilists,1 the chance
that this coin lands heads is approximately 50%.2 According to incompatiblists,3
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1 For instance, Clark (1987) Loewer (2001), Hoefer (2007), Ismael (2009), Glynn (2010),
Sober (2010), and Strevens (2011).

2 Strictly speaking, a compatibilist needn’t say this. They could say that the chance is 2/3, or π/4,
or even 0 or 1. All it takes to be a compatibilist is to assign some proposition a non-trivial chance
in a deterministic world.

3 For instance, Popper (1982), Lewis (1986), and Schaffer (2007).
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the chance that the coin lands heads is 1, if it actually does, and 0, if it actually
doesn’t.

An incompatibilist will disagree with me about whether chance is compatible
with fundamental physical determinism, yet they are likely to accept the claims
in my first paragraph—or at least some suitably sterilized translation of those
claims. Perhaps they will say that roundabouts decrease the epistemic probability,
or what-have-you, of accidents, while still insisting that the chance of an accident,
in a deterministic world, is 1, if the accident occurs, and 0, if the accident doesn’t
occur.4 What is to keep our disagreement from being merely verbal? Perhaps
nothing. Perhaps, once ‘chance’ has been exchanged for ‘epistemic probability’, or
what-have-you, the incompatibilist will accept all the same claims about chance as
I. Such an incompatibilist and I have different views about how the word ‘chance’
ought to be used; but we don’t disagree at all about the nature of chance (or, if you
are such an incompatibilist: we don’t disagree at all about the nature of epistemic
probability).5

For my part, I do think that the word ‘chance’ is appropriately used to de-
scribe deterministic systems; so, when I am speaking, I will use the word ‘chance’
indiscriminately, to refer both to the kinds of chances that exist in worlds whose
fundamental physical laws are deterministic and the kinds of chances that are
unique to worlds whose fundamental physical laws are indeterministic. The for-
mer variety of chance I refer to as ‘deterministic chance’. The latter variety I call
‘tychistic chance.’ Since my goal is not to argue for any thesis about the mean-
ing of ‘chance’, you should feel free to translate into your own idiom as you see
fit. Nevertheless, even after such translation, disagreement about the nature of
deterministic chance may remain.

To see why, we should turn to the sorts of considerations that motivate incom-
patibilism in the first place. I take it that one of the central intuitions motivating
incompatibilism is well illustrated by the coin-tossing machine constructed by
Diaconis et al. (2007). This machine can exercise such minute control over the
initial conditions of the toss that it can determine whether the coin lands heads
or tails. If the coin is placed in the machine heads-up, then it will land heads-up;
if it is placed in the machine tails-up, then it will land tails-up.6 It is incredi-

4 See, for instance, Schaffer (2007).
5 Following philosophical tradition, I reserve the word ‘chance’ for objective probabilities. So,

when I call the probabilistic features of deterministic systems ‘chances’, I mean to place those
probabilities on the objective side of an objective-subjective dichotomy. It may be that the reader
disagrees with me about whether there are deterministic chances because they and I disagree
about where to draw the line between objective and subjective. This is not first and foremost a
disagreement about the nature of the probabilistic features of deterministic systems. It is rather
first and foremost a disagreement about how to use our terms. Others, like Schaffer (2007)
and Bradley (2017), will think that chance is whatever plays (well enough) certain theoretical
roles like constraining rational credence and explaining frequencies. Part of my goal here is
to demonstrate that the probabilistic features ascribed to deterministic systems are capable of
playing these kinds of theoretical roles.

6 I take the existence of this machine to decisively settle, in the negative, Lewis (1986, p. 119)’s
question of whether quantum mechanical chance will infect the tossing of a coin to a degree
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bly difficult to see the outcome of this machine’s coin toss as a matter of chance.
In the presence of such a machine, one feels as though there simply isn’t any-
thing chancy about the outcome of the machine’s coin toss at all—or, perhaps,
one feels that, when the coin is placed in the machine heads up, the chance that
the coin lands heads is 1 (or as near as tychistic chance will allow—which is very
near). Moreover, there doesn’t appear to be any important difference between the
machine’s coin tosses and our coin tosses—other than, of course, our epistemic
situation with respect to the outcome. In the case of the machine, we know how
the coin will land. In the case of our coin toss, we don’t. It may well be that the
initial conditions of our tossed coin are exactly the same as the initial conditions
of the machine’s tossed coin. So it is quite tempting to conclude that determinis-
tic chance is just a matter of our epistemic situation with respect to the outcome,
that deterministic chance is not a worldly affair. Thus Laplace (1814) writes:

The curve described by a simple molecule of air or vapor is regulated
in a manner just as certain as the planetary orbits; the only difference
between them is that which comes from our ignorance... Probability
is relative, in part to this ignorance, in part to our knowledge.7

But wait—deterministic chances don’t just earn their keep by telling us how
confident to be in the outcome of deterministically chancy processes. They ad-
ditionally help to explain certain worldly facts, such as the frequency of heads in
a long series of trials. But facts about our epistemic situation aren’t capable of
explaining the outcome of a physical process like a coin toss. Moreover, chances
appear to be sensitive to physical features of the world, even when we are ignorant
of those features. A casino could hardly protest the charge of using an unfair die
by pointing out that nobody knew that the die was loaded.8 Whether the die is
fair seems to be entirely a question of how the mass in the die is distributed, and
not at all a question of our, or anybody’s, epistemic situation with respect to the
distribution of mass in the die.

Deterministic chance is an odd sort of beast. It appears at once subjective
and epistemic, a chimera of our ignorance, and objective and worldly, the kind of
thing that depends upon and helps to explain features of the natural world. It is
my view that an adequate account of deterministic chance should help to explain
this dual nature. My goal here is to provide such an account. So put aside the
question of whether the probabilistic features ascribed to deterministic systems are
appropriately called ‘chances’. What’s interesting in this question—what remains
after merely verbal disagreement is settled—is whether what I choose to call ‘de-
terministic chance’ (whatever you choose to call it) is a chimera of our ignorance
or a worldly affair. My answer will be: in some ways, deterministic chance is a
matter of our ignorance; in some ways, it is a worldly affair—the devil, of course,

sufficient to render the tychistic chance of heads 1/2.
7 Laplace (1814, p. 6)
8 When I say that the die is ‘unfair’, I mean that it is not the case that the chance that one side

land up is the same as the chance that any other side land up.
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is in the details. To the extent that incompatibilists deny the worldly aspects of de-
terministic chance, they and I disagree. Equally, to the extent that compatibilists
reject the epistemic aspects of deterministic chance, they and I disagree.

My account of deterministic chance will take, as its jumping-off point, a
physico-mathematical approach to theorizing about deterministic chance known
as the method of arbitrary functions. This approach is motivated by the insight
that deterministic systems like the spinning of a roulette wheel or the tossing of a
coin in a Newtonian universe have an interesting property: almost any reasonable
probability distribution over the initial conditions of the roulette wheel’s spin or
the coin’s toss will induce a probability very close to 50% to the roulette wheel
landing on black and the coin’s landing heads (§2). It is tempting to try to par-
lay this physico-mathematical result into a metaphysical account of deterministic
chance. Any account along these lines faces the obstacle of explaining away the
probability distributions over initial conditions (call these the initial distributions).
For if the initial distributions are chance distributions, then we have not analyzed
away the notion of chance, nor in any way illuminated its compatibility with de-
terminism. We have, rather, merely said something about how the world’s causal
structure and its chance function are interrelated. Some have attempted to par-
lay the method of arbitrary functions into an account of deterministic chance by
claiming, roughly, that the initial distribution is just a measure of the proportion
of those initial conditions.9 Others claim that the initial distributions come from
the actual and/or hypothetical frequencies of initial conditions,10 or that the ini-
tial distribution is itself a law of nature.11 In contrast, I will suggest that, roughly,
these initial distributions are reasonable prior credal distributions over the initial
conditions (§4).12 I will argue that this approach is able to explain why chances
play the role they do in scientific practice and every day reasoning. In particu-
lar, I will argue, it is able to show how chances are capable of explaining long-run
frequencies and how they are capable of constraining rational credence. That’s be-
cause the account on offer here, together with some plausible theses about rational
credence, ends up entailing a deterministic variant of Lewis’s ‘principal principle’,
which tells us, roughly, that our credence in a proposition p, conditional on the
chance of p being x , ought to be x .

2 The Method of Arbitrary Functions

In his Calcul des Probabilités (§§92 & 93), Poincaré introduced a method for
determining the chancy properties of deterministic systems which has come to be
known as the method of arbitrary functions.13 In this section, I will introduce the

9 See Rosenthal (2010, 2012, 2016).
10 See Strevens (2003, 2011), Abrams (2012), and Beisbart (2016).
11 See Albert (2000, 2015), Loewer (2001, 2004, 2007), and Roberts (2016).
12 This puts me in the company of Savage (1971) and Myrvold (2012).
13 von Kries (1886) scooped Poincaré by several years, though he left the mathematical details

rather vague. See von Plato (1982) and Zabell (2016).
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method of arbitrary functions by way of two examples, and then say something
about how to generalize the approach.14

2.1 The Roulette Wheel

For purposes of illustration, consider the deterministic system of a
croupier’s spinning a roulette wheel. Just to keep things simple, let’s suppose
that the roulette wheel consists of 36 equally sized, colored pockets. The color
of the pockets alternates between black and red, so that half of the pockets are
colored black, and half are colored red. There is a fixed pointer, and the color of
whichever pocket it points to when the wheel is finished spinning is the winning
color. Suppose that the pointer begins pointing at the start of a black pocket, the
croupier gives the wheel an initial angular velocity of V , and friction causes the
wheel’s angular velocity to decelerate at a constant rate, δ. Then, the wheel’s an-
gular velocity at t will beV −δt . It will therefore stop rotating at time t ∗ =V /δ.
At time t , the wheel will have rotated θt degrees, where θt =V t −0.5δt 2. Thus,
at the time t ∗ when the wheel stops rotating, it will have rotated a total number
of degrees θt ∗ , where θt ∗ =V t ∗ − 0.5δt ∗2 =V 2/2δ. Thus, if V 2/2δ is between
0◦ and 10◦, then black will win; if V 2/2δ is between 10◦ and 20◦, then red will
win; if V 2/2δ is between 20◦ and 30◦, then black will win; and so on.

This is illustrated in figure 1, where the area above a velocity, V , is shaded if a
spin with that initial velocity would lead to the roulette wheel stopping on a black
pocket, and is left unshaded if a spin with that initial velocity would lead to the
roulette wheel stopping on a red pocket. Notice that, as the initial velocity V gets
greater, the distance between shaded and unshaded regions gets smaller. In the
limit as V goes to infinity, this distance converges towards zero. (This is because
the number of degrees the wheel rotates is a function of V 2.)

The basic thought behind the method of arbitrary functions is just this: we
may pick any probability density function over the croupier’s spin velocityV (call
this an initial distribution), and this will induce a probability very close to one half
to black’s winning, and a probability very close to one half to red’s winning. That
is, we may pick an arbitrary initial distribution, and we will arrive at a probability
of very nearly one half for black and a probability of very nearly one half for red.
See figures 2–4. That is the thought; but a moment’s reflection shows that it can’t
be quite right. It’s not the case that any initial distribution will induce a probability
very close to one half to black’s winning. Consider the initial distribution shown
in figure 5. This initial distribution will induce a probability much greater than
one half to the roulette wheel landing on black, and a probability much less than
one half to the roulette wheel landing on red. (Call this ‘the problem of all too

14 A note on the presentation: the method of arbitrary functions has a long and storied history.
My goal in this section is not to give anything like an adequate introduction to the historical
development of these ideas, but rather to simply present them in the form that is currently
fashionable. See Strevens (2003, §2.A) and von Plato (1983) for accessible introductions to
this historical development. See Engel (1992) for a more technical historical introduction.
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V

Figure 1: The outcome of the roulette wheel spin, as a function of its initial angular
velocity. If the initial angular velocity is in a region shaded grey, then the wheel will stop
on black; else, it will stop on red.

V

f
1
(V )

Figure 2: The area under the curve f1 mapped to black,
∫
B f1(V ) dV ≈ 1/2.

arbitrary functions’.)
A standard way of getting around the problem of all-too arbitrary functions is

to shift attention towards various asymptotic features of the analysis. For instance,
Poincaré (1912) points out that, as the number of equally-sized red and black
pockets on the roulette wheel goes to infinity, the probability of black goes to
1/2, given any absolutely continuous initial distribution—even the one shown in
figure 5. Hopf (1934) similarly points out that, given any absolutely continuous
initial distribution, as the friction on the roulette wheel goes towards zero, the
probability of the wheel’s stopping on black approaches 1/2. Others observe that,
so long as the initial distribution is absolutely continuous, in the limit as the
initial angular velocity V goes to infinity, the probability of the wheel’s stopping
on black approaches 1/215—this is because, as V gets larger, the gaps between
initial velocities leading to black and initial velocities leading to red get smaller.16

These are interesting observations, but it isn’t clear what relation these asymp-

15 That is to say: limx→∞
∫
B f (V − x ) dV = 1/2.

16 See Keller (1986), in which he determines the probability of heads as the initial upwards and
angular velocities go to infinity, supposing that the initial distribution is absolutely continuous.
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V

f2(V )

Figure 3: The area under the curve f2 mapped to black,
∫
B f2(V ) dV ≈ 1/2.

V
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Figure 4: The area under the curve f3 mapped to black,
∫
B f3(V ) dV ≈ 1/2.
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Figure 5: The problem of all-too arbitrary functions. Not just any probability distribu-
tion will give a probability of 1/2 to the set of initial conditions which lead to the roulette
wheel stopping on black.

∫
B f4(V ) dV ≫ 1/2.
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totic results are supposed to bear to the chance of black. Consider the final ap-
proach: even putting aside the worry that the laws of nature put an upper bound
on the value of V , the dynamical equation that we were relying upon when we
assumed that the initial velocity determines the outcome of the spin simply does
not hold when the velocity is too large. Were the initial velocity V to get close
to the speed of light, the air molecules wouldn’t have time to get out of the way
of the spinning roulette wheel. Those molecules would fuse with the atoms in
the surface of the wheel, releasing a massive amount of energy. There simply
wouldn’t be an answer to the question of whether the pointer points at a black or
red pocket, as both the wheel and the pointer would be almost instantly vaporized
by the ensuing thermonuclear reaction. The point here is just that the method of
arbitrary functions is relying upon certain dynamical equations which we ought
to trust in the case of low velocities, but which we have positive reason to distrust
in the case of high velocities.

Even if we don’t find this kind of response troubling—perhaps because we
think that limiting behavior can be revelatory, even when we know that that limit
is in principle unreachable17—relying upon limiting probabilities to determine
chances makes it unclear what relationship there could be between the chance of
the roulette wheel stopping on black and the observed frequency of roulette spins
which stop on black. For we know that all of the actual initial velocities are quite
low; why, then, would we expect to learn anything about the actual frequencies by
looking at a probability distribution most of whose mass is atop astronomically
high velocities?18 In sum, it doesn’t seem to me that the appeal to asymptotics
is an effective response to the problem of all-too-arbitrary functions. I’ll put it
aside from here on out. But this leaves an outstanding problem that an adequate
account of deterministic chance built upon the method of arbitrary functions
must solve.

2.2 The Coin Flip

The method of arbitrary functions analysis is meant to apply to more systems
than a croupier’s spin of a roulette wheel. For another example of this reasoning
at work, consider Keller (1986)’s analysis of the probability that a flipped coin
will land heads-up. Keller asks us to imagine that we flip a coin with radius r ,
initially laying flat at height r above the ground with its tails face up,19 by provid-
ing it with a certain initial upward velocityU and a certain angular velocity A (see
figure 6). Suppose that the coin rotates about its center of mass with a constant
angular velocity. Since, in the earth’s gravitational field, the vertical acceleration
of the coin is − g , the coin’s height at time t is ht = U t − 0.5 g t 2 + r . If we
assume that the coin does not bounce, then whatever side of the coin is facing up

17 See Strevens (2003, §2.A) and Butterfield (2011).
18 See Strevens (2011, §3)
19 Following Keller, I set the coin’s initial height equal to its radius in order to simplify the math.

Nothing significant changes if we vary the coin’s initial height.
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U

A

Figure 6: The outcome of a coin flip as a function of its initial upward velocity (U ) and
its initial angular velocity (A). If 〈U ,A〉 lies in the grey area, then the coin will land heads;
otherwise, it will land tails.

when it returns to the height r will be the side which is facing up after the coin
has settled to the ground. The coin will return to height r at time t ∗ = 2U / g .
Because the coin’s rate of rotation A is constant, the angle the coin has rotated at
time t , θt , will be equal to At . Thus, when the coin returns to height r , it will
have rotated θt ∗ = 2AU / g degrees. Since the coin began tails up, if 2AU / g is
between 90◦ and 270◦, then coin will land heads. If 2AU / g is between 270◦ and
450◦, then the coin will land tails. If 2AU / g is between 450◦ and 630◦, then the
coin will land heads; and so on.

If we graph those pairs of initial upward velocities and initial angular velocities
〈U ,A〉which lead to the coin landing heads, we get the hyperbolas shown in figure
6. As in the case of the roulette wheel, just about any not-too-arbitrary probability
distribution over the values of 〈U ,A〉 will put about half of its mass on values of
〈U ,A〉 which lead to the coin landing heads and about half of its mass on values
of 〈U ,A〉 which lead to the coin landing tails.20

2.3 The Method of Arbitrary Functions in General

Suppose that there is a variable O (which we can think of as the outcome of the
chance process) such that the value of O is causally determined by the values of
some other set of variables C1 . . .CN (which we can think of as the causes of the
outcome O). I’ll assume that what it is for O to be causally determined, in the
relevant way, by the values ofC1 . . .CN , is for there to be a true dynamical equation
of the form O :=ϕO (C1, . . . ,CN ).21 In the case of the roulette wheel, we had the
function B :=ϕB (V ), whereV is the initial angular velocity of the roulette wheel,
B is a binary variable which takes the value 1 if the roulette wheel stops on black,

20 For a discussion of the application of the method of arbitrary functions to several other chance
processes, see Engel (1992) and Strevens (2003, 2013). For a development of Keller’s analysis
which incorporates precession and shows surprisingly that a flipped coin is slightly more likely
to land on whichever face was up initially (≈ 51%), see Diaconis et al. (2007).

21 I’m using ‘:=’, rather than ‘=’, to emphasize that the value of O is determined by the values of
C1 . . .CN , and not vice versa. := is therefore, not a symmetric relation like =.
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and takes the value 0 if it instead stops on red, and ϕB is22

ϕB (V ) =
�

1 if V 2/2δ mod 20 < 10
0 if V 2/2δ mod 20 ¾ 10

(This is the function illustrated in figure 1). In the case of the coin flip, we have
the function H := ϕH (U ,A), where U is the coin’s initial upward velocity, A is
the coin’s initial angular velocity, H is a binary variable which takes the value 1 if
the coin lands heads and takes the value 0 if it instead lands on tails, and ϕH is

ϕH (U ,A) =
�

1 if (2UA/ g − 90) mod 360 < 180
0 if (2UA/ g − 90) mod360 ¾ 180

(This is the function shown in figure 6.)
A method of arbitrary functions analysis of the deterministic chance of a cer-

tain outcome O = o consists of two components: a dynamical equationϕO from
C1 . . .CN to O and an initial probability distribution f over the potential values
of C1 . . .CN .23 From the initial distribution over the values of C1 . . .CN , we in-
duce a probability distribution over the values of O as follows: we look to the set
of initial conditions such that, according to the dynamical equation ϕO , those
initial conditions lead to the outcome O = o. Denote this set of initial conditions
with ‘ϕ−1O [O = o]’. Then, we set the probability of O = o equal to the probability
of its causes, ϕ−1O [O = o].

(pdp) f (O = o) = f (ϕ−1O [O = o])

Because it gives us a relation between a probability function and a dynamic equa-
tion, I call this equation the ‘probability dynamics principle’ (or ‘pdp’). The pdp
says, of any given probability function, f , that the world’s causal dynamics take
f along for the ride. The pdp is non-trivial. There are many probability func-
tions for which it obviously does not hold—for instance, if f is an individual’s
credence function,24 and that individual is ignorant of the causal relationship be-
tween C1 . . .CN and O , then there is no reason to expect that pdp will hold of
f . However, it seems very plausible as a constraint on the relationship between
chance and causation. Indeed, many authors who rely upon the pdp fail to explic-
itly mention the principle at all. Those who do mention the principle usually do
so without comment.

As a first pass, then, the method of arbitrary functions (maf) analysis of de-

22 ‘a mod b ’ is the remainder when a is divided by b .
23 A few words on notation. Throughout, I will use ‘ϕO ’ to stand for both the function on the right-

hand-side of a dynamical equation O := ϕO (C1,C2, . . . ,CN ), and also the entire dynamical
equation itself. Also, I will use ‘ f ’ indiscriminately to denote both a probability density function
(if the variables over which it is defined are continuous), a probability mass function (if the
variables over which it is defined are discrete), and the probability function determined by such
pdfs or pmfs.

24 I will be assuming throughout that rational credences are probabilities.
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terministic chance says the following:

method of arbitrary functions (maf)
If ϕO and f are suitable, then

C h(O = o) = f (ϕ−1O [O = o])

That is: the chance distribution over outcomes is the result of time-evolving a
suitable probability distribution along a suitable dynamical equationϕO , accord-
ing to the probability dynamics principle, pdp. In a slogan: chance is a suitable
probability distribution filtered through suitable dynamics. Once a suitable prob-
ability distribution is supplied, the maf will tell us that a fair coin has about a half
chance of landing heads and that a fair roulette wheel has about a half chance of
stopping on black. So too will it tell us that, if a die has most of its mass con-
centrated opposite its 6-face, then it will have a greater than one-sixth chance of
landing with its 6 face up; and that, if the roulette wheel has a greater coefficient
of friction in its black regions than its red regions, then it will have a greater than
one half chance of stopping on black.

The restriction to suitable ϕO and f in maf is important. Not just any initial
distribution f will do. As we saw in §2.1, if we allow just any initial distribu-
tion, then, by appeal to gerrymandered distributions like the one shown in figure
5, we could give O = o any chance we like. Similarly, not just any dynamical
equation ϕO will do. At the least, this equation must be correct. Perhaps more
than correctness is required for a dynamical equation to be suitable for the maf
analysis. Strevens (2003, 2011, 2013) places a joint requirement on both the ini-
tial distribution f and the dynamical equation ϕO : he requires, firstly, that the
dynamics be such that, for any small (but not too small) region of the initial con-
ditions space 〈C1, . . . ,CN 〉, the proportion of initial conditions which lead to the
outcome O = o is about the same.25 If ϕO meets this requirement, Strevens
says that it is microconstant. In the definition of microconstancy, how small is
small enough (and how small is too small) is left vague. Given a certain standard
for smallness, however, Strevens requires that the initial distribution f be ap-
proximately uniform over small regions of the initial conditions space. Strevens
calls an initial distribution satisfying this condition macroperiodic. On Strevens’
view, microconstancy and macroperiodicity are necessary conditions on ϕO and
f being suitable. Notice that these conditions will, all by themselves, rule out
all-too-arbitrary functions like the one shown in figure 5. Such functions are not
macroperiodic because they are not approximately uniform over the small (but
not too small) regions relative to which the dynamics are microconstant.

It is unclear whether microconstancy and macroperiodicity should be taken

25 As I will be understanding the term ‘microconstant’, the proportion here is calculated with the
Lebesgue measure, corresponding to the intuitive length of a set of points inR, the intuitive area
of a set of points in R2, the intuitive volume of a set of points in R3, etc. For a more careful
definition of Lebesgue measure, see Bartle (1966).
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to be necessary for the existence of a deterministic chance.26 It seems likely that
microconstancy and macroperiodicity are necessary conditions for the existence
of a deterministic chance whose value is (near enough) determinate. For non-
microconstant dynamics and non-macroperiodic initial distributions, it may be
that the most that is determinately true about the chance of the outcome is that
it lies in some rather wide interval; but there’s no obvious reason why this should
preclude us from saying, for instance, that the chance is non-zero or that some
event would raise or lower the chance of the outcome.

3 The Method of Arbitrary Functions and the Metaphysics of
Deterministic Chance

The physico-mathematical results from the literature on the method of arbitrary
functions are just that: mathematics and physics. These results on their own
do not establish any thesis about the possibility or the nature of deterministic
chance. Whether these results are capable of founding a metaphysics of deter-
ministic chance depends upon how we unpack the ‘suitability’ requirement from
maf. In particular, until more is said about the suitability of f , there is nothing
in the result from §2.2 even guaranteeing that, in a deterministic universe, the
chance of a coin landing heads is strictly between 0 and 1. A staunch incompat-
iblist could affirm maf but insist that the only suitable initial distribution is an
initial chance distribution. And since non-trivial chance is ruled out by determin-
ism, in deterministic worlds, f would be a probability measure which places all
of its mass on the actual initial conditions and none of its mass on any non-actual
initial conditions.

In addition to a general skepticism about the possibility of deterministic chance,
there are at least two reasons to be sympathetic to this kind of reaction. In the
first place, there is a technical objection.27 Given any collection of variables,
C1, . . . ,CN , which causally determine the value of O in the manner specified by
the equation ϕO , we can cook up another collection of variables, ζ (C1, . . . ,CN ),
which are transformations of C1, . . . ,CN , and which determine the value of O
in a manner specified by a different dynamical equation ζ (ϕO ). And though
these transformations will be quite unnatural and gerrymandered, we may cook
up these alternative variables so as to make the proportion of the transformed ini-
tial conditions which lead to the outcome O = o take on any value we like.28 In
applying maf, we insisted that the initial distribution over the initial condition
space 〈C1, . . . ,CN 〉 be not too arbitrary—i.e., that it be macroperiodic. The skep-
tic objects: why do we only require the initial distribution to be macroperiodic
over that initial condition space? For after all, a macroperiodic initial distribution

26 Of course, Strevens need not, and does not, claim that they are. maf provides a sufficient, and
not a necessary, condition for the existence of a deterministic chance.

27 The objection is discussed in (Strevens, 2003, chapter 2), and further emphasized by Rosen-
thal (2012).

28 The proportion here is calculated with the Lebesgue measure. See footnote 25.
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over 〈C1, . . . ,CN 〉 may correspond to a non-macroperiodic distribution over the
transformed initial conditions space.

I believe that there is a problem here. However, it is not, first and foremost,
a problem for an account of deterministic chance built upon maf. After all, it is
important to the maf analysis that the dynamical equation ϕO be correct. And it
is generally thought that only certain natural variables are fit to enter into true dy-
namical equations of this kind. There is, of course, work to be done in explaining
the eligibility of certain variables and the ineligibility of others.29 But this work
is properly viewed as prior to the work of providing an account of deterministic
chance in terms of dynamical equations such as these. So I’ll put aside worries
about gerrymandered transformations of variables from here on out and assume
that correct dynamical equations only utilize the kinds of standard variables we are
familiar with—position, velocity, mass, unemployment, inflation, and so on—or
not-too-unnatural transformations of them (e.g., the kind of transformations in-
volved in unit-conversion).30

Rosenthal (2012, p. 231) raises what is, I believe, a deeper objection to the
project of using the maf analysis to underpin an account of deterministic chance.
The objection focuses on cases in which there are natural, salient, and microcon-
stant dynamical equationsϕCi

describing how the values ofO ’s causes,C1, . . . ,CN ,
are determined by the values of some prior variables, A1, . . . ,AM . In those cases,
we may compose the functionsϕO andϕCi

to get a dynamical equationϕO ◦ϕCi
which maps values of A1, . . . ,AM to values ofO . That is: once we know both how
the variables Ai determine the variables Ci and how the variables Ci determine
the variable O , we have all we need to know how the variables Ai determine
the variable O . And there is no reason to expect a macroperiodic distribution
over the values of A1, . . . ,AM and a macroperiodic distribution over the values of
C1, . . . ,CN to assign the same probability to the outcomeO = o. Thus, there may
be multiple deterministic chances of the outcome O = o.

For a concrete example of a case like this, consider slot machine.

slot machine
Suppose that this is how a casino’s slot machine works: it has a
pseudo-random number generator which produces a real number
between 0 and 1 on each pull of the lever. If a lever pull produces
a number in a certain designated range—say, within the interval
[0.222, 0.223]—then that lever pull gets a payout. Here’s how the
pseudo-random number generator works: it takes a given number

29 See, for instance, Woodward (2016).
30 From the perspective of fundamental physics, the variables used to describe many social and

biological systems will appear quite unnatural. Might we then expect some proportion-altering
transformation ζ to deliver variables just as natural as C1, . . . ,CN themselves? Perhaps, though
I’m inclined to think not; for I don’t think that the naturalness of high-level variables is to be
judged by reducing such variables to the quantities of fundamental physics. So I’m inclined to
think that the standard variables used in higher-level sciences are themselves rather natural, and
the proportion-altering transformations of them rather unnatural.
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between 0 and 1, S0, known as the seed value, and then determines
the value of the next number, S1, which corresponds to the first pull
of the lever, according to the recurrence equation S1 = (aS0 + b )
mod 1, for some a, b > 0. The next value, S2, corresponding to the
second pull of the lever, is then determined by S2 = (aS1+b ) mod 1.
In general, Sn+1 = (aSn+b ) mod 1, for n ¾ 0. Thus, given the initial
seed value and the recurrence equation, it is completely determined
whether the slot machine will pay out on the 300th pull. Suppose
additionally that the initial seed value, S0, was picked in the follow-
ing manner: the casino owners took six randomly selected potential
seeds, R1, . . . ,R6, and then rolled a standard die to determine which
one to feed into the slot machine’s recurrence equation. When the
casino owners did this, of the six potential seeds, there was one (and
only one), R3, which would lead to the slot machine paying out on
the 300th pull.

In the scenario described in slot machine, we could write down a true dy-
namical equation according to which whether the slot machine pays out on the
300th pull—denote this binary variable with ‘P ’, for ‘payout’—is determined by
the initial seed value, S0. This equation will tell us that the machine will pay out
on the 300th pull just in case the initial seed value lies within a range of [0, 1] that
gets mapped to [0.222, 0.223] by 300 applications of the recurrence equation. Call
this equation ‘ϕP ’. And we could write down another true dynamical equation
according to which the initial seed value is determined by the initial conditions
of the die roll—if those initial conditions lead to the die landing with its i face
up, then Ri is the initial seed. Call this equation ϕS—where ‘S ’ is for ‘seed’. But
then, by composing ϕP and ϕS , we get an equation according to which whether
the slot machine pays out on the 300th pull is determined by the initial conditions
of the die roll. According to this equation—ϕP ◦ϕS—the machine will pay out
on the 300th pull just in case the initial conditions of the die roll lie within a range
that lead to the die landing with 3 face-up. Assuming that the values of a and b
are suitable, both ϕP and ϕP ◦ϕS will be microconstant, in Strevens’ sense.
Let’s also suppose that we’ve chosen our values of a and b so that a macroperi-
odic probability distribution over the initial seed value, S , will assign probability
of approximately 1/1000 to the machine paying out on the 300th pull—and a
macroperiodic distribution over the initial conditions of the die roll will assign a
probability of about 1/6 to the machine paying out on the 300th pull.31

31 A function like ϕP will only be microconstant if we choose an appropriate a and b . To
persuade yourself that this will work out for some choice of a and b , I recommend playing
around in Mathematica. For instance, to get a sense of how functions like this behave, you
can set a = 9245.8698 and b = 6.282. Then, define the function f[x ] := Mod[a*x +
b, 1], which says what Sn+1 will be, given the input Sn . To see what this function produces
when iterated 300 times, define g[x ] := Nest[f,x,300]. Then, to see whether the out-
put is between 0.222 and 0.223, define h[x ] := If[x ≥ 0.222 && x ≤ 0.223, 1,
0]. For a nice visual representation of which initial seeds lead to a payout on the 300th pull,
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Figure 7: ϕP is a mapping from the potential values of the initial seed, S , to the value of
P . ϕS is a mapping from the values of the initial conditions of the die roll, D1, . . . ,DN ,
to the value of S . ϕ∗S is a mapping from the values of the randomly selected potential
initial seeds, R1, . . . ,R6, and the initial conditions of the die roll, to the value of S .

Supposing that there is some chance that the slot machine pays out on the
300th pull, we could say any of the following four things about those chances:

1/6) there is a 1/6 chance, and not a 1/1000 chance;

1/1000) there is a 1/1000 chance, and not a 1/6 chance;

both) there is both a 1/6 chance and a 1/1000 chance; or

neither) there is neither a 1/6 chance nor a 1/1000 chance.

If an account of deterministic chance endorses (both), say that it is a multivocal
account. More generally, a multivocal account allows that a single token event
may have multiple deterministic chances. If an account is not multivocal, then
say that it is univocal. A univocal account of deterministic chance must endorse
either (1/6), (1/1000), or (neither).

Any multivocal account of chance incurs an explanatory burden. For, even if
they are both created, the 1/1000th chance and the 1/6th chance are not created
equal. Prima facie, if you know everything described in slot machine, and no
more, your credence that the machine pays out on the 300th pull ought to be
1/6, and it ought not be 1/1000. If you were told that there were 6,000 machines
of which the description in slot machine were true, you ought to expect about
1,000 of them to pay out on the 300th pull; and you ought not expect about 6 of
them to pay out on the 300th pull. And a multivocal account of chance should
do something to explain this asymmetry.

You might suspect that the obvious thing to say here is that we should side
with the chances determined by earlier initial conditions over later ones for the
purposes of prediction. For instance, you might think that we should have cre-
dence 1/6, rather than 1/1000, on the grounds that the initial conditions of the
dynamics ϕP ◦ϕS pre-date those of ϕP .32 This approach won’t work for slot

use DiscretePlot[h[g[x]], {x, 0, 1, 0.00001}] to sample 100,000 real numbers be-
tween 0 and 1, at steps of 0.00001, and see whether they lead to a payout on the 300th pull.
You’ll see that about 100 of them do, and those 100 are randomly distributed over the interval
between 0 and 1.

32 See Rosenthal (2012, p. 231), who suggests (but does not ultimately endorse—for reasons unre-
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machine; for there is also the equation ϕ∗S which is a function from the val-
ues of the six potential seeds R1, . . . ,R6 and the initial conditions of the die roll,
D1, . . . ,DN , to the variable S . According to ϕ∗S , the value of S is determined
by both the values of the potential seeds and the initial conditions of the die roll.
(We get ϕS from ϕ∗S by simply plugging in the actual values of the variables
R1, . . . ,R6.) See figure 7. This dynamical equation has initial conditions which
predate those of ϕS , and the proportion of those initial conditions leading to a
payout is approximately 1/1000. Nevertheless, it does not appear that this deter-
ministic chance trumps the deterministic chance of 1/6 provided by the dynamics
ϕP ◦ϕS . That is to say: given that we know all of this, it does not appear that
we ought to have a credence of 1/1000 that the machine pays out on the 300th
pull. (For, to be clear, if we know all of this, then we know that R3 is the only
seed which leads to a payout on the 300th pull, and therefore, we know that the
machine will pay out on the 300th pull if and only if the die lands 3 up—and our
credence in the latter ought to be 1/6.)

There is a common prescription for making predictions when statistical data
from multiple reference classes are available, due originally to Reichenbach (1971).
On this view, if you have statistics from multiple reference classes into which some
token chance set up falls, then you ought to use the statistics from the narrowest
reference class for the purposes of prediction. Applied to the current case, the
proposal says that we should set our credence equal to the deterministic chance
which would determine the narrowest reference class—i.e., the 1/6 chance deter-
mined by ϕP ◦ϕS . Although I doubt that choosing the narrowest reference class
is, in general, a good prescription, if we know that all of the frequencies from
the various reference classes between which we have to choose align with some
deterministic chance or other, then I endorse the advice to defer to the narrow-
est. However, providing a good general rule about how to defer to deterministic
chances when more than one exists is not yet to do anything to explain why that
general rule is a good one to follow. It would be preferable if we could explain
why it is that we ought to defer to the chance which would determine the nar-
rowest reference class. And one would hope that such an account would follow
naturally from a story about the way in which deterministic chances constrain
rational credence in general. Looking ahead, the account I will offer in §4 will
provide us with a story like this.

lated to those in the body above) that, when we model cases like slot machine with proximate
dynamical equations like ϕP , we have “overlooked a nomological factor relevant to the appear-
ance of initial states and thus (indirectly) for the experimental outcomes. If we step further back
and look how the initial states themselves come about, we should be able to discover this ad-
ditional factor and re-model the experimental situation, this time explicitly paying attention to
the neglected nomological influence...at some point, when we had taken all nomological factors
relevant to the experimental result into account, we would finally arrive at a space in application
to which [maf yields] the correct outcome probabilities.”
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4 A Subjectivist Account of Deterministic Chance

As I mentioned in the introduction, many accounts of deterministic chance built
upon the maf analysis endorse positions familiar from the history of philosophical
theorizing about probability. For each of these accounts, deterministic chance is
a certain kind of initial distribution filtered through appropriate causal dynam-
ics. Some have followed the classical interpretation of probability in claiming that
the initial distribution is, roughly, a uniform measure over the initial conditions
space.33 Others have followed the actual/hypothetical frequency interpretation of
probability in claiming that the initial distribution is an actual frequency distri-
bution and/or the frequency distribution which very likely would result from a
long series of trials.34 Others have attempted to utilize a ‘best systems’ account of
probability to claim that the initial distribution is a law of nature.35

In the foregoing survey, one prominent player went missing: the personalist,
or subjectivist. Traditional personalists like Ramsey (1931), de Finetti (1974),
and Savage (1954) interpret probability claims as being about particular people’s
degrees of belief, or credences. Savage (1971) explicitly applies this understanding of
probability to the method of arbitrary functions, effectively offering an account
of deterministic chance according to which chance is just particular people’s de-
grees of belief filtered through appropriate causal dynamics. His interpretation of
the initial distributions as representing different individual’s degrees of belief leads
him to understand deterministic chance as a kind of wide intersubjective agree-
ment among different people’s credences. For instance, in case of the roulette
wheel, Savage writes:

…people with very different opinions about V , as expressed by very
different probability densities for V , may yet have nearly identi-
cal probability densities for black provided only that their opinions
about V are sufficiently diffuse…36

Savage died before completing his article on deterministic chance, so it’s un-
clear exactly how the account was to be fleshed out; but the account which he
explicitly offers in the early pages is inadequate in at least three important re-
spects. Firstly, Savage does not solve the problem of all-too-arbitrary functions.
For individuals may very well have spiky credence distributions like the one shown
in figure 5—they may even do so reasonably, if they have evidence about the ini-
tial conditions of the dynamics in question.37 Secondly, as I noted in §2.3, the
pdp simply does not hold for an individual’s credence function; nor does it hold
for a rational individual’s credence function. For those individuals may not have
33 Rosenthal (2010, 2012, 2016).
34 Strevens (2003, 2011), Abrams (2012), and Beisbart (2016).
35 Albert (2000, 2015), Loewer (2001, 2004, 2007), and Roberts (2016) (though Roberts is not

committed to a ‘best systems’ account of laws).
36 Savage (1971, p. 420–21, with slight notational changes)
37 “The conclusion does not apply at all to a person who feels quite sure of the second decimal of

V .” (Savage, 1971, p. 421, with notational changes)
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knowledge of the relevant dynamics, or they may have misleading evidence sug-
gesting that the dynamics are different than they actually are (as, for instance,
when an individual with knowledge of the dynamics of die rolls falsely believes a
die to be fair).38 Thirdly, individuals need not, and in general do not, have opin-
ions about the values of the variables which determine the value of the outcome
variable O . Moreover, they need not, and in general do not, have any idea which
variables determine the value of O .

Myrvold (2012) provides a more sophisticated subjectivist account which
advances on the first and third problems faced by Savage’s account. Firstly, he
suggests that the initial distributions in maf represent reasonable credences in the
initial conditions of the chance outcome. He believes that this rules out all-too-
arbitrary distributions like the one shown in figure 5, for it would not be reason-
able to have credences like those if one did not have any good evidence about
the initial velocity of the roulette wheel’s spin (which, he supposes, we in general
cannot have). Secondly, he does not suppose that the credences in question are
people’s actual credences over the outcome variable—for those people may be ig-
norant of either the true dynamics or unopinionated about the initial values of
the variables which determine O . Rather, the credence distributions in question
are distributions that it would be reasonable to adopt, were the individuals in-
formed about the relevant dynamics, and were they to become opinionated about
the initial conditions and the outcome. Thus, we need not worry about the fact
that most people do not actually have credences in the initial conditions of a coin
flip, die roll, etc. Nor do we need to worry about the fact that, in the absence
of information about the relevant dynamics, we should not expect even a reason-
able credence function to satisfy the pdp—for the relevant initial distributions,
on Myrvold’s account, are all conditioned on the relevant dynamics.

These improvements help, but unfortunately not enough. Suppose that you
have very good evidence that the roulette wheel is going to land on black—it
doesn’t matter for our purposes whether this evidence is misleading or not; mis-
leading evidence is still evidence. Then, the distribution shown in figure 5 might
be a reasonable credence distribution to adopt over the values of the variable V ,
were one to become informed of the dynamics and opinionated about the value
of V . But even though evidence like this changes how confident you ought to be
that the roulette wheel will stop on black, it does nothing to affect the chance that
the roulette wheel stops on black.

I don’t believe that this objection is fatal; and I wish to spend the remainder of
this section developing a variant of the Savage/Myrvold account which is capable
of getting around this worry. The central innovation will be to replace Myrvold’s
account—according to which chance is reasonable credence distributions filtered
through the appropriate dynamics—with an account according to which chance
is reasonable initial, or ur-prior, credence distributions, filtered through the ap-
propriate dynamics. Restricting the account to reasonable ur-prior distributions

38 See von Plato (1983, p. 42)
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allows us to get around the problem that a reasonable agent may have evidence
about the initial conditions of ϕO and might, for this reason, adopt a spiky dis-
tribution like the one shown in figure 5. We rule such distributions out by only
considering credence distributions which it would be permissible to adopt in the
absence of any evidence.

the subjectivist account
For any correct, microconstant dynamical equationϕO from 〈C1, . . . ,CN 〉
to O , if ⟦ϕO⟧ is the proposition that this dynamical equation is cor-
rect and f is a reasonable initial (or ‘ur-prior’) credence distribution
defined over O , C1, . . . ,CN , and ⟦ϕO⟧, then,

C hϕO
(O = o) = f (ϕ−1[O = o] | ⟦ϕO⟧)

In a slogan: chance is reasonable initial credence, conditioned on, and filtered
through, dynamics. (As the subjectivist account provides a multivocal ac-
count of chance—see §4.2—I have explicitly indexed the chance function with
the relevant dynamical equation, ϕO . This will be relevant to my derivation of a
deterministic principal principle and my treatment of slot machine below.)

Let us assume that, in the absence of any evidence about the values of C1, . . . ,
CN , spiky distributions like the one shown in figure 5 would be unreasonable.39

Then, the subjective account solves the problem of all-too-arbitrary functions.
Note that this solution does not depend upon anything nearly so strong as the
principle of indifference—that, in the absence of evidence aboutC1, . . . ,CN , your
credence distribution over C1, . . . ,CN ought to be uniform. The subjective ac-
count is consistent with the thought that, in the absence of evidence, there is no
credence distribution over C1, . . . ,CN which is determinately rationally required.
It does, however, require that certain very finely-discriminating credence distri-
butions are determinately unreasonable in the absence of any relevant evidence—
e.g., ones for which the credence given to [v, v∗] differs notably from the credence
given to [v + ε, v∗ + ε], for small ε.

Does the subjective account requires us to assume, with White (2005),
that there is a unique credence distribution which is rationally required in the
absense of evidence? As I will be understanding the account, it presupposes that
there is some rational credence to adopt in any proposition in the absense of
evidence—though it may be vague or indeterminate what that credence is.40 That

39 Why would they be unreasonable? I’m inclined to treat this as a datum for epistemology (pace
radical subjectivist Bayesians), but we could justify it by appealing to a general normative prin-
ciple like the following: your credences shouldn’t strongly discriminate between very similar
possibilities unless you have evidence which discriminates between these possibilities. (This is a
strictly weaker principle than the principle of indifference (POI), and one that doesn’t succumb
to the usual objections to POI.)

40 Here, I am using ‘indeterminate’ in the sense that has become common in the literature on
vagueness. You could be an epistemicist about this kind of indeterminacy, in which case you
would understand me as saying: there is some one rational credence to adopt in any proposition
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is to say, there may not be a determinate fact of the matter which credence distri-
bution over initial conditions we ought to have. For instance, in the maf analysis
of the deterministic chance of a coin flip landing heads, it could be indeterminate
whether f gives probability 0.50001 or 0.49999 to the values of 〈U ,A〉 which
lead to the coin landing heads. Nevertheless, it could still be determinate that f
does not give probability 0.6 to those values.41 Assuming a standard semantics
for determinacy, then, the subjectivist account is committed to something
like White (2005)’s uniqueness thesis, according to which there is one and only
one doxastic state which is rational given any body of evidence. However, while
this view agrees with White that it is determinate that there is one rational cre-
dence to adopt given no evidence, it denies that there is any credence which it is
determinately rational to adopt given no evidence.42

4.1 A Deterministic Principal Principle

In the presence of some rather weak normative assumptions, the subjectivist
account entails a deterministic variant of Lewis (1980)’s Principal Principle. In
this section, I will lay out these normative assumptions and show how they can
be used to derive a deterministic principal principle from the subjectivist ac-
count. As we go, it will be important to clearly distinguish reasonable initial
credence distributions which are defined over C1, . . . ,CN and ⟦ϕO⟧ from those
which are not. Throughout this section, then, I will use ‘ f ’ to stand for a rea-
sonable initial credence function defined over O . A reasonable initial credence
function defined over O and ⟦ϕO⟧ I will denote with ‘ fϕ’. fϕ, then, is opinion-
ated about the outcome variable as well as the dynamics determining the value

in the absense of evidence—though nobody can know what it is. Or you may think that this
kind of indeterminacy is due to an unsettledness in the way we use language, or that there’s
something genuinely unsettled about normative reality. See Williamson (1994) for more on
different theories of indeterminacy.

41 There is a common framework for representing indeterminate probabilities like these (see van
Fraassen (1990, 2006), Levi (1974), Walley (1991), Joyce (2010), and White (2009)). In this
framework, we would take all the admissible candidates for f and gather them into a set, call it
‘F ’. We would then use F to represent a reasonable initial doxastic state. The probabilities in-
cluded in F are akin to the admissible precisifications in supervaluationist theories of vagueness
(see Fine (1975) and Keefe (2000)). While a supervaluationist keeps these admissible precisi-
fications in their metalinguistic interpretation of a theory, the imprecise probabilist uses them
in their first-order theorizing. From my perspective, it is better to handle indeterminacy with
respect to reasonable credence in the same way that other indeterminacy is handled, and to keep
the admissible precisifications in the meta-language.

42 To appreciate the distinction in scope here, consider the sorites argument. If you accept that
classical logic is determinately true, then you’ll accept that it is determinately the case that there
is an n such that n is the least number of grains that makes a heap. However, if you think that
it’s indeterminate when some grains go from a heap to a non-heap, then you’ll deny that there is
any number n which is determinately the least number of grains which makes a heap. Similarly,
I am suggesting that it’s determinately the case that there is one and only one rational credence
to adopt in the absence of evidence; though it’s indeterminate which credence it is, so there is
no credence which is determinately the one and only rational credence to adopt in the absence
of evidence.
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of O—though perhaps not the value of the initial conditions C1, . . . ,CN which
determine the value of O , according to ϕO . Finally, a reasonable initial credence
function defined over O , ⟦ϕO⟧, and the initial conditions C1, . . . ,CN , I will de-
note with ‘ fϕ,C ’.

It will also be important, as we go, to clearly distinguish the claim that theϕO -
chance ofO = o is x—a proposition we can denote with ‘⟦C hϕO

(O = o) = x⟧’—
from the claim that there is an x chance of O = o—a proposition we can denote
with ‘⟦C h(O = o) = x⟧’. The latter hypothesis is an existential generalization
over hypotheses like the former.

⟦C h(O = o) = x⟧ ⇐⇒ ∃ϕO : ⟦C hϕO
(O = o) = x⟧

Keeping these propositions separate will be important, since I will first derive what
I will call the particular deterministic principal principle, which says that, for any
particular equation ϕO , your credence in O = o, given ⟦C hϕO

(O = o) = x⟧,
and given any admissible evidence, ought to be x . I will then derive what I will
call the general deterministic principal principle, which says that your credence
in O = o, given that there is an x chance of O = o, ⟦C h(O = o) = x⟧, and given
any admissible evidence, ought to be x .

According to the subjectivist account, if we have a microconstant dynam-
ical equation ϕO , then the claim that the ϕO -chance of O = o is x is true if and
only if both ϕO is correct and fϕ,C assigns a credence of x to the proposition
ϕ−1O [O = o], once fϕ,C is conditioned on the true proposition ⟦ϕO⟧. Let’s de-
note the proposition that fϕ,C assigns a credence of x to A, given that E , with
‘⟦ fϕ,C (A | E ) = x⟧’. Then, the subjectivist account tells us that, for some
microconstant ϕO ,43

⟦C hϕO
(O = o) = x⟧ ⇐⇒ ⟦ fϕ,C (ϕ−1O [O = o] | ⟦ϕO⟧) = x⟧∧ ⟦ϕO⟧(1)

Given some weak normative assumptions, we can now derive a deterministic
variant of the principal principle. The first normative principle we will require is
what we can call a ‘causal induction’ principle. This principle says that, condi-
tional on only the dynamical equation, ⟦ϕO⟧, fϕ,C would satisfy the pdp,

causal induction

fϕ,C (ϕ
−1
O [O = o] | ⟦ϕO⟧) = fϕ,C (O = o | ⟦ϕO⟧)

Causal induction is an incredibly weak principle. It follows from probabilism
alone. For the proposition ⟦ϕO⟧ entails that ϕ−1O [O = o]⇔ O = o. And it
follows from probabilism alone that, conditional on A⇔ B , your credence in
A should be equal to your credence in B . So causal induction should not be
controversial.
43 A comment on notation: I will denote the conjunction of propositions p and q with both ‘p∧q ’

and ‘pq ’.
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Causal induction and (1) together entail (2):

⟦C hϕO
(O = o) = x⟧ ⇐⇒ ⟦ fϕ,C (O = o | ⟦ϕO⟧) = x⟧∧ ⟦ϕO⟧(2)

Looking at (2), we can see that, according to the subjectivist account, the
claim that the deterministic ϕO -chance of O = o is x is the conjunction of two
claims: the first is a normative claim about which credence distribution is rational
in the absence of any evidence; and the second, a descriptive claim about the
world’s causal dynamics. Uncertainty about the chances could therefore result
from uncertainty about either of these conjuncts.

The second normative principle we will require is an enkratic principle which
says how uncertainty about the normative component of a deterministic chance
constrains reasonable credence. The principle says that, where E is any evidence
consistent with it being the case that an initial credence that A, given E , ought
to be x , a reasonable initial credence that A, given E and given that an initial
credence in A, given E , ought to be x , is x .44

enkratic principle
Where ‘ f ∗’ is a rational initial credence function defined over A and
E , and f is a rational initial credence defined over A,E , and ⟦ f ∗(A |
E ) = x⟧,

f (A | ⟦ f ∗(A | E ) = x⟧∧ E ) = x , if defined

There are reasons to worry about enkratic principles in general. For instance, if
a certain kind of externalism about evidence is correct, then information about
which response to your evidence is rational can provide additional information
about what your evidence is.45 Then, even though x may be the rational cre-
dence to have in A given E , the additional information provided by the norma-
tive proposition ⟦ f ∗(A | E ) = x⟧ may make it rational to have a credence other
than x in A. In response to cases like those, Elga (2013) has argued that prin-
ciples like enkratic principle need to be generalized. However, those problem
cases—if they are problem cases—only cause problems for enkratic principles that
say something about how knowledge that f is the rational credence function to
adopt in your very epistemic circumstances ought to impact your current credences.
Enkratic principle says nothing about that. Rather, it only says something
about what a reasonable ur-prior credence is, given only information about what
a reasonable ur-prior credence is. And the information that a reasonable ur-prior
is thus-and-so couldn’t possibly convey anything about what evidence has been
acquired, since reasonable ur-priors are the priors that it would be reasonable to
44 When principles like enkratic principle show up in the literature—e.g., in Elga (2013)—they

are often formulated with a proposition like ⟦ f = f⟧, which says that f is a reasonable initial
credence function. Then, authors state the enkratic requirement as follows: f (A | ⟦ f = f⟧) =
f (A). The enkratic principle in the body is strictly weaker than this principle.

45 See Williamson (2000, 2011, 2014).
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adopt in the absence of any evidence.

We may worry about instances of enkratic principle where ⟦ f ∗(A | E ) =
x⟧ is false. Perhaps, conditional on the false proposition that a certain initial cre-
dence that A, given E , is rational, a rational initial credence function should stick
to its guns and have whatever credence in A, conditional on E , really is rational.
Those who hold that uncertainty about the a priori requirements of rationality is
itself irrational46 will be attracted to this position. For such philosophers, how-
ever, I need not appeal to enkratic principle in the first place. According to the
subjectivist account, facts about deterministic chances are partly descriptive—
they are in part to do with the worldly dynamics—and partly normative—they
are in part to do with the credal distributions it would be rational to hold in the
absence of evidence. Uncertainty about the chances is therefore uncertainty about
either the worldly dynamics or the a priori requirements of rationality, or both.
If you hold that uncertainty about the a priori requirements of rationality is ratio-
nally impermissible, then you will think that, for all true normative propositions
of the form ⟦ f ∗(A | E ) = x⟧, a rational credence function f will be certain of
these propositions, and all uncertainty about deterministic chance will be uncer-
tainty about the worldly dynamics. This will suffice for my purposes here.

There is another position which denies enkratic principle, however, which
will not suffice for my purposes here. On that view, uncertainty about the a priori
requirements of rationality is rationally permissible, but indicative suppositions
about the requirements of rationality does nothing to affect those requirements.
So, even though it may be permissible for you have a non-zero credence in the false
proposition that any initial credence that A between 1/4 and 1/3 is permissible, so
long as no such credence actually is permissible, you are irrational if your credence
that A is between 1/4 and 1/3, conditional on that false proposition. I find such
‘level-splitting’ views somewhat plausible in cases in which you face uncertainty
about your current evidence—but I do not find them plausible when it comes to
the rational requirements placed on an initial, ur-prior credence function.47 If
you are beholden to a view like this, then I am afraid that I must leave you behind
at this point.

Note that (3) is an instance of enkratic principle, where we have replaced
‘A’ with ‘O = o’, ‘E ’ with ‘⟦ϕO⟧’, ‘ f ’ with ‘ fϕ’, and ‘ f ∗’ with ‘ fϕ,C ’.

fϕ(O = o | ⟦ fϕ,C (O = o | ⟦ϕO⟧) = x⟧∧ ⟦ϕO⟧) = x(3)

46 See Titelbaum (2014), who argues for this view from a principle slightly stronger than what I
have named enkratic principle in the body. Throughout, by ‘a priori requirements of ratio-
nality’, I just mean the constraints which rationality places on our doxastic states in the absence
of evidence.

47 For more discussion, see Lasonen-Aarnio (2014, 2015, forthcoming), Horowitz (2014),
Greco (2014), and Titelbaum (2014).
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And (2) and (3) imply (4).

fϕ(O = o | ⟦C hϕO
(O = o) = x⟧) = x(4)

We will say that evidence E is ϕO -admissible iff, given knowledge of the
normative proposition ⟦ fϕ,C (O = o | ⟦ϕO⟧) = x⟧ and the dynamical equation⟦ϕO⟧, E is probabilistically independent of O = o according to fϕ.

Admissibility
Total evidence E is ϕO -admissible just in case

fϕ(O = o | ⟦ fϕ,C (O = o | ⟦ϕO⟧) = x⟧∧ ⟦ϕO⟧∧ E )
= fϕ(O = o | ⟦ fϕ,C (O = o | ⟦ϕO⟧) = x⟧∧ ⟦ϕO⟧)

Admissibility is relative to a dynamical equation, ϕO . Bodies of evidence E are
ϕO -admissible provided that, given ⟦ϕO⟧ and ⟦ f (O = o | ⟦ϕO⟧) = x⟧, they
do not provide information about the outcome O = o. So, for instance, evidence
supporting the hypothesis that this particular roulette wheel spin lands on black is
inadmissible relative toϕB . So too is any evidence supporting the hypothesis that
the initial velocity of the roulette wheel spin is between 4.15 and 4.16 m/s, since,
given ⟦ϕB⟧, such evidence would lead fϕ,C to rationally change its credence that
the roulette wheel stops on black. It doesn’t matter, in the definition of admis-
sibility, whether this evidence is misleading or not. All that matters is whether
a reasonable initial credence function would change its credence in O = o in
response to the evidence.48

Given this definition of admissibility, (2) and (3) imply that, for any admissible
evidence E ,

fϕ(O = o | ⟦C hϕO
(O = o) = x⟧∧ E ) = x(5)

(5) gives us a relation between deterministic chance propositions and rational cre-
dence. I will call this constraint the particular deterministic principal principle (to
be contrasted with the general deterministic principal principle below). Putting
the principle in a form familiar from Lewis (1980), it says:

particular deterministic principal principle
If A is the proposition that an outcome variableO takes on the value
o, X is the proposition that the ϕO -chance of A is x , E is any ϕO -
admissible evidence, and fϕ is a reasonable initial credence function
defined over A, X , and E , then

fϕ(A | X E ) = x
48 Admissibility is defined relative to bodies of total evidence; for, given this definition of admissi-

bility, admissibility need not agglomerate—simply because E1 is admissible and E2 is admissible,
this needn’t mean that E1 ∧ E2 is admissible.
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This version of the principal principle differs from Lewis’s original formulation
of his tychistic principal principle in two respects: firstly, Lewis’s original for-
mulation of the principal principle used time to provide a sufficient condition49

for the admissibility of evidence relative to a chance (viz, the past at t is admis-
sible relative to the time t chances), whereas the variant above gives a necessary
and sufficient condition on the admissibility of evidence relative to a chance in
terms of that evidence’s effect on reasonable initial credence functions. Secondly,
particular deterministic principal principle concerns the chance hypothesis
that a particular chance of A is x , rather than the general hypothesis that there is
an x chance of A. Because the subjectivist account is a multivocal account
of chance (see §4.2), there may be cases in which there are multiple deterministic
chances that A. Particular deterministic principal principle tells us that,
conditional on any of one them and any evidence which is admissible relative to
that chance, our credence that A should align with that chance.

Particular deterministic principal principle is all the principal princi-
ple I will require in order to handle cases like slot machine (§4.2) and to show
that particular deterministic chances can explain frequency data (§4.4). But it
is reasonable to want more than it provides. In both everyday life and in statis-
tical applications, we entertain deterministic chance hypotheses without having
any idea what dynamical equation might underlie these chance hypotheses. So
it would be nice if we could additionally vindicate what I will call the general
deterministic principal principle.

general deterministic principal principle
If A is the proposition that an outcome variableO takes on the value
o, X is the proposition that there is a deterministic x chance of A, E
is any AX -admissible evidence, and f is a reasonable initial credence
function defined over A,X , and E , then

f (A | X E ) = x

The particular deterministic principal principle enjoins you to have credence x in
A, given that a particular dynamical equation ϕ determines an x chance for A.
The general principal principle tells you to do the same when you know only that
some dynamical equation determines an x chance for A.

Note that, in the statement of general deterministic principal principle,
admissibility is defined relative to the proposition A and the chance hypothesis X .
We will say that the total evidence E is admissible, relative to a chance outcome
O = o and a general chance hypothesis ⟦C h(O = o) = x⟧, iff E is admissible
relative to every particular chance hypothesis ⟦C hϕO

(O = o) = x⟧, and it is also
admissible relative to every conjunction of such hypotheses.

49 Or, rather, an “almost sufficient” condition—a qualification Lewis included due to worries about
news from the future.
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general admissibility
Total evidence E isO = o, x -admissible just in case, for any conjunc-
tion of particular chance hypotheses which generates an x chance for
O = o, X1 . . .XN , E is probabilistically independent of O = o, given
X1 . . .XN ,

fϕ(O = o | X1 . . .XN E ) = fϕ(O = o | X1 . . .XN )

Given this understanding of admissibility, at least in the special case where
there are at most finitely many potential particular deterministic chances, we may
derive general deterministic principal principle from the particular de-
terministic principal principle with one additional assumption. In what fol-
lows, let ‘A’ be the proposition that O = o, and let ‘X1’, ‘X2’, and so on be claims
of the form ⟦C hϕ(A) = x⟧ (with fixed A and x and variable ϕ). Then, the one
additional assumption I will need to make is that, for any X1,X2, . . . ,XN , given
that each of X1 through XN is true, your credence in A is x .

fϕ(A | X1X2 · · ·XN ) = x(6)

Then, we may verify that, for any N chance hypotheses X1, . . . ,XN , and any gen-
erally admissible evidence E ,

fϕ(A | (X1 ∨ · · · ∨XN )E ) = x

To see that this is so, begin by asking whether

fϕ(A | EX1 ∨ · · · ∨ EXN ) ?= x
fϕ(AEX1 ∨ · · · ∨ AEXN )
fϕ(EX1 ∨ · · · ∨ EXN )

?= x

fϕ(AEX1 ∨ · · · ∨ AEXN ) ?= x · fϕ(EX1 ∨ · · · ∨ EXN )
N∑
k=1
(−1)k−1∑

i∈Xk

fϕ(AEXi1
· · ·Xik

) ?= x ·
N∑
k=1
(−1)k−1∑

i∈Xk

fϕ(EXi1
· · ·Xik

)(7)

Where ‘Xk ’ is the set of all k -membered subsets of {X1,X2, . . . ,XN }, and ‘Xi j
’ is

the j th member of i ∈ Xk (given some enumeration). The definition of general
admissibility tells us that E is independent of A conditional on any conjunction
of chance hypotheses Xi1

· · ·Xik
, so the left-hand-side of (7) is

N∑
k=1
(−1)k−1∑

i∈Xk

fϕ(A | Xi1
· · ·Xik

) · fϕ(EXi1
· · ·Xik

)
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By (6), we have that fϕ(A | Xi1
· · ·Xik

) = x , so (7) reduces to the trivial equality

x ·
N∑
k=1
(−1)k−1∑

i∈Xk

fϕ(EXi1
· · ·Xik

) Ø= x ·
N∑
k=1
(−1)k−1∑

i∈Xk

fϕ(EXi1
· · ·Xik

)

So, at least in the special case where there are at most finitely many potential
particular deterministic chances, and granting the assumption (6), the general
chance hypothesis ⟦C h(A) = x⟧ entails that ⟦ fϕ(A | ⟦C h(A) = x⟧ ∧ E ) = x⟧
when E is admissible. Therefore, the conjunction

(8) ⟦C h(A) = x⟧∧ ⟦ fϕ(A | ⟦C h(A) = x⟧∧ E ) = x⟧
is equivalent to ⟦C h(A) = x⟧. So a reasonable credence in A given that the
chance of A is x and E must be equal to a reasonable credence that A given the
conjunction (8) and E .

f (A | ⟦C h(A) = x⟧∧ E )
= f (A | ⟦C h(A) = x⟧∧ ⟦ fϕ(A | ⟦C h(A) = x⟧∧ E ) = x⟧∧ E )(9)

The enkratic principle then tells us that

f (A | ⟦ fϕ(A | ⟦C h(A) = x⟧∧ E ) = x⟧∧ ⟦C h(A) = x⟧∧ E ) = x(10)

And, from (9) and (10), we have that

f (A | ⟦C h(A) = x⟧∧ E ) = x

which is the general deterministic principal principle.
The subjectivist account thus abides by Lewis’s maxim:

Don’t call any alleged feature of reality “chance” unless you’ve al-
ready shown that you have something, knowledge of which could
constrain rational credence. 50

Note that once we have the deterministic principal principle, we have all that
we need in order to explain how knowledge of frequencies could provide infor-
mation about deterministic chance. For this principle tells us that, if our initial
credences are reasonable, and if we update those credences on frequency data by
conditionalization, then chance hypotheses which make that data more likely will
be confirmed to a greater degree, and chance hypotheses which make that data
less likely will be confirmed to a lesser degree.51 On the subjectivist account, in-
formation about the frequency of heads landings can end up providing us with
information about how confident a better informed, rational inquirer would be
that the next coin toss will land heads. We can come by this information without
50 Lewis (1994, p. 484)
51 See Lewis (1980, pp. 285–287).
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Figure 7: ϕP is a mapping from the potential values of the initial seed, S , to the value of
P . ϕS is a mapping from the values of the initial conditions of the die roll, D1, . . . ,DN , to
the value of S . ϕ∗S is a mapping from the values of the potential initial seeds, R1, . . . ,R6,
and the initial conditions of the die roll, to the value of S .

thereby coming to know anything about the underlying dynamics which inform
this merely hypothetical agent’s credences.52,53

4.2 Slot Machine

As I will understand it, the subjectivist account is an account of token chance.
I also assume that a single token outcome may be correctly described by multiple
correct dynamical equations. Then, the subjectivist account is a multivocal
account of chance. In slot machine, there is a true dynamical equation, ϕP ,
according to which the outcome variable P is determined by the value of the initial
seed, S . There is another true dynamical equation, ϕP ◦ϕS , according to which
the outcome variable P is determined by the initial conditions of the die roll,
D1, . . . ,DN . And there is a third true dynamical equation, ϕP ◦ϕ∗S , according
to which the outcome variable P is determined by both the initial conditions of
the die roll and the potential seeds, R1, . . . ,R6.

(See figure 7, reproduced above.) If we suppose that a reasonable initial cre-
dence distribution defined over S , and conditionalized only on the proposition⟦ϕP ⟧, would place about 1/1000th of its mass on values of S leading to a pay-
out on the 300th pull, then there will be a 1/1000 chance of the machine paying
out, determined by the equation ϕP . If we additionally suppose that a reason-
able initial credence distributions defined over the initial conditions of the die
roll, D1, . . . ,DN , and conditionalized only on the proposition ⟦ϕP ◦ϕS⟧, would
place about 1/6th of its mass on values leading to a payout on the 300th pull, then
there will be a 1/6 chance of the machine paying out, determined by the equation
ϕP ◦ϕS . Finally, if we suppose that a reasonable initial credence distributions
defined over both the potential initial seed values and the initial conditions of
the die roll, and conditionalized only on the proposition ⟦ϕP ◦ϕ∗S⟧, would place

52 Of course, in order to come to know that the deterministic chance of a coin landing heads is
1/2, we must antecedently know that there is a deterministic chance that the coin lands heads.

53 An interesting case to consider arises when we are not uncertain about the dynamics, but we
are uncertain about the requirements of rationality. If we take such cases to be possible then
we could acquire a posteriori confirmation of normative propositions about the requirements of
rationality by observing frequency data.
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about 1/1000th of its mass on values leading to a payout on the 300th pull, then
there will be (another) 1/1000 chance of the machine paying out, determined by
the equation ϕP ◦ϕ∗S . The subjectivist account thus endorses answer (both)
in slot machine.

The subjectivist account additionally provides a clear explanation of why
one of these chances should hold pride of place for the purposes of prediction,
given that you know everything described in slot machine—that is, it explains
why, given that you know everything described in slot machine, you should
have credence 1/6 that the machine pays out. Recall that, in slot machine, you
know that exactly one of the pre-selected seeds will lead to a payout on the 300th
pull. If you know this, then you know ⟦ϕP ◦ϕS⟧. And ⟦ϕP ◦ϕS⟧ is inadmissible
information for both for the 1/1000 chance determined by ϕP and for the 1/1000
chance determined by ϕP ◦ϕ∗S . A reasonable initial credence function, condi-
tioned on the setup of the case, will regard the information that the initial seed
value was determined by a die roll in such a way that, if the die lands 3 up, the
initial seed value gets mapped to a payout on the 300th pull (the information pro-
vided by ⟦ϕP ◦ϕS⟧) as being probabilistically relevant to the value of the initial
seed, S . In the presence of ⟦ϕP ⟧, ⟦ϕP ◦ϕS⟧ provides information about the value
of S , and thus, provides information about the initial conditions of the dynam-
ical equation ϕP . The proposition ⟦ϕP ◦ϕS⟧ is therefore inadmissible relative
to the chance determined by ϕP . Similarly, in the presence of the proposition⟦ϕP ◦ϕ∗S⟧, the information that iff the die lands 3 up, the initial seed value will
be mapped to a payout on the 300th pull, entails that R3 is the only potential seed
which gets mapped to a payout. Thus, in the presence of ⟦ϕP ◦ϕ∗S⟧, ⟦ϕP ◦ϕS⟧
provides information about the initial conditions of ϕP ◦ ϕ∗S , and is therefore
inadmissible relative to the chance determined by ϕP ◦ϕ∗S .

The same thing cannot be said in the other direction. ⟦ϕP ⟧ does not pro-
vide information which is inadmissible for the chance determined by ϕP ◦ϕS .
Nor does ⟦ϕP ◦ϕ∗S⟧ provide information which is inadmissible for the chance
determined by ϕP ◦ϕS . So, while your information is inadmissible relative to
both of the 1/1000th chances, it is admissible relative to the 1/6th chance. So
the particular deterministic principal principle will not tell us to defer to
the 1/1000th chances; whereas, it will tell us to defer to the 1/6th chance. And,
given our normative assumptions, the subjectivist account entails the par-
ticular deterministic principal principle. So—and this is the point—the
subjectivist account is able to explain why you should have a credence of 1/6th,
and not 1/1000th, that the machine pays out. It explains why, though you know
about all three of these deterministic chances, only one of them should guide your
predictions.54

54 This only holds if you know that exactly one of the pre-selected seeds leads to a payout on the
300th pull. Without this knowledge, you will not know about the 1/6th chance determined by⟦ϕP ◦ϕS⟧. In that case, the particular deterministic principal principle will tell you that
you should have a credence of 1/1000 that the machine pays out.
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Figure 8: In the diagrams above, an arrow is drawn from one variable to another just in
case the value of the variable at the tail of the arrow causally determines the value of the
variable at the tip. In the far left diagram, O1 and O2 are causally independent; in the
other two diagrams, they are not.

4.3 Independence

So far, I have just been talking about the chance of single outcomes. What is it,
according to the subjectivist account, for the chance of two token outcomes
to be independent or dependent? According to the subjectivist account, the
independence of two token outcomes O1 and O2 is just a property of the chance
distribution over 〈O1,O2〉; and this chance distribution is determined in the same
way as every other chance distribution: find some true dynamical equations which
determine the values of O1 and O2 and look at the reasonable credence assign-
ments to the independent variables in those equations. In a case where we are
considering two outcome variables, however, we must move from talking about
a single dynamical equation, O := ϕO (C1, . . . ,CN ), to talking about a system of
dynamical equations,

O1 :=ϕO1
(C 1

1 , . . . ,C
1
N )

O2 :=ϕO2
(C 2

1 , . . . ,C
2
M )

If we have a system of equations according to which O1 and O2 are causally in-
dependent, then a macroperiodic credence distribution over the causes of O1 and
O2 will induce, via the (pdp), a joint distribution over O1 and O2 on which those
variables are probabilistically independent of one another. If, on the other hand,
we have a system of equations according to which O1 and O2 are not causally
independent, then a macroperiodic credence distribution over the causes of O1
and O2 may induce, via the (pdp), a joint distribution on which O1 and O2 are
probabilistically dependent.

4.4 Explanation

When it comes to the matter of explaining frequency data by appeal to chances,
there are two philosophical camps. In one camp are those who think that high and
low chances alike may explain. In the other camp are those who think that, while
high chances may explain, low chances may not. Following Strevens (2000), call
those in the first camp ‘egalitarians’, and call those in the second camp ‘elitists’.
To illustrate: suppose that we toss a fair €1 coin and a fair £1 coin 1,000 times
each. The €1 coin lands heads around 500 times (plus or minus 30), and the £1



§4. a subjectivist account of deterministic chance 31 of 34

coin never lands heads. Consider the two explanations:

£) The £1 coin never landed heads because there was a (1/2)1,000 chance that
that would happen.

€) The €1 coin landed heads about half the time because there was around a
95% chance that that would happen.

Elitists think that only (€) is a good explanation, whereas egalitarians think that
both (€) and (£) are good explanations. Moderate egalitarians may say that, while
(€) and (£) are both good explanations, (€) is a much better explanation than (£).

One motivation for elitism and moderate egalitarianism comes from a nomic
expectability requirement on explanation. Those who take nomic expectability to
be a necessary condition on explanation will agree with Hempel (1965, p. 337)
when he tells us that a good explanation

shows that, given the particular circumstances and the laws in ques-
tion, the occurrence of the phenomena was to be expected ; and it is
in this sense that the explanation enables us to understand why the
phenomena occurred.

Deterministic chances, according to the subjectivist account, do precisely this
for long-run frequencies. They show us that, if a €1 coin is tossed 1,000 times
in a row, any reasonable credence distribution over the initial conditions of a
true system of dynamical equations governing the outcomes of the sequence of
coin tosses—were it informed about the relevant causal dynamics —would place
around 95% of its credence in those sequences in which about half of the coin
tosses land heads. And to show this is just to show that a frequency of about 1/2
heads was to be expected, given the chances.

Few nowadays believe that nomic expectability is sufficient for explanation.
At a minimum, we’ll also need the right kind of causal relevance of explanans to
explanandum. But the dynamics are causally relevant to the frequency of heads,
analogously to the way that dynamics are causally relevant in equilibrium explana-
tions. In both cases, dynamical information is known while the precise initial con-
ditions are not; the only difference is that, in paradigm equilibrium explanations
(why did the marble rest at the bottom of the bowl after being dropped in? Because the
bottom of the bowl is the point of minimum potential energy), the explanandum is
entailed by the explanans. Whereas, in explanations like (€), the explanandum is
merely made highly probable, in the sense that we ought to have a high credence
in the explanandum, given the explanans. So if we accept a nomic expectabil-
ity requirement on explanation, then deterministic chances—understood as the
subjectivist account understands them—should be capable of explaining long-
run frequencies.

You may think that nomic expectability is not necessary for explanation. You
may think that all that’s required for a proper explanation is that the explanans are
causally relevant to the explanandum. In this case, you are likely also an egalitarian
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about probabilistic explanation, and you should be content to notice that the
causal dynamics of a deterministic chance are causally relevant to the outcome of
the sequence of coin tosses, both in the case of (€) and in the case of (£).

According to the subjectivist account, the claim that the coin had a 1/2
chance of landing heads is a conjunction of a claim about the world’s causal dy-
namics and a normative claim about what is to be expected, given the world’s
causal dynamics. All parties should agree that the causal component of a deter-
ministic chance claim is explanatorily relevant to the long-run frequency, and that
normative facts about what is to be expected are not. What subjectivist elitists and
egalitarians disagree about is whether, in order for an explanation to be good, the
explanans have to make the explanandum likely. Subjectivist egalitarians think
not. Subjectivist elitists think so. So, in order to show that € is a good explana-
tion, the subjectivist elitist will have to appeal to the normative component of a
deterministic chance. They will say: the normative fact that a long-run frequency
of about 1/2 heads landings was to be expected is necessary for the causal dynam-
ics to explain why the coin landed heads about 1/2 of the time. (Although this
normative fact does not explain why the coin landed heads about 1/2 of the time.)

Loewer and Albert object strongly to the idea that chances, understood
along the lines of the subjectivist account, could explain observed frequencies
in this way. Speaking about statistical mechanical probabilities, Loewer (2001,
p. 611, 615) writes:

What could your ignorance of the initial state of the gas have to
do with an explanation of its behavior?...it is hard to see how these
[subjective] probabilities can be explanatory if they are unrelated to
the actual microstate.

With respect to Loewer’s rhetorical question—how could a rational initial cre-
dence distribution explain the behavior of something out in the world?—the cor-
rect answer is: it couldn’t, but the subjectivist account does not have to, and
should not, say that it does. The rational initial credence distributions do not ex-
plain why the coin landed as it did. What explains the frequency of heads landings
is just the causal dynamics. Nevertheless, we may think that a good explanation
must show that the explanandum was to expected. If so, then the normative com-
ponent of a deterministic chance will explain why deterministic chances are able
to explain some frequencies (viz., the ones which were to be expected), and not
others (viz., the ones which weren’t to be expected). Of course, explaining why
the dynamics provide a good explanation of the frequency of heads is not itself
explaining the frequency of heads. Facts about rational initial credences do the
former; but they do not do the latter.

Compare: on Hempel’s Deductive-Nomological model of explanation, in or-
der for an explanation to be good, the explanans must entail the explanandum.
On this model, in order to show that an explanation is good, you must appeal
to a logical fact about entailment. Is this logical fact explanatorily relevant to the
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explanandum? No. The explanans do all the explanatory work by themselves. It
is in virtue of the logical fact that the explanans are able to explain the explanan-
dum, but the logical fact is not to be included among the explanans.55 Similarly,
the subjectivist elitist should say: in order for an explanation of the long-run fre-
quency of heads to be good, it must be that this frequency is to be expected, given
the explanans. In order to show that the subjectivist’s explanation of the long-
run frequency of heads is good, they must appeal to a normative fact about what
is to be expected. Is this normative fact explanatorily relevant to the explanan-
dum? No. The causal dynamics do all the explanatory work by themselves. It
is in virtue of the normative fact that the causal dynamics are able to explain the
long-run frequency of heads, but the normative fact is not to be included among
the explanans.

One thing that appears to bother Albert and Loewer about explaining long-
run frequencies in the way the subjectivist account does is that the chances
don’t entail that the frequencies will be close to the chances. For instance, Loewer
(2001, p. 615) worries that “even if the actual state were a very atypical state the
standard probability distribution would be dictated by [the subjectivist ac-
count].”56 This, however, shouldn’t be an objection to any account of chance.
The natural thought is that the chance of heads being 1/2 doesn’t entail that not
every flip will land heads. Some Humeans are willing to bite the bullet and claim
that it does, but even Lewis admits that this consequence of his view is “certainly
very peculiar”.57 It seems to me, then, that it is a feature, and not a bug, of the
subjectivist account that it allows the possibility of low-chance outcomes.58 If
you’re inclined to think that only explanans which entail the explanandum are
genuinely explanatory, then so be it—but, in that case, you shouldn’t expect that
chances can explain long-run frequencies.

5 Conclusion

Deterministic chance is an odd sort of beast. It appears at once subjective and
epistemic, a chimera of our ignorance, and objective and worldly, the kind of
thing that depends upon and helps to explain features of the natural world. I be-
lieve that the subjectivist account of deterministic chance developed here puts us
in a position to appreciate this dual nature. According to the subjectivist account,
deterministic chances depend upon objective features of the causal dynamics of

55 Cf. Carroll (1895).
56 Loewer is considering an account predicated on the principle of indifference, but his objections

apply with equal force to the subjectivist account.
57 Lewis (1994, p. 483)
58 Shouldn’t we still want there to be some connection between chance and frequency? Of course

we should. And there is: as the number of independent trials gets larger, so too does the chance
that the frequency of an outcome is close to the chance of that outcome. This is the law of large
numbers (stated roughly). It is the most that we should ever want an account of chance to say
about the connection between frequency and chance; for it is the most that is true about the
connection between chance and frequency. And the subjectivist account says it.
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the world. For instance, they are sensitive to the actual distribution of mass in the
die, since the distribution of mass in the die makes a difference to the dynamics
mapping initial conditions of the die roll to outcomes. So too do these chances de-
pend upon epistemic facts predicated upon a certain kind of ignorance—though
not necessarily our ignorance. They depend upon the fact that, in ignorance of
the precise initial conditions of a deterministically chancy process, it is irrational
to be very confident in any narrow range of possible initial conditions. While de-
terministic chance does not depend upon our ignorance, its usefulness does. Of
course, were we to be aware of the precise initial conditions of a deterministically
chancy process, along with the corresponding dynamics, we would perhaps have
no need of deterministic chances; we could predict and explain without them.
Recall the coin flipping machine constructed by Diaconis et al. (2007). With
this machine, it does not matter that we don’t know the precise physical condi-
tions of the coin’s toss; for we know something more: we know that the outcome
is additionally governed by a dynamical equation which maps states in which the
coin is set down heads up to states in which the coin lands heads up, and we
know that the coin is set down heads up. This information is inadmissible with
respect to the 1/2 chance determined by the dynamical equation ϕH from §2.2.
When we have this information, the 1/2 chance of heads remains, though it no
longer has any normative purchase on us. We ought not use it to determine our
confidence that the coin lands heads. Regularly, however, we lack information
like this. In these cases, knowledge of deterministic chances becomes invaluable.
This explains why deterministic chances are able to play the role of an epistemic
expert. A deterministic chance is just the credence that it would be rational to
have, were we to know more about the causal dynamics of the world than we in
fact know. By analyzing frequency data, we may come to know something about
what that credence is without thereby coming to know anything about the un-
derlying dynamics which inform it—we are afforded a glimpse, if only a glimpse,
of the opinions of a better informed, rational agent.
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