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Abstract: According to the theory developed here, we may trace out the
processes emanating from a cause in such a way that any consequence
lying along one of these processes counts as an effect of the cause. This
theory gives intuitive verdicts in a diverse range of problem cases from
the literature. Its claims about causation will never be retracted when we
include additional variables in our model. And it validates some plausi-
ble principles about causation, including Sartorio’s ‘Causes as Difference
Makers’ principle and Hitchcock’s ‘Principle of Sufficient Reason’.

1 Introduction

The morning of the space shuttle Challenger’s launch was uncommonly cold.
Thenear-freezingweather led to twoO-rings in the shuttle’s SolidRocket Boost-
ers (SRBs) being less elastic than they would otherwise have been. These less
elastic O-rings allowed gas to leak from the SRBs shortly after launch. This
leaked gas burnt a hole in shuttle’s external fuel tank. And the breach of the
fuel tank led to an explosion which destroyed the Challenger.

We are able to trace out a process: from the unusually cold weather to the
rigidity of the O-rings, to the gas leak, to the breech of the fuel tank, to the
explosion, to the shuttle’s destruction. Having traced this process, we conclude
that the cold weather was a cause of the shuttle’s destruction. (Of course, it
was not the only cause; there were many causes of this tragedy, but the weather
is among them.) This case is typical. Often, having traced out a sequence of
c’s consequences, we count all of the consequences in this sequence among c’s
effects.

Often, but not always. The Soviet Union deployed missiles to Cuba. In
response, the United States planned an invasion of Cuba. When Khrushchev
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how to trace a causal process

learnt of these plans, he initiated secret negotiations with the U.S. In these ne-
gotiations, the Soviet Union agreed to remove its missiles from Cuba in ex-
change for the U.S. removing its missiles from Turkey. This deal averted war
between theU.S. and theU.S.S.R. So we are able to trace out a process: from the
deployment of missiles to Cuba, to the planned invasion, to the negotiations,
to the deal, to the peace. But in this case, having traced out this sequence of
consequences, we are not inclined to count the deployment of missiles to Cuba
among the causes of the peace. We are inclined to say that peace was main-
tained in spite of the missiles in Cuba, not because of them. (You may suspect
that, for some complicated reason, we have the Cuban missile crisis to thank
for keeping the Cold War cold. Even so, you should agree that the process we
traced out above is not enough, on its own, to show that the Cuban missile
crisis prevented war.)

Here, I will develop a theory according to which causation is closely related
to the tracing of causal processes like these. However, the rules for causal pro-
cess tracing are slightly more complicated than we may have naïvely thought.
Not just any sequence of consequences counts as a causal process. On this
theory, the rules for process tracing depend upon a prior distinction between
states of the world which are regarded as the default, and events which are re-
garded as departures from that default. Just to have a term, call the states or
events which deviate from the default deviant. On the view I’ll propose, the ef-
fects of causes are determined by tracing out their consequences according to
certain rules. I’ll give a precise statement of these rules below, but just to give
you some preliminary orientation: there are two ways of tracing out a causal
process. One the one hand, you may trace out all and only the deviant con-
sequences. On the other hand, you may trace out all potential consequences,
including the non-deviant ones. A process traced out in either of these ways
counts as a causal process. And everything along a causal process counts as an
effect of the causes which initiated it.

I’ll begin in section 2 below by introducing the relation of influence. Influ-
ence provides the pathways along which causal processes propagate. Then, in
section 3, I will introduce the distinction between default and deviant variable
values and explain why I’ve been persuaded that a theory of causation must
incorporate something like this distinction. In section 4, I will explain what’s
involved in ‘tracing out’ a process and provide rules for how to trace a causal
process. Section 5 applies the theory developed in section 4 to some illustrative
cases and explores connections with other recent work on causation.
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2 Influence

As I will understand them, causal processes propagate along networks of causal
influence. As I use the term, influence is a kind of causal relation which holds
between variables. (I distinguish influence from causation, which is a relation
which holds between variable values.) In English, variables are named with ex-
pressions like “whether I go to the cotillion”, “when the bus arrives”, and “how
much the lizard weighs”. When variables influence each other, this is natu-
rally expressed in English with the verb ‘influences’ or ‘affects’—as in “whether
James goes to the cotillion affects whether I do” or “how much the lizard eats
influences how much it weighs”. For example, consider the following vignette:

Preemptive Overdetermination
Both the United States and the United Kingdom dispatch a covert
agent to assassinate a foreign president. The CIA agent observes
the MI6 agent providing poison to the president’s chef, and so,
to protect their cover, they abandon their own assassination plot,
which involved explosives hidden in the presidential palace. The
chef puts the poison in the president’s food. The president eats the
food and dies.

On a natural understanding of this case, whether the MI6 agent provides poi-
son to the chef influences whether the chef puts the poison in the president’s
food andwhether theCIA agent ignites their explosives. Andwhether the pres-
ident dies is influenced both by whether the chef puts the poison in the food
and by whether the explosives are ignited. We can use ‘D ’ to name the variable
whether the president dies, ‘P ’ for the variable whether the food is poisoned, ‘E’
for whether the explosives are ignited, and ‘M ’ for whether the MI6 agent pro-
vides poison to the chef. Each of these variables has two potential values, 1 and
0. D = 1 if the president dies while D = 0 if they do not. P = 1 if the food is
poisoned, while P = 0 if it is not poisoned. E = 1 if the explosives are ignited,
while E = 0 if they are not. And M = 1 if the MI6 agent provides the poison,
and M = 0 if they do not. If we make the simplifying assumption that these
relations of influence are deterministic, then we can formally model them with
a system of structural equations like the following:

D := P ∨E
P :=M

E := ¬M
M = 1
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In these structural equations, ∨ and ¬ are Boolean disjunction and negation,
respectively. (P ∨E =max{P ,E} and ¬M = 1−M .) The structural equations
tell us that M influences P , and that the value M = 1 causally determines that
P = 1, whereas M = 0 causally determines that P = 0. Likewise, M causally
influences E, withM = 1 causally determining that E = 0, andM = 0 causally
determining thatE = 1. And P andE together causally influenceD , with either
P = 1 or E = 1 causally determining thatD = 1. Because causal influence isn’t
symmetric, structural equations are not symmetric, either. While we could re-
arrange a normal equation E = ¬M to get M = ¬E, we cannot re-arrange a
structural equation. That’s why I’ve used ‘:=’ instead of the symmetric ‘=’ for
the structural equations. The final equation, M = 1, is not structural. It tells
us thatM ’s value is 1. This, together with the structural equations, allows us to
work out the values of all of the other variables in the system. We will always
be able to do this so long as there are not any cycles of influence. I’ll ignore
issues having to do with cyclic systems of equations here.

I’ve illustrated the network of causal influence described by these equations
with a graph. This graph consists of four directed edges: M→ P ,M→ E,P →
D and E→D . In general, we can build a causal graph by including a directed
edge between two variables U and V , U → V , iff U shows up on the right-
hand-side of V ’s structural equation. (A variable V ’s structural equation is just
the equation which has V on the left-hand-side.) In that case, I’ll say that U
is one of V ’s parents.1 Of course, whether one variable is a parent of another
is relative to a particular system of structural equations. In some other, no
less accurate, system of structural equations for Preemptive Overdetermination,
there could be variables intermediate between M and P . If there’s a sequence
of directed edges leading from V to D , V → U1 → U2 → ·· · → UN → D ,
then I’ll call D a descendant of V ’s.

The directed edges between variables in these graphs represent relations
of influence between variables. And they provide the pathways along which
causal processes propagate. We will only be able to trace a causal process lead-
ing from one variable value, C = c, to another, E = e, if there is a directed path

1. More carefully: we include the directed edge U → V iff, according to V ’s equation, V ’s value
is a function of U ’s value. So long as we write out the structural equations sensibly, these two
characterisations come to the same thing. But suppose that, perversely, wewrite outV ’s equation
asV :=U+(T −T ). In that case, even though T ‘appears on the right-hand-side’ ofV ’s equation,
T ’s value makes no difference to V ’s value. In this case, we should not include a directed edge
from T to V .
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of influence leading from the variable C to the variable E.2

3 Defaults and Deviations

Unfortunately, in order to know whether C = c is a cause of E = e, we will
need to know more than a structural equations model on its own can tell us.
Causation is underdetermined by the relations of influence between variables
and the values of those variables.3 To appreciate this, consider the following
vignette:

Tornado
A tornado approaches the farm. Seeing it coming, Aunt Em runs
to the storm cellar. The tornado destroys the house, but the cellar
protects Aunt Em, and she survives unscathed.4

On a natural understanding of this case, whether there is a tornado influences
whether Aunt Em is in the cellar and whether the house is destroyed. And
whether Aunt Em survives is influenced by whether she’s in the cellar and
whether the house is destroyed. Let me use ‘T ’, ‘C’, and ‘S ’ for whether there’s a
tornado, whether Aunt Em is in the cellar, and whether Aunt Em survives, re-
spectively. And I’ll use ‘D ’ for whether the house is not destroyed. All of these
variables are binary, and all take on the truth-value of ϕ in their associated
‘whether ϕ’ expression. Thus, D = 1 if the house is not destroyed, and D = 0

if it is destroyed. Then, making the simplifying assumption that the relations
of influence are all deterministic, we can write down the following structural
equations model:

S := C ∨D
C := T

D := ¬T
T = 1

It does not appear that the tornado (T = 1) caused Aunt Em to survive
(S = 1). We are inclined to say that Aunt Em survived in spite of the tornado,

2. In Gallow (2016), I provide a theory of influence. See also Gallow (ms).

3. See Hall (2007) and Hiddleston (2005b).

4. This case ismodelled on Boulder fromHitchcock (2001), who attributes the case to an early draft
of Hall (2004).
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and not because of it. (Tornado is similar to the case of the Cuban missile crisis
discussed in the introduction.) But notice that this system of structural equa-
tions is isomorphic to the systemof structural equations forPreemptiveOverde-
termination. Wemay associate the variable T withM ,C with P ,D with E, and
S with D . When we do so, the ‘corresponding’ variables are related by exactly
the same equations and take on exactly the same values. But, while M = 1 is a
cause of D = 1 (the MI6 agent’s providing poison to the chef is a cause of the
president’s death), T = 1 is not a cause of S = 1 (the tornado is not a cause of
Aunt Em’s survival).

It’s important to recognise that the isomorphism betweenTornado and Pre-
emptive Overdetermination doesn’t depend upon us using the slightly unnatu-
ral variableD . This variablemakes it easier for us to recognise the isomorphism,
but it would be there even if we used a variable which took on the value 1 if the
house is destroyed, and took on the value 0 if the house is not destroyed.5 Any
theory of causation formulated in terms of a structural equations model alone
will not distinguish between models which are isomorphic in this way. So, if
we only look at systems of structural equations, we’ll either have to say that
the president’s death was not an effect of the MI6 agent’s providing poison to
the chef, or else we’ll have to say that Aunt Em’s survival was an effect of the
tornado.6

5. What do Imeanwhen I say that there’s ‘an isomorphism’ between two structural equationsmod-
els? A function, f , from the values of the variables inM1 to the values of the variables inM2 is
an isomorphism iff (a) it is a bijection, (b) it preserves the mappings of the structural equations,
and (c) it maps actual values to actual values. That is: (a) different variable values inM1 get
mapped to different variable values inM2, and every variable value inM2 has some variable
value inM1 which is mapped to it; (b) for every structural equation inM1, if that equation
maps u1,u2, . . . ,uN to v, then there is an equation inM2 which maps f (u1), f (u2), . . . , f (uN )
to f (v); and (c) if v is an actual variable value inM1, then f (v) is an actual variable value in
M2.

6. You may instead want to contend that there’s something wrong with one of the structural equa-
tionsmodels we’ve written down here. See Blanchard& Schaffer (2017) for this kind of response.
But notice that, unlike the kinds of cases which Blanchard & Schaffer discuss, the values of the
variables in Preemptive Overdetermination and Tornado do not seem to correspond to possibili-
ties which we are ‘not willing to take seriously’. These structural equations models do impose an
artificial and unrealistic simplicity on scenarios which, in any realistic case, would be be much
messier, involve more variables, and perhaps be indeterministic. But I don’t see why this should
matter. It is not cognitively taxing to make the unrealistic assumption that matters really are
this simple and deterministic. (If anything, it is making realistic assumptions which would be
cognitively demanding.) So it’s unclear why we should doubt the intuitions we have once we’ve
made these simplifying assumptions. Relatedly, we may imagine simplistic systems of neurons
which have structures similar to Preemptive Overdetermination and Tornado. These simplistic
causal systems can be correctly modelled by isomorphic systems of equations without the need
of any simplifying assumptions. See Gallow (2021, §1.1) and Blanchard & Schaffer (2017, fn 23).
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For another illustration of the same issue, consider the following vignette:

Switch
The power cord for the light bifurcates into a left wire and a right
wire, and there is a switch with only two positions: Left and Right.
If the switch is set to Left then it will direct any current along the
left wire. If the switch is set to Right, then it will direct any current
along the right wire. Both the left and right wires attach to the
light, and if current is flowing through either wire, the light will
be illuminated. In the morning, Filipa flips the switch from Right
to Left. In the evening, Phoebe turns on the power. Current then
flows through the left wire, and the light turns on.7

Let’s focus on the following variables: whether the switch is set to Left (S = 1)
or Right (S = 0), whether current is flowing through the left wire (L = 1) or
not (L = 0), whether current is flowing through the right wire (R = 1) or not
(R = 0), and whether the light is illuminated (I = 1) or not (I = 0). And let us
suppose that these variables influence each other in the way described by this
system of structural equations:

I := L∨R
L := S

R := ¬S
S = 1

It does not appear that the light being illuminated (I = 1) is an effect of the
switch being set to Left (S = 1), rather than Right (S = 0). The switch makes a
difference towhether current flows through the left or the right wire, but it does
not make any difference to whether the light is illuminated or not. Relatedly,
there seems to be an important difference between Filipa and Phoebe. While
Phoebe can take credit for the light being illuminated, Filipa cannot. Filipa can
at most take credit for current flowing through the left wire, rather than the
right.

However, once again, this system of structural equations is isomorphic to
the one we wrote down for Preemptive Overdetermination. We may associate
the variable S withM , Lwith P ,Rwith E, and I withD . Then, ‘corresponding’

7. SeeHall (2000), Pearl (2000, example 10.3.6), Halpern&Pearl (2005), and Sartorio (2005, 2016),
a.o.
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variables are related by exactly the same equations and take on exactly the same
values. So any theory of causation formulated in terms of structural equations
models alone will not distinguish between Preemptive Overdetermination and
Switch.

Several authors have responded to observations like these by introducing
a distinction between variable values which represent default or inertial states
and those which represent departures from a default or inertial state.8 Just to
have a name, I’ll call a deviation from the default deviant.

I won’t have the space to say very much about this difference between vari-
able values which are default and those which are deviant. But just to help
the reader acquire a familiarity with the distinction, let me offer the following
rough-and-ready characterisation. If it feels natural to describe a variable value
by saying ‘nothing happened’—or if it is natural to describe it as representing a
state, as opposed to an event—then that variable value is likely default. On the
other hand, if it feels natural to describe a variable value by saying that some-
thing happened, or that it represents an event, then that variable value is likely
a deviant departure from the default. We tend to expect that the states of the
world represented by default variable values will persist so long as they are left
alone. Another helpful characterisation can be given in terms of what we are
inclined to imagine when we counterfactually suppose that some event did not
take place. When we counterfactually suppose that the chef didn’t poison the
president’s food, we’re not inclined to imagine the chef poisoning his drink,
or shooting the president with a revolver, or staging a production of West Side
Story. Instead, we imagine him preparing food without poison. If a variable
value represents a state which we’re inclined to imagine when counterfactually
supposing an event away, then it is likely a more default value. For this reason,
we tend to be unsure how to counterfactually imagine away default variable
values when there are multiple possible contrasts. When asked to counterfac-
tually suppose the chef didn’t poison the president’s food, we easily imagine
him preparing unpoisoned food. In contrast, consider Ali, who is just stand-
ing about, doing nothing. If you’re asked to suppose that Ali isn’t just stand-
ing about, doing nothing, it’s unclear what you’re being asked to imagine. No
scenario springs to mind as being the kind of thing you’re meant to be coun-

8. See Hart & Honoré (1985), Kahneman & Miller (1986), Thomson (2003), Maudlin (2004), Men-
zies (2004, 2007, 2017), McGrath (2005), Hall (2007), Hitchcock (2007), Halpern (2008, 2016),
Hitchcock & Knobe (2009), Paul & Hall (2013), Halpern & Hitchcock (2015), Wolff (2016), Icard
et al. (2017), Gerstenberg & Icard (2020), and Gallow (2021), a.o. For criticism of this response,
see Blanchard & Schaffer (2017) and Wysocki (ms).
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terfactually supposing to be the case, indicating that Ali standing about doing
nothing is a default.9

When variables have multiple values, we shouldn’t work with a binary dis-
tinction between variable values which are default and those which are deviant.
Instead, we should order the values of variables in terms of which are more
default than which others. Turn again to the chef from Preemptive Overdeter-
mination, and consider a variable, C∗, which takes on three potential values:
C∗ = 0 if the chef just stands about, doing nothing. C∗ = 1 if the chef prepares
a normal meal. AndC∗ = 2 if the chef prepares a poisonedmeal. If I ask you to
counterfactually suppose that the chef didn’t prepare a poisoned meal, it’s most
natural to imagine him preparing a normal, unpoisoned meal. This suggests
that C∗ = 1 is more default than C∗ = 2. And, if I ask you to counterfactually
suppose that the chef didn’t prepare a normal meal, it’s most natural to imagine
him standing about, doing nothing (especially in a context where we haven’t
raised the possibility of the chef poisoning the meal). This suggests thatC∗ = 0

is more default than C∗ = 1.

Distinguishing (more) default variable values from (more) deviant ones al-
lows us to distinguish Preemptive Overdetermination from Tornado. For, while
the variable value C = 0 represents the default state of the CIA agent doing
nothing, the ‘corresponding’ variable value D = 0 represents the house’s de-
struction, which is a deviation from the default state of the home remaining
intact. Likewise, this distinction allows us to distinguish Preemptive Overde-
trmination from Switch. For M = 0 is more default than M = 1—that is, the
MI6 agent doing nothing is more default than their providing poison to the
chef. However, S = 0 is no more default than S = 1. It’s no more default for
the switch to be set to Left than it is for the switch to be set to Right. (It’s natural
to describe both the switch being set to Left and the switch being set to Right
as states, rather than events, and both of these states are inertial ones in which
the switch will remain so long as it is left alone. If I ask you to counterfactually
suppose that the switch is not set to Left, you’ll naturally imagine that it’s set to
Right; but likewise, if you’re asked to suppose it’s not set to Right, you’ll equally
naturally imagine that it’s set to Left. So neither value appears any more default
than the other.)

9. Compare with Hall (2007, §6) and Hitchcock (2007, §5).
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4 Rules for Causal Process Tracing

In Preemptive Overdetermination, we can trace a process from the MI6 agent’s
providing poison (M = 1), to the chef poisoning the food (P = 1), to the pres-
ident’s death (D = 1). We can trace the process from M = 1 to P = 1 because,
whenwewiggleM ’s value from 1 to 0, P ’s equation tells us that P changes from
1 to 0. And we can trace the process from P = 1 to D = 1 because, when we
wiggle P ’s value from 1 to 0, D ’s equation tells us that D changes from 1 to 0.

In general, tracing a process from C to one of its children, D , involves
changing C’s value in D ’s equation, and seeing how D ’s value changes in re-
sponse. When a variable is binary, it’s clear how to change its value. There is
only one alternative value for the variable to take on. But when variables take
on more than two values, we should be more careful and explicitly stipulate
which contrast value we are changing C to. Suppose that, when we change C’s
value from c to c∗ , c in D ’s equation, D ’s value changes from d to d∗ , d. In
that case, I’ll say thatD taking on the value d, rather than d∗, is a consequence of
C taking on the value c, rather than c∗.10 As a notational convention, I’ll write
‘(v,v∗)V ’ for the variableV ’s taking on the value v, rather than v∗ , v. So, if the
value of D determined by D ’s equation changes from d to d∗ when we change
C’s value from c to c∗, I’ll say that (d,d∗)D is a consequence of (c,c∗)C . And, in
general, I’ll refer to any variable value, contrast pair (v,v∗)V as a consequence
for V .11

Causal process tracing is amatter of tracing out consequences like this. You
begin with some collection of variables values, C1 = c1,C2 = c2, . . .CN = cN ,
along with a range of contrast values, c∗1 , c1, c

∗
2 , c2, . . . , c

∗
N , cN . This gives

you a collection of ‘initial’ consequences (c1, c∗1)C1
, (c2, c∗2)C2

, . . . , (cN , c∗N )CN
.

From there, you can start to trace out further consequences, according to the
following rules.

Rule #0: How to Trace Consequences If U1,U2, . . . ,UN are all parents of V ,
then it’s possible to trace a consequence for V , (v,v∗)V , from the con-
sequences (u1,u∗1)U1

, (u2,u∗2)U2
, . . . , (uN ,u∗N )UN

, iff, when you change

10. For more of the rule of contrasts in causal claims, see Hitchcock (1996a,b, 2011), Maslen (2004),
Schaffer (2005, 2012a), and Gallow (2021, §5.1), a.o.

11. In particular, I’ll refer to (c,c∗)C as a consequence for C, even when (c,c∗)C initiates the causal
process, and so is not a consequence of anything else in the process. This terminological stipu-
lation is slightly awkward, but it allows me to concisely state the recursive rules #0, #2, #3, and
#4.
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the value of everyUi from ui to u∗i in V ’s equation—and leave the value
of every other variable unchanged—V ’s value changes from v to v∗ , v.

The zeroth rule is more of a definition. It explains what it means to extend a
causal process by tracing one consequence from some others which you have
already included in the process. It’s natural to think of rule #0 as saying that you
can extend a process from (u1,u∗1)U1

, (u2,u∗2)U2
, . . . , (uN ,u∗N )UN

to (v,v∗)V
whenever the latter consequence counterfactually depends upon the former
consequences. However, given the usual structural equations model semantics
for counterfactuals,12 this isn’t quite correct. To appreciate why, consider the
system of structural equations shown below.

C := A∨B
B := ¬A
A = 1

In this system of equations, rule #0 tells us that we may trace a process from
(1,0)A to (1,0)C . For, when we look at the variable values appearing in C’s
equation, we have C := 1A ∨ 0B = 1 (I’ve subscripted the variable values to
make it clear which variables they are values of ). And, if we change 1A to 0A
without changing the value of B, we get thatC := 0A∨0B = 0. So, just looking
at C’s equation, changing A’s value from 1 to 0 changes C’s value from 1 to 0.
ButC = 1 does not counterfactually depend uponA = 1. For, ifAwere to be 0,
B would have been 1, and so C would have remained 1. Just to have a term to
mark this distinction, we could say that, while (1,0)C does not globally depend
upon (1,0)A, (1,0)C does locally depend upon (1,0)A. In these terms, rule
#0 tells us that we may extend a process by tracing (v,v∗)V from (u1,u∗1)U1

,
(u2,u∗2)U2

, . . . , (uN ,u∗N )UN
whenever the former consequence locally depends

upon the latter consequences.
The rules for causal process tracing do not require us to begin tracing from

a single initial consequence, (c,c∗)C . We may instead, if we wish, start trac-
ing from a collection of consequences. Consider, for instance, the following
structural equations model:

C := A∨B
B := A

A = 1

12. See Galles & Pearl (1998), Hiddleston (2005a), and Briggs (2012).
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In this model, we may begin with the consequences (1,0)A and (1,0)B, and
extend the process by tracing out the consequence (1,0)C .

(1,0)A

(1,0)B

(1,0)C

Rule #1 is the first substantive rule. It says something about the order in
which you must trace out consequences when you are extending a causal pro-
cess. Roughly, the rule says that, before you decide whether to include a con-
sequence for a variable, V , in the process, you must first have decided whether
to include a consequence for any parent of V in the process. You cannot first
include a consequence for V and only later include a consequence for one of
V ’s parents. More carefully, let’s say that one variable, U , is closer to an initial
variable,C, than V is iff (a) there is a directed path fromC toU and a directed
path from C to V , and (b) the longest directed path from C to U is shorter
than the longest directed path from C to V .

Rule #1: Trace Out Consequences in Order If U is closer to some initial vari-
able than V is, then you must decide whether to include a consequence
forU in the process before you decide whether to include a consequence
for V .

This rule prevents us from first including a consequence for V , and only later
including a consequence for one ofV ’s parents. For, ifU is a parent ofV which
lies downstream of an initial variable, thenU must be closer to that initial vari-
able than V is.

Rule #1 is important because of rule #2, which says that, if you’re going to
trace a process forward to a consequence for a variable, V , then it must be a
consequence of all of the consequences for V ’s parents which you’ve already
included in the process.

Rule #2: Trace Forward From All Consequences Youmayonly include (v,v∗)V
in a causal process if you can trace it forward from all of the consequences
for V ’s parents that you’ve included in the process.

For instance, consider the structural equations model we wrote down for Tor-
nado, but let’s exchange the variableD for the less confusing variableD , which
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is 1 if the house is destroyed and 0 if it is not.

S := C ∨¬D
C := T

D := T

T = 1

Suppose we’ve already traced out a process leading from the tornado, (1,0)T , to
Aunt Em’s being in the storm cellar, (1,0)C , and to the house’s being destroyed,
(1,0)D .

(1,0)T

(1,0)C

(1,0)D

At this point, we may not trace this process forward from Aunt Em’s being in
the storm cellar, (1,0)C to her survival, (1,0)S . This is not a causal process:

(1,0)T

(1,0)C

(1,0)D

(1,0)S

It is true that Aunt Em’s survival depends upon her being in the storm cellar.
That is: looking at S ’s equation, changingC from 1 to 0 changes S ’s value from
1 to 0. But rule #2 tells us that any consequence for S which we’re going to
include in this process must be a consequence of both (1,0)C and (1,0)D . But,
looking at the variable values in S ’s equation, S := 1C ∨ ¬1D = 1, changing
both C and D from 1 to 0 gives us S := 0C ∨¬0D = 1. So rule #2 tells us that
we cannot include any consequence for S in this process.

The third rule is the one which allows us to distinguish the case of Preemp-
tive Overdetermination from Tornado. Let’s say that the consequence (v,v∗)V
is deviant iff v∗ is more default than v; otherwise, we can say that (v,v∗)V is
default. Then, rule #3 tells us that, while you are sometimes permitted to ex-
clude default consequences from a causal process, you are never permitted to
exclude deviant consequences. If the other rules allow you to include a de-
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viant consequence for the variable V in the causal process you are tracing, this
consequence must be included.

Rule #3: Trace All Deviant Consequences If a consequence (v,v∗)V is deviant
and the other rules allow you to include it in the process, then it must be
included.

In Preemptive Overdetermination, we may trace out a process from the MI6
agent’s providing poison, rather than not, (1,0)M , to the chef ’s poisoning the
food, rather than not, (1,0)P , to the president’s dying, rather than remaining
alive, (1,0)D .

(1,0)M

(1,0)P

(1,0)D

We could have traced the consequence (0,1)E from (1,0)M , since the CIA
agent’s not igniting their explosives depends upon the MI6 agent providing
poison to the chef. If we had included this consequence in the process, we
would not have been able to trace out any consequences for whether the presi-
dent died. However, the consequence (0,1)E is default. That is: the CIA agent
doing nothing is more default than their igniting explosives in the presidential
palace. And if (0,1)E is default, then we have the option of not including it
in the causal process we are tracing. So we have the option of tracing a causal
process from the MI6 agent’s action to the president’s death.

In contrast, in Tornado, the destruction of the house is not default. It is
an event, a happening. And the house remaining intact is an inertial, default
state. So (1,0)D is a deviant consequence. Rule #3 therefore requires us to
include (1,0)D in any causal process we trace from (1,0)T . If we include this
consequence, rule #2 tells us that any consequence for S must depend upon
(1,0)D . But in S ’s structural equation, S := C ∨ ¬D , D = 0 is sufficient for
S = 1. So changing the value of D from 1 to 0 will not change the value of
S—whether we include the consequence (1,0)C or not. So Aunt Em’s survival
is not an effect of the tornado.

You may always trace out a causal process by including all the deviant con-
sequences and excluding anydefault consequences. While deviant consequences
are mandatory, you always have the option of excluding every default conse-
quence. However, once you include some default consequence for a variable,
U , (u,u∗)U , from that point on, you must continue to trace out every possible
consequence downstream of (u,u∗)U—at least, you must continue tracing out
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every consequence of (u,u∗)U until those consequences have resolved them-
selves back into a single deviant consequence. At that point, you may once
again begin tracing only deviant consequences, if you wish. Think about it like
this: there are two kinds of causal processes, which we can call productive pro-
cesses and dependence processes.13 To trace out a productive process, you must
include all and only the deviant consequences. But if you want to trace out a
dependence process, then you must include every consequence, even the de-
fault ones. (We’ll see in section 5 below that including every consequence is
equivalent to checking for counterfactual dependence, whence the name ‘de-
pendence process’.) If you start out tracing a productive process, you may, at
any point you wish, switch over to tracing out a dependence process by includ-
ing some default consequence. However, from that point forward, you must
continue tracing out the dependence process until it has resolved itself into a
single consequence.

To state that a bitmore carefully, let’s say that a default consequence, (u,u∗)U ,
has been resolved into a single consequence just in case there’s some descendant
ofU ’s,R (for ‘resolved’), such that, for every variable, V , which is a descendant
ofU but not a descendant of R, either (a) you have included a consequence for
V in the process or (b) the rules do not allow you to include a consequence
for V in the process. Then, the fourth rule says that, once you include a de-
fault consequence (u,u∗)U in a process, you must continue tracing out every
consequence downstream of (u,u∗)U until it is resolved.

Rule #4: Trace All Consequences of Unresolved Default Consequences If V is
a descendant of an unresolved default consequence and the other rules
allow you to include (v,v∗)V in the process, then it must be included.

Rule #4 is relevant when we consider cases like Switch. If we are interested
in the effects of the switch being set to Left, rather than Right, then we will
have to begin tracing a causal process with the default consequence (1,0)S .
Once we’ve included this default consequence in our causal process, we must
continue tracing all possible consequences downstream of it until it is resolved.
Thismeans thatwemust include both the deviant consequence that the leftwire
has current running through it, (1,0)L, and the default consequence that the
right wire has no current flowing through it, (0,1)R.

13. Compare with Hall (2004).
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(1,0)S

(1,0)L

(0,1)R

But once we’ve included both of these consequences in our causal process, we
cannot trace out any consequences for whether the light is illuminated. When
we look at the variable values in I ’s equation, I := 1L∨0R = 1, changing L from
1 to 0 and changingR from 0 to 1 gives us I := 0L∨1R = 1. So the light’s being
illuminated is not an effect of the switch being set to Left, rather than Right.

These are all the rules for causal process tracing. Any process you are able
to trace out in accordance with these rules is a causal process. Causation is
then defined in terms of causal processes. But there are two subtle questions
to address. Firstly: what are the relata of the causal relation? We might decide
to say that they are what I have here called consequences. That is, we may want
to say that E taking on the value e, rather than e∗, is an effect of the initial
variables, C, taking on their actual values, c, rather than some contrast values,
c∗.14 On this view, causation is a binary relation between pairs of variable values
(or collections of variable values).15 Alternatively, we might want to say that
causation is a binary relation between variable values (or collections thereof),
and that C = c is a cause of E = e if, for some contrasts c∗ and e∗, we can trace
an appropriate causal process from (c,c∗)C to (e,e∗)E . From my perspective,
there’s little to tell between these two approaches. Sometimes our causal claims
make explicit reference to contrasts, which may be thought to favour the first
approach. However, most often our causal claims do not involve any explicitly
stated contrasts; and it’s unclear whether the function of mentioning contrasts
is to specify the relata of the causal relation or to instead specify the causal
process linking cause to effect. I’m going to opt for the second view here, but
a reader who prefers the first can accept everything else I’ll have to say with a
few minor and superficial changes.

14. Here, I’m using the boldface ‘C’ for a set of variables, and I’m using ‘c’ and ‘c∗’ for assignments
of values to those variables. That is, c and c∗ are functions from the variables inC to their values.
c maps every C ∈ C to its actual value, and c∗ maps every C ∈ C to some non-actual value.

15. Some might prefer to say that causation is a four-place relation between variable values, with
the first and third places occupied by C and E’s actual values, and the second and fourth places
occupied by contrast values for C and E. See Maslen (2004) and Schaffer (2005). I believe this
is just a notational variant of the view I propose in the body.
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Secondly: when can we use a causal process to conclude that E = e is an
effect of C = c? Whenever (i) the process is initiated by consequences for the
variables in C; (ii) a consequence for E is included in the process; and (iii) the
causal process is minimal.

Causation If you can trace a minimal causal process from (c,c∗)C to (e,e∗)E ,
then C = c is a cause of E = e.

If C = c is a cause of E = e, then I’ll say that, for any C ∈ C, C’s value is a part
of a cause of E’s value. It, together with the other variables inC, brought about
E = e. A causal process from (c,c∗)C to (e,e∗)E is minimal just in case there
is no sub-process of it leading from (c̃, c̃∗)C̃ to (e,e∗)E—where C̃ ⊆ C and c̃∗

gives the same contrasts to the variables in C̃ as c∗ does—which is also a causal
process.

To see why the minimality condition is important, let’s extend our model
of Switch by including a variable, P , for whether the power is on. If the power is
on, then P = 1; whereas, if the power is off, P = 0. Then, we have the following
system of structural equations.

I := L∨R
L := S ∧ P
R := ¬S ∧ P
S = P = 1

The rules allow us to trace out the following causal process:

(1,0)S

(1,0)P

(1,0)L (1,0)I

But we should not conclude that the switch being set to Left was a part of a
cause of the light being illuminated—we shouldn’t say that the switch and the
power together caused the light to be illuminated. For the consequence (1,0)S
is an inessential part of this causal process. Even without it, we can trace the
causal process

(1,0)P (1,0)L (1,0)I

This second causal process is a sub-process of the first one. So the first causal
process is not minimal.
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5 Further Discussion

In this section, I will apply the theory of causation from section 4 to some ad-
ditional examples and note some of its properties.

In the first place, note that, if E = e, rather than e∗, (globally) counterfac-
tually depends upon C = c, rather than c∗, then there will be a causal process
leading from (c,c∗)C to (e,e∗)E . In fact, there will be a dependence process
leading from (c,c∗)C to (e,e∗)E—a process which includes every possible con-
sequence. In general, E = e, rather than e∗, counterfactually depends upon
C = c, rather than c∗, if and only if there is a dependence process from (c,c∗)C
to (e,e∗)E .16 So, according to this theory, counterfactual dependence is suffi-
cient for causation, in the following sense: if E = e counterfactually depends
upon C = c, then the values of some subset of C is a cause of E = e.

This means that, in particular, the theory recognises cases of prevention
and ‘double prevention’ as causation.17 Consider, for instance:

Jewel Heist
James breaks into themuseum to steal the jewels. An alarmwould
have prevented him from getting the jewels, but last night, Dalton
disabled the security system, preventing the alarm from prevent-
ing James from stealing the jewels.

Using ‘J ’ for whether James steals the jewels, ‘A’ for whether the alarm goes off,
and ‘D ’ for whether Dalton disables the security system, let’s suppose that these
variables influence each other in the way described by the structural equations

16. In a dependence process emanating from (c,c∗)C, every variable’s contrast is the value it would
take on, were each C ∈ C to take on the value from c∗. We can show this by induction on a
variable’s ‘distance’ fromC, where V ’s distance fromC is the length of the longest directed path
from someC ∈ C to V . The base case, where the distance is 0, is trivial. (TheC ∈ C are the only
variables a distance of 0 fromC.) So suppose that it holds for every variable whose distance from
C is at least k. Then, take any variable, V , whose distance from C is k + 1. Each of V ’s parents
is either not a descendant of any C ∈ C, in which case it would take on its actual value, were C
to be c∗, or else V ’s parent is closer to C than V , in which case its contrast in the dependence
process is the value it would take on, wereC to be c∗ (by the inductive hypothesis). By rules #0,
#1, and #2, V ’s contrast in the process must be the value determined by its structural equation,
when the parents ‘on the process’ are given their contrasts and the parents ‘off the process’ are
given their actual values. Since these are also the values the parents would take on, wereC to be
c∗, V ’s contrast will be the value V would take on, wereC to be c∗. V was arbitrary, so the same
goes for every other variable a distance of k +1 from C.

17. Cases of ‘double prevention’ are discussed in Hall (2004). See also Schaffer (2000, 2012b).
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below.
J := ¬A
A := ¬D
D = 1

Then, we can trace out the causal process (1,0)D → (0,1)A→ (1,0)J . So Dal-
ton’s disabling the security system prevented the alarm from sounding. (That
is to say: the alarm not going off is an effect of Dalton’s disabling the security
system.) And, the alarm would have prevented the jewel heist. Since Dalton
prevented this potential preventer (‘double prevention’), the jewel heist is an-
other effect of him disabling the security system.

The theory also recognises cases of prevention and ‘double prevention’with-
out (global) counterfactual dependence. Consider, for instance,

Preemptive Prevention
As in Jewel Heist, except that, if Dalton hadn’t disabled the security
system, then Brynn (the ‘backup’) would have cut the power to the
museum, and the alarm still wouldn’t have gone off.

To model this version of the case, we can use ‘B’ for whether Brynn cuts the
power, and continue to use ‘D ’, ‘A’, and ‘J ’ in the same way. And we can assume
that the relations of influence between these variables are as described by the
equations below.

J := ¬A
A := ¬D ∧¬B
B := ¬D
D = 1

Brynn’s failure to cut the power is a default consequence, so it need not be
traced, andwe can trace out the same causal process as in Jewel Heist, (1,0)D →
(0,1)A → (1,0)J . So the theory tells us that both the failure of the alarm to
sound and the success of the jewel heist are effects of Dalton’s disabling the se-
curity system. Dalton deserves credit for the alarm not sounding, even though
the ‘back up’ Brynn means that the alarm’s silence doesn’t (globally) counter-
factually depend upon what Dalton did.18

18. Cases called ‘preemptive prevention’ are discussed in McDermott (1995) and Collins (2004).
However, the cases they discuss are somewhat different from the case I am calling Preemptive
Prevention. In the McDermott and Collins cases, the prevented event does not even locally
depend upon the preempting preventer; whereas, in Preemptive Prevention, the failure of the
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To my knowledge, no other extant theory of causation generates this col-
lection of verdicts. Some deny that there is causation in cases like Preemptive
Overdetermination.19 Some say that the tornado caused Aunt Em to survive,
and that the switch’s being set to Left caused the light to be illuminated.20 Some
deny that there can be causation by prevention or ‘double prevention’.21 Other
theories fail to issue any verdicts at all about some of our cases.22

Preemptive Prevention is a case inwhich the theory from section 4 disagrees
with the theory of causation I provided in Gallow (2021). For another case in
which the theories disagree, consider the following vignette:

Coordination Game
Fozzie Bear and Crazy Harry play a coordination game. Each has
a switch with two positions: Left and Right. Fozzie has first move.
He can either flip his switch or leave it alone. Next, after learning
what Fozzie has done, Crazy Harry can either flip his switch or
leave it alone. If their switches are aligned, they win $1,000,000.
If their switches are misaligned, the money will be incinerated in
an extravagant explosion. To start, the switches are misaligned:
Fozzie’s is set Left and Harry’s is set Right. Wanting the money,
Fozzie flips his switch to Right. Seeing this and wanting the ex-
plosion, Harry flips his switch to Left. The money is incinerated.23

Let’s use ‘F’ for whether Fozzie Bear flips his switch, ‘H ’ for whether Crazy
Harry flips his switch, and ‘I ’ for whether the money is incinerated. Then, the
relations of influence between these variables are described by these structural

alarm to sound does locally depend uponDalton disabling the security system. TheMcDermott
and Collins cases are more similar to a version of Preemptive Prevention where Dalton disables
the security system and Brynn cuts the power anyway. (In that version of the case, Brynn would
be the ‘preempting’ preventer.)

19. For instance, Mackie (1965), Suppes (1970), Eells (1991), Beckers & Vennekens (2017, 2018), and
Andreas & Günther (forthcoming).

20. For instance, Lewis (1973, 1986, 2004), Ramachandran (1997), Schaffer (2001), Hitchcock (2001),
Woodward (2003), Yablo (2004), Halpern & Pearl (2001, 2005), Hall (2007) (see Hitchcock,
2009), Halpern (2016), Andreas & Günther (2020, 2021), and Bochman (2021).

21. For instance, Aronson (1971), Fair (1979), Salmon (1984, 1994), Ehring (1997), and Dowe (2000).

22. For instance, Hitchcock (2007) and Weslake (forthcoming).

23. This case is modelled on McDermott (1995)’s Shock C.
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equations.

I := [F =H]

H := F

F = 1

(Here, ‘[F = H]’ is the truth-value of ‘F = H ’. It is 1 if F and H have the same
value, and 0 otherwise.)

If we assume that flipping your switch is less default than doing nothing,
and that money being incinerated is less default that the money remaining in-
tact, then the theory I provided in Gallow (2021) allows us to trace a causal
process from Fozzie Bear’s flipping his switch, (1,0)F , to Crazy Harry’s flip-
ping his, (1,0)H , to the money being incinerated, (1,0)I . This seems like a bad
result, since it seems wrong to say that the money being incinerated was an
effect of Fozzie’s flipping his switch. We are instead inclined to say that, given
that Harry wanted the explosion, and was going to flip his switch iff Fozzie
flipped his, Fozzie’s flip didn’t make any difference to whether the money was
incinerated. On the present theory, (1,0)F → (1,0)H → (1,0)I is not a causal
process, since it violates rule #2. The consequence (1,0)I is only traced forward
from (1,0)H , even though both F and H are parents of I . Any consequences
for whether the money is incinerated would have to be traced forward from
both Fozzie’s flipping his switch and Harry’s flipping his. But the money’s in-
cineration does not depend upon both Fozzie and Harry’s flips. Had neither
of them flipped their switches, the money would still have been incinerated.
Nor is (1,0)F → (1,0)I a causal process, for it does not include the deviant
consequence (1,0)H , in violation of rule #3.

In Gallow (2021), I was trying to provide a theory of causation which sat-
isfied the following principle:

Invariance under Interpolated Variable Removal If V , C,E is interpolated
along a path in the structural equations modelM, then a theory of cau-
sation should tell you that C = c is a cause of E = e inM iff it tells you
that C = c is a cause of E = e inM−V .

This requires some explanation. I say that the variable V is interpolated along a
path in a structural equations model iff it has a single parent, P a, a single child,
Ch,

P a→ V → Ch

and P a is not also a parent of Ch. If V is interpolated along a path inM,
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thenM contains an equation of the form V := f (P a), for some function f of
P a. And it contains a structural equation of the formCh := g(...V ...), for some
function, g , ofV and perhaps some other variables.M−V is themodelMwith
the variable V removed. If V is interpolated along a path inM, then, to get the
modelM−V , you just get rid of the equation V := f (P a) entirely, and replace
the equation Ch := g(...V ...) with Ch := g(...f (P a)...). The principle tells us
that whether you interpolate a variable along a path or not, this shouldn’t make
any difference to what your theory tells you about the causal relations between
the other variables in the model.

I’ve come to think that this principle is too strong, in part because it requires
us to treat Coordination Game like a case of preemptive overdetermination.
Consider the following vignette:

Preemptive Overdetermination (v2)
Kermit the Frog and Miss Piggy both have switches in front of
them, with two positions: Off and On. To start, both switches are
Off. Kermit has first move: he can either flip his switch to On or
leave it alone. Next, after learning what Kermit has done, Miss
Piggy can either flip her switch to On or leave it alone. If either
switch is On, then a corresponding bomb will be activated. If ex-
actly one of the bombs is activated, then $1,000,000 will be incin-
erated by the exploding bomb. If both bombs are activated, there
will be a power surge and neither bomb will go off. Both players
know this, and both players just want to watch the money burn.
So Kermit flips his switch to On, and Miss Piggy does nothing.
(Had Kermit not flipped, Miss Piggy would have.) Kermit’s bomb
is activated and Miss Piggy’s is not. Kermit’s bomb explodes, in-
cinerating the money.

Inmyopinion, this vignette is in all relevant respects just likePreemptiveOverde-
termination. The CIA agent and Miss Piggy are backup, would-be causes of the
president’s death and the money’s incineration, respectively. These backup,
would-be causes are preempted by the MI6 agent and Kermit the Frog, respec-
tively. Just as the MI6 agent caused the president to die, Kermit caused the
money to be incinerated.

We can model Preemptive Overdetermination (v2) with the following bi-
nary variables: I , for whether the money is incinerated, P , for whether Miss
Piggy’s bomb is activated, H , for whether Kermit’s bomb is activated, and F,
for whether Kermit the Frog flips his switch. These variables influence each
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other in the ways described by the equations below.

I := [¬P =H]

P := ¬F
H := F

F = 1

Notice that, in this structural equations model, the variable P is interpolated
along a path. According to Invariance under Interpolated Variable Removal,
we can remove it, and this won’t make any difference to what our theory has to
tell us about whether F = 1 is a cause of I = 1. But removing the variable P
leaves us with this model:

I := [F =H]

H := F

F = 1

And this is exactly the model we wrote down for Coordination Game. More-
over, there doesn’t seem to be any difference with respect to which values of the
corresponding variables are default and which are deviant. In both cases, I = 1

stands for the deviant event of $1,000,000 being incinerated, while I = 0 stands
for the default, inertial state of the money remaining intact. In Coordination
Game, H = 1 stands for the deviant event of Harry flipping his switch, and
H = 0 stands for the default, inertial state of Harry doing nothing. Whereas,
in Preemptive Overdetermination (v2), H = 1 stands for the deviant event of
Kermit’s bomb being activated, and H = 0 stands for the default, inertial state
of the bomb remaining deactivated. And, in both cases, F = 1 stands for the
deviant event of someone (either Fozzie Bear or Kermit the Frog) flipping a
switch, and F = 0 stands for the default, inertial state of them doing noth-
ing. So it doesn’t seem that we can use differences in which variable values
are default and which are deviant to distinguish these two structural equations
models.

One reaction to this observation is to think that we were wrong to think
that Fozzie Bear didn’t cause the money to be incinerated. For instance, we
might suspect that our intuitions are beingmisled by the fact that, while Kermit
intended to incinerate the money, Fozzie Bear did not. That’s an important
asymmetry between Kermit and Fozzie, and it’s easy to understand how this
might influence our causal judgements. For you may think that, in general, we
have a tendency to conflate causal andmoral responsibility, and that intentions

23 of 28



how to trace a causal process

are relevant to moral responsibility. This error theory is prima facie plausible,
but unfortunately, I don’t think that it stands up to scrutiny. In the first place,
notice that changing Kermit’s intentions doesn’t seem to affect the intuition
that he caused the money to be incinerated. Suppose Kermit was trying to
save the money, but was under the false impression that flipping the switch
would deactivate his bomb. In this version of the case, it appears that Kermit
unwittingly caused the money to be incinerated, not that he didn’t cause the
incineration. In the second place, it still seems like Fozzie Bear didn’t cause the
money to be incinerated when we change his intentions. Suppose, for instance,
that Fozzie wants the explosion, but he’s misinformed, and think that this will
only happen if the switches are aligned. (Harry is not misinformed.) So Fozzie
flips his switch with the intention of incinerating themoney, Harry undoes this
blunder by flipping his switch, and the money is incinerated. In this version of
the case, it still seems like Fozzie Bear’s flipping the switch didn’t accomplish
anything.

In summary: if we were to accept Invariance under Interpolated Variable
Removal, we will have to say that Fozzie Bear caused the money to be inciner-
ated in Coordination Game iff Kermit the Frog caused the money to be incin-
erated in Preemptive Overdetermination (v2). But it seems that Kermit’s action
was a cause and that Fozzie Bear’s was not, and I see no plausibleway of explain-
ing away these appearances. So I have decided that we should reject Invariance
under Interpolated Variable Removal. The theory from section 4 offers an ex-
planation of why this principle is false: removing an interpolated variable from
a path may remove a default consequence which lies along that path. So it may
deprive us of an opportunity to stop tracing out consequences along that path.

Nonetheless, the theory from section 4 will never retract any of its verdicts
as additional variables are interpolated along a path. That is: take a structural
equationsmodelMwhich contains an interpolated variableV < C∪{E}. Then,
if you are able to trace a causal process from (c,c∗)C to (e,e∗)E inM−V , youwill
still be able to trace a causal process from (c,c∗)C to (e,e∗)E inM.24 Adding
additional interpolated variables along a path may allow you to identify new

24. If the causal process inM−V did not involve V ’s parent, P a, or child, Ch—or if P a = E—then
exactly the same process will be traceable inM. Otherwise, there’s some contrasts, pa∗ and ch∗,
such that (pa,pa∗)P a→ (ch,ch∗)Ch is a link in the causal process inM−V . Then, inM, we can
replace (pa,pa∗)P a → (ch,ch∗)Ch with (pa,pa∗)P a → (f (pa), f (pa∗))V → (ch,ch∗)Ch, where
f is the function from V ’s structural equation, V := f (P a). Because V is interpolated, we don’t
have to worry about whether (f (pa), f (pa∗))V is default. Even if it is, it is immediately resolved
with the consequence (ch,ch∗)Ch.
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causes which you couldn’t have identified before. But it will never stop you
from identifying causes which you could have identified before. Also, ifU < C
is a variable without any parents inM, then you will be able to trace a causal
process from (c,c∗)C to (e,e∗)E inM−U iff you are able to trace a causal process
from (c,c∗)C to (e,e∗)E inM.25 So adding or removing parentless variables will
never stop you from identifying causes which you could have identified before.

Sartorio (2005, 2013, 2016) defends a principle she calls the ‘Causes asDifference-
Makers’ principle. According to this principle, if an event c caused e, then, if c
hadn’t occurred, c’s absence wouldn’t have caused e. And, if c’s absence caused
e, then, if c had occurred, c wouldn’t have caused e. Let me generalise this
principle so that it applies, not just to binary variables like whether an event
occurs, but to variables with arbitrarily many values:

Causes as Difference-Makers IfC = c, rather than c∗, is a cause ofE = e, rather
than e∗, then, ifC had been c∗, thenC = c∗, rather than c, would not have
been a cause of E = e, rather than e∗.

According to the theory from section 4, this principle is true. For, if the rules
allow you to trace a causal process from (c,c∗)C to (e,e∗)E , then, ifC had taken
on the value c∗, the rules would not have allowed you to trace a causal process
from (c∗, c)C to (e,e∗)E .26

25. I defineM−U as the model that you get by replacing every occurrence of the variableU with its
actual value wherever it appears in any structural equation. (See Gallow, 2021.) You will be able
to trace all and only the same causal processes inM that you are able to trace inM−U , except
for those which are initiated by U itself.

26. Suppose (for the purposes of deriving a contradiction) that there is a causal process from (c,c∗)C
to (e,e∗)E and that, were C to be c∗, there would be a causal process from (c∗, c)C to (e,e∗)E . At
least one of (c,c∗)C and (c∗, c)C is default. Without loss of generality, suppose (c,c∗)C is default.
Then, either (i) (c,c∗)C is not resolved before we get to the consequence (e,e∗)E or (ii) it is. If
(i), then the causal process leading from (c,c∗)C to (e,e∗)E must be a dependence process. And
that means that E = e, rather than e∗, counterfactually depends upon C = c, rather than c∗ (see
footnote 16). In that case, were C to be c∗, there could not be a causal process from (c∗, c)C to
(e,e∗)E for the simple reason that E would not be e, were C = c∗. Contradiction. On the other
hand, if (ii), then (c,c∗)C must be resolved at a consequence (r, r∗)R, and we must be able to
trace a causal process from (r, r∗)R to (e,e∗)E . Since (r, r∗)R lies in the dependence process, R
would be r∗, were C = c∗. So, if C were c∗, there would have to be a causal process from (r∗, r)R
to (e,e∗)E . At least one of (r, r∗)R and (r∗, r)R is default, which means that all of the foregoing
reasoning can be reiterated. Without loss of generality, suppose (r, r∗)R is default. Then, either
(i) (r, r∗)R is not resolved before we reach the consequence (e,e∗)E or (ii) it is. If (i), then E = e
counterfactually depends upon R = r , rather than r∗, and so there cannot be a causal process
from (r∗, r)R to (e,e∗)E for the simple reason that E , e when R = r∗. Contradiction. If (ii),
the foregoing reasoning reiterates again. The contradiction can be delayed, but so long as the
causal process from (c,c∗)C to (e,e∗)E is finite, it cannot be delayed forever. So it cannot be that
both there is a causal process from (c,c∗)C to (e,e∗)E and, if C were c∗, there would be a causal
process from (c∗, c)C to (e,e∗)E .
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Hitchcock (2007) defends a principle which we can call ‘the Principle of
Sufficient Reason’.27 According to this principle, there is a special circumstance
in which causation turns out to be equivalent to counterfactual dependence.
Roughly, these are the circumstances in which all of the deviancy ‘in between’
C and E comes from C itself. That is: for any deviancy you find in a variable
‘in between’ C and E, that deviancy has a ‘sufficient reason’ for existing which
is attributable to some other variables ‘in between’ C and E—and, ultimately,
attributable to C itself. To state the principle more carefully, let me introduce
a few definitions. Firstly, the ‘causal network connecting C to E’, N, is just
the set containing every variable lying on a directed path of influence from C

to E (including C and E themselves). For any V ∈ N, let V ’s N-parents be
all the variables in N which are also parents of V . (C does not have any N-
parents, but every other variable in N will have N-parents.) Hitchcock says
that N is ‘self-contained’ iff, for every variable V ∈ N other than C, when all
of V ’s N-parents take on default values, and V ’s other parents take on their
actual values, V takes on a default value. Then, Hitchcock’s principle says that,
in a self-contained network, counterfactual dependence is both necessary and
sufficient for causation.

Almost all of the casesHitchcock discusses in his 2007 paper involve binary
variables which have one deviant value and one default value. In that special
case, his principle is a consequence of the theory from section 4. Even when
variables have arbitrarily many values, so long as each variable has exactly one
default value, there is another, nearby principle which is also a consequence of
the theory from section 4:

Principle of Sufficient Reason If the causal network connecting C to E is self-
contained, if every variable in the network has exactly one default value,
and if either c or c∗ is default, then C = c, rather than c∗, is a cause of
E = e if and only if E = e counterfactually depends upon C = c, rather
than c∗.

This principle doesn’t quite give us conditions in which counterfactual depen-
dence is both necessary and sufficient for causation. Instead, it gives us condi-
tions for when E = e counterfactually depending upon C = c, rather than c∗,
is a necessary and sufficient condition for C = c, rather than c∗, being a cause
of E = e. The theory from section 4 tells us that this will be the case so long as

27. Hitchcock (2007) gives this principle the name ‘TC’, for ‘token causation’, but his explanation of
the principle appeals to something he names ‘the principle of sufficient reason’.
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(1) the network connecting C to E is self-contained, (2) every variable in the
network has exactly one default value, and (3) either c or c∗ is default.28 (These
conditions hold in all of the ‘self-contained’ networks discussed in Hitchcock,
2007.)

What was supposed to be special about a ‘self-contained’ network, N, was
that we could attribute all of the deviancywithinN to the other variables inN—
and, ultimately, back to C. Hitchcock captured this idea with the requirement
that, for any V ∈ N, if V ’s N-parents take on default values, and its non-N-
parents take on their actual values, then V should take on a default value, too.
But, in cases where there are arbitrarily many values and multiple grades of de-
viancy, we might want to capture the idea with a slightly different requirement.
Let’s say that the network connecting C to E, N, is self-sustained iff, for every
variableV ∈N other thanC, if some ofV ’sN-parents take onmore default val-
ues, and V ’s other parents take on their actual values, then either V ’s value will
be unchanged, or V will take on a more default value, too.29 Then, it turns out

28. There are two cases to consider: either (i) c is default, or (ii) c∗ is default. In case (i), (c,c∗)
is default, and every variable in the network connecting C to E, N, takes on its one and only
default value (because the network is self-contained). So rule #4 requires us to trace out every
consequence of (c,c∗) until it is resolved into a single deviant consequence. But (c,c∗) cannot
be resolved into a single deviant consequence withinN, because this would require someR ∈N
having a deviant value whenC’s value is default. So, in tracing out the causal process emanating
from (c,c∗), we must be tracing out a dependence process within N. In case (ii), (c,c∗) is a
deviant consequence. And we can show (by induction) that, for every variable V ∈ N, either
V ’s value is default, or else the rules require us to include a deviant consequence for V in the
process. C clearly has this property (base case). Take anyV ∈N\{C}, and suppose that all of the
variables closer toC thanV have the property (inductive hypothesis). Then, all ofV ’sN-parents
either take on a default value or else have a deviant consequence included in the process. Suppose
V = v and that v isn’t default. Then, when we trace forward from all of the consequences for
V ’s parents which we’ve already included in the process, we will have set all of V ’s N-parents
to default values, and all of V ’s other parents to their actual values. So V ’s value will have to
become a default value, v∗ , v, and rule #3 will require us to include (v,v∗)V in the process. So
either V ’s value is default or else the rules require us to include a deviant consequence for V in
the process. Since every variable has exactly one default value, the only possible consequences
are deviant consequences. And so, whether we are in case (i) or case (ii), when we trace out
the causal process emanating from (c,c∗), we must include every possible consequence within
N and we are therefore tracing out a dependence process within N. As we learnt in footnote
16, there is a dependence process from (c,c∗)C to (e,e∗) (for some e∗ , e) if and only if E = e
counterfactually depends upon C = c, rather than c∗. So, within a self-contained network in
which every variable has exactly one default value, if either c or c∗ is default, then C = c, rather
than c∗, is a cause of E = e if and only if E = e counterfactually depends uponC = c, rather than
c∗.

29. More carefully: for any variable V ∈N, letQ be V ’s non-N-parents, and let P be V ’sN-parents.
Then, V has a structural equation of the form V := f (Q,P). Let q@ be the actual values of Q,
and let p and p∗ be two assignments of values to the variables in P such that no value in p∗ is
more deviant than the ‘corresponding’ value in p. Then, N is self-sustained iff, for every V ∈N,
except for C, f (q@,p∗) is either the same value as f (q@,p) or else f (q@,p∗) is more default
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how to trace a causal process

that, according to the theory from section 4, within a self-sustained network,
counterfactual dependence is both necessary and sufficient for causation. That
is, the theory validates the following variant of Hitchcock’s principle:30

Principle of Sufficient Reason (v2) If the causal network connecting C to E is
self-sustained, then C = c is a cause of E = e if and only if E = e coun-
terfactually depends upon C = c.

than f (q@,p).

30. First note that, within a self-sustained network, you will never be able to trace out a default
consequence from a collection of deviant consequences. For every V ∈ N \ {C}, making some
of V ’s N-parents more default either won’t change V ’s value, in which case rule #0 won’t allow
you to include a consequence for V in the process, or else it will make V ’s value more default, in
which case the consequence for V will be deviant. Now, either (i) (c,c∗)C is deviant or (ii) it is
default. If (i), then all of its consequences within N will be deviant, and rule #3 will require you
to trace all of them out. The same holds for all of the possible consequences of (c,c∗)C withinN,
and all of their possible consequences withinN, and so on. Since they are all deviant, all of their
possible consequences within N are deviant, too. So, within N, rule #3 will require you to trace
out a dependence process. On the other hand, if (ii), then rule #4 will require you to trace out
every possible consequence of (c,c∗)C until (c,c∗)C is resolved into a deviant consequence. If
(c,c∗)C doesn’t resolve into a deviant consequence withinN, then, in tracing the causal process
from (c,c∗)C , you will be tracing out a dependence process within N. If, on the other hand,
(c,c∗)C does resolve into a deviant consequence, (r, r∗)R, for some R ∈ N, then every possible
consequence of (r, r∗)R will be deviant (since N is self-sustained), and rule #3 will require that
all of these consequences be included. So, no matter whether (i) or (ii), in tracing out the causal
process from (c,c∗)C , you will be tracing out a dependence process within N. As we saw in
footnote 16, it is possible to trace out a dependence process from (c,c∗)C to (e,e∗)E if and only
if E = e, rather than e∗, counterfactually depends upon C = c, rather than c∗. So, within a self-
sustained network, counterfactual dependence is both necessary and sufficient for causation.
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