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Perfect set properties in models of ZF
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C. A. Di Prisco and F. C. Galindo (Caracas)

Abstract. We study several perfect set properties of the Baire space which follow
from the Ramsey property ω → (ω)ω. In particular we present some independence results
which complete the picture of how these perfect set properties relate to each other.

1. Introduction. We will study some partition properties of the spaces
ωω and [ω]ω defined in terms of different kinds of perfect sets. To state these
properties, we give some definitions. The set of finite sequences of natural
numbers is denoted by ω<ω, and ωω denotes the set of all infinite sequences
of natural numbers. The Baire space is the set ωω, with the product topology,
and 2ω := {f : f : ω → 2} with the product topology is the Cantor space.
Let [ω]ω be the family of all infinite subsets of ω; this set with the topology
inherited from 2ω is homeomorphic to the Baire space. For any A ∈ [ω]ω

we use [A]ω to denote the set of all infinite subsets of A. We now list the
partition properties we will be dealing with.

The Ramsey property : A set A ⊆ [ω]ω is Ramsey if there is A ∈ [ω]ω

such that [A]ω ⊆ A or [A]ω ∩ A = ∅. The Ramsey property, expressed by
the symbol ω → (ω)ω, is the statement that every A ⊆ [ω]ω is Ramsey.

The sublattice property : Let K,H ∈ [ω]ω be such that K ⊆ H and
H \ K is also infinite. We put [K,H] = {Y ⊆ ω : K ⊆ Y ⊆ H}. Clearly,
([K,H],⊆), is a sublattice of P(ω). The sublattice property [8] denoted by
ω → ((ω))ω is the following: For every A ⊆ [ω]ω there is a sublattice [K,H]
such that [K,H] ⊆ A or [K,H] ∩ A = ∅. This property has been called the
doughnut property in previous articles. The sublattices of the form [K,H]
as above are related to Silver forcing, for this reason a set A ⊆ [ω]ω for
which given a sublattice [K ′, H ′] there is a sublattice [K,H] ⊆ [K ′, H ′] such
that [K,H] ⊆ A or [K,H] ∩ A = ∅ is said to be Silver measurable (see
[3, 10]).
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The polarized partition property : The notation ω

ω
...

→
 n0

n1
...


means that for every F : ωω → 2 there is a sequence {Hi}i∈ω of finite sets
such that

• Hi ⊆ ω, |Hi| = ni,
• F is constant on

∏
i∈ωHi.

The Bernstein property : Recall that a non-empty subset of ωω is perfect
if it is closed and has no isolated points. The Bernstein property is the
statement: For every A ⊆ ωω there is a perfect set P ⊆ ωω contained in A
or disjoint from A. This property has been denoted ω → (perfect)ω (see [5]).

It is easy to verify that the Ramsey property implies both the sublat-
tice property and the polarized property, and that each of these two implies
the Bernstein property. The Axiom of Choice provides a counterexample to
the Bernstein property ([1]), and thus to all of the properties mentioned,
but they all hold in Solovay’s model ([14]). Solovay’s model is constructed
starting from a model with an inaccessible cardinal, and it is not known if
a model for the Ramsey property can be found without assuming the ex-
istence of such a cardinal. Nevertheless, the consistency of the sublattice
property with ZF + DC does not require this inaccessibility hypothesis (it
holds, for example, in Shelah’s model where every set of reals has the Baire
property [15]).

In this article we present two main results:
(1) There is a model of ZF, which we call N1, satisfying the sublattice

property where the polarized partition property does not hold. This model
is obtained, following Truss [17] and Feferman [9], by constructing L(A) in
a forcing extension of the constructible universe L with an infinite collection
A of Cohen generic reals. This answers a question of [7].

It is pertinent to mention that the notation L(X) has been used in the
literature to denote various ways to relativize the concept of constructibility.
Here, for any class X, we use L(X) to denote a relativized model which is
defined by setting L0(X) = ∅, Lλ(X) =

⋃
α<λ Lα(X) for limit ordinals λ,

and Lα+1(X) = the collection of all subsets of Lα(X) definable in Lα(X)
using ∈, parameters from Lα(X), and unary predicates for x ∩ Lα(X) for
all x ∈ X (see [2, 9]).

A model given in [8] shows that the polarized partition property does not
imply the sublattice property. Thus, neither of these properties implies the
other. It follows that the Bernstein property does not imply the polarized
partition property, which answers a question posed in [6, 5].
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(2) There is a model of ZF, which we call N2, where there is an ℵ1-
sequence of reals, and the sublattice property holds. In this model there is
a non-meager filter on ω, which implies that the Ramsey property fails.

We conclude that ℵ1 ≤ 2ω does not imply the existence of a Bernstein
set (where ℵ1 ≤ 2ω means that there is an injection of ℵ1 into the set of real
numbers). Recall that a set of reals is said to have the perfect set property
if it is either countable or contains a perfect subset. It is well known that
ℵ1 ≤ 2ω implies the existence of an uncountable set of real numbers without
a perfect subset, thus ℵ1 ≤ 2ω is a weak choice principle discriminating
between the perfect set property and the Bernstein property.

The paper is organized as follows. In Section 2 we describe the rela-
tivization L(A) with the properties mentioned above. Section 3 is devoted
to defining the modelN1 and the proof that it has the sublattice property but
not the polarized property. In Section 4 we define the model N2 and prove
that in this model the sublattice property holds, there is a non-meager filter
and, as a consequence, the Ramsey property does not hold.

These results together with [8] show that the only implications that hold
between these properties are the ones given in the following diagram.

Ramsey property

Sublattice Polarized
property property

Bernstein property

��� HHj

HHj ���

2. Relativized constructibility. The models L(A)

2.1. Definition of the models of the form L(A). Given a set A, the
class L(A) is defined by transfinite induction as follows:

Definition 1.

L0(A) := ∅,
Lα+1(A) := {X ⊆ Lα(A) : X is definable in the structure

(Lα(A),∈, 〈a ∩ Lα(A) : a ∈ A〉, 〈d : d ∈ Lα(A)〉)},
Lλ(A) :=

⋃
β∈λ

Lβ(A), λ limit,

L(A) :=
⋃

α∈Ord

Lα(A).

For the successor step, the expression “X is definable in the structure
(Lα(A),∈, 〈a ∩ Lα(A) : a ∈ A〉, 〈d : d ∈ Lα(A)〉)” implicitly requires that
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we have a first order language with identity with constants for the elements
of Lα(A), a unary relation symbol Pa for each set a ∩ Lα(A), a ∈ A, and
a binary relation symbol for ∈. As usual, this definition of L(A) can be
formalized in ZF, for example, by modifying appropriately the construction
of L in [11] as follows.

Definition 2. Let F be a set, n ∈ ω (n > 0) and i, j < n.

(a) Diag∈(F, n, i, j) := {s ∈ Fn : s(i) ∈ s(j)}.
(b) Diag={(F, n, i, j) := {s ∈ Fn : s(i) = s(j)}.
(c) Proj(F,R, n) := {s ∈ Fn : ∃t ∈ R (t�n = s)}.
(d) Pred(F, n, i, a) := {s ∈ Fn : s(i) ∈ a ∩ F} for every a ∈ A.
(e) By recursion on k ∈ ω, define Df ′A(k, F, n), simultaneously for all n:

(1) Df ′A(0, F, n) := {Diag∈(F, n, i, j) : i, j < n} ∪ {Diag=(F, n, i, j) :
i, j < n} ∪ {Pred(F, n, i, x) : x ∈ A}.

(2) Df ′A(k + 1, F, n) := Df ′A(k, F, n) ∪ {Fn − R : R ∈ Df ′A(k, F, n)}
∪ {R ∩ S : R,S ∈ Df ′A(k, F, n)} ∪ {Proj(F,R, n) : R ∈ Df ′A(k, F,
n+ 1)}.

(f) DfA(F, n) :=
⋃
k∈ω Df ′A(k, F, n).

Now, we define the operation DA(F ).
Let X be a set, and s = 〈s0, . . . , sm−1〉 and t = 〈t0, . . . , tn−1〉 two finite

sequences of elements of X. Denote by s a t the concatenation of s and t,
that is,

s a t := 〈s0, . . . , sm−1, t0, . . . , tn−1〉.

Definition 3. Given a set F define

DA(F ) := {X ⊆ F : ∃n ∈ ω ∃s ∈ Fn ∃R ∈ DfA(F, n+ 1)
(X = {z ∈ F : s a (z) ∈ R})}.

Finally,

Definition 4. L(A) is defined by transfinite induction as follows:

L0(A) := ∅,
Lα+1(A) := DA(Lα(A)),

Lλ(A) :=
⋃
β∈λ

Lβ(A), λ limit,

L(A) :=
⋃

α∈Ord

Lα(A).

For x ∈ L(A), the rank of x in L(A), rankL(A)(x), is the least ordinal
α such that x ∈ Lα+1(A). The rank of x in the universe V is denoted by
rank(x).
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Proposition 5. L(A) is a transitive model of ZF containing the ordi-
nals.

Proof. As for L (see, for example, [11]).

Proposition 6. If A is transitive, then A ⊆ L(A).

Proof. By induction on the rank of A in the universe V .

Thus, when A is transitive, L(A) is the smallest transitive model con-
taining A and the ordinals.

2.2. The model L(A) when A is an infinite set of Cohen reals.
Let M be a transitive model of ZFC, and let M [G] be the generic extension
obtained by using Cohen forcing to add κ ≥ ω generic reals, namely, the
poset

Cκ := {p : |p| < ω ∧ p ⊆ κ× ω × 2}, p ≤ q ↔ q ⊆ p.
Let β ∈ κ. Define

aβ := {m ∈ ω : ∃p ∈ G (p(β,m) = 1)}.
Each generic real aβ has a canonical name āβ = {(ň, p) : p(β, n) = 1}

and the set A = {aβ : β < κ} also has the canonical name {(āβ, 1) : β < κ}
We now consider L(A) computed in M [G] = M [{aβ : β < κ}]. We prove

that A 6∈ L(A), although each aβ is, of course, in L(A), and that the Axiom
of Choice does not hold in L(A).

Proposition 7. A 6∈ L(A).

Proof. Suppose towards a contradiction that A ∈ L(A), and let
rankL(A)(A) = α. Then

A = {z ∈ Lα(A) :

M [G] |= ϕLα(A)(z, b0, . . . , bn−1, aξ0 ∩ Lα(A), . . . , aξm−1 ∩ Lα(A))},
where bi ∈ Lα(A) for every i < n, and aξj ∈ A for every j < m.

Since aξj ∩ Lα(A) = aξj for every j ∈ m, each bi, i ∈ n, can be replaced
by its definition, and also Lα(A) can be replaced by its definition. Thus, the
formula ϕLα(A) can be rewritten to define A by a formula Φ of the form

A = {z ∈ Lα(A) : M [G] |= Φ(z, aδ0 , . . . , aδk−1
)},

where each aδj (j ∈ k) is a generic real.
Let aβ be a generic real different to aδ0 , . . . , aδk−1

. There is a condition
p ∈ G such that p 
 Φ(āβ, āδ0 , . . . , āδk−1

). We define an automorphism
πX : Cκ → Cκ as follows: let X = α × ω \ (({δ0, . . . , δk−1} × ω) ∪ dom(p)),
and put

πX(q)(γ, n) :=
{
q(γ, n) if (γ, n) 6∈ X,
1− q(γ, n) if (γ, n) ∈ X.
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Notice that p = πX(p). By symmetry,

πX(p) 
 Φ(π(āβ), āδ0 , . . . , āδk−1
),

since π(āδi) = āδi for every i ∈ k. This contradicts that Val(πX(āβ), G) is
not an element of A. In fact, Val(πX(āβ), G) 6= aβ since the intersection
aβ ∩ Val(πX(āβ), G) is finite. Moreover, Val(πX(āβ), G) is different from
each of the other generic reals, since for every γ 6= β, aγ ∩ aβ is infinite.

Proposition 8. The Axiom of Choice does not hold in L(A).

Proof. We show by contradiction that in L(A) the set of real numbers
cannot be well ordered.

Suppose, to reach a contradiction, that there is a well ordering ≤ of
the set of real numbers in L(A), and let rankL(A)(≤) = α. Then there is a
formula ϕ such that ≤ is the set of all (x, y) ∈ Lα(A) such that

M [G] |= ϕLα(A)(x, y, b0, . . . , bn−1, aξ0 ∩ Lα(A), . . . , aξm−1 ∩ Lα(A)),

where bi ∈ Lα(A) for every i < n, and aξj ∈ A for j < m.
As in the previous proof, the formula ϕLα(A) can be rewritten to obtain

a formula of the form
Φ(v, z, aδ0 , . . . , aδk−1

)

which defines the well ordering ≤ in M [G].
Consider the equivalence relation on 2ω ∩ L(A) defined by x ∼ y if and

only if ∃n ∀m ≥ n (x(m) = y(m)).
We will obtain a contradiction using an automorphism of the forcing

partial order which leaves ≤ fixed and modifies a certain generic real main-
taining its equivalence class.

Let aη0 a generic real different from the parameters in the formula Φ,
and let [aη0 ] be its equivalence class in L(A). Let x0 be the ≤-least element
of [aη0 ]. Then

∀y [y ⊆ ω ∧ ∃n ∀m ≥ n (y(m) = aη0(m))→ x0 ≤ y].

Let k0 ∈ ω be such that ∀k ≥ k0 (k ∈ x0 ↔ k ∈ aη0).
There is p ∈ G such that

(•) p 
 ∀y [y ⊆ ω̌ ∧ ∃n ∀m ≥ n (y(m) = āη0(m))→ ẋ0 ≤ y] ∧
∀k ≥ ǩ0 (k ∈ ẋ0 ↔ k ∈ āη0).

Here ẋ0 is a Cκ-name for x0.
Let l ≥ k0 (l ∈ ω) be such that ((η0, l), 1) 6∈ p and ((η0, l), 0) 6∈ p, and let

π : P → P be the automorphism induced by the function

π′ : α× ω × 2→ α× ω × 2

defined by π′((η0, l), 1) = ((η0, l), 0), π′((η0, l), 0) = ((η0, l), 1) and the iden-
tity elsewhere. Notice that p = π(p).
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By symmetry,

(◦) π(p) 
 ∀y [y ⊆ ω̌ ∧ ∃n ∀m ≥ n (y(m) = π(āη0)(m))→ π(ẋ0) ≤ y] ∧
∀k ≥ ǩ0 (k ∈ π(ẋ0)↔ k ∈ π(āη0)).

But this implies a contradiction, since

(1) π(āβ) = āβ for β 6= η0. In particular π fixes the parameters of the
formula that defines the well ordering ≤.

(2) l ∈ aη0 = Val(āη0 , G)↔ l 6∈ Val(π(āη0), G).
(3) If m 6= l, then m ∈ aη0 ↔ m ∈ Val(π(āη0), G).

Note that (2) and (3) imply that aη0 = Val(āη0 , G) and Val(π(āη0), G)
differ only on l, thus

(4) [aη0 ] = [Val(π(āη0), G)].
(5) x0 = Val(π(ẋ0), G), by the left parts of the propositions forced in

(•) and (◦) and by (4).
(6) x0 6= Val(π(ẋ0), G), by (2) and (3) together with the right parts of

the propositions forced in (•) and (◦).

Obviously, (5) and (6) contradict each other.

3. Independence of the sublattice property from the polarized
property. Let L[{aξ : ξ < ω1}] be a generic extension of L obtained by
adding ℵ1-many Cohen generic reals to L, and let N1 = L({aξ : ξ < ω1})
computed in the generic extension.

We will show that in N1 the property ω → ((ω))ω holds, but not the
polarized partition relation 

ω

ω
...

→


2
2
...

 .

This answers a question of [7].
In [8] it is established that the above displayed relation does not imply

ω → ((ω))ω. So, neither of these properties implies the other.
For s, t ∈ 2<ω, we write s v t when s is an initial segment of t, and s < t

when s is a proper initial segment of t. As usual, T ⊆ 2<ω is a tree if t ∈ T
and s < t implies s ∈ T . Given a tree T ⊆ 2<ω, we say T is uniform if for
every s, t ∈ T of the same length,

s a 0 ∈ T ↔ t a 0 ∈ T and s a 1 ∈ T ↔ t a 1 ∈ T.

A branch of a tree T ⊆ 2<ω is an infinite sequence c ∈ 2ω such that for
every n, c�n ∈ T . We denote by [T ] the set of branches of T . A tree T ⊆ 2<ω
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is perfect if for every t ∈ T there is s ∈ T with t v s for which s a 0 ∈ T
and s a 1 ∈ T .

It is clear that every perfect uniform tree T ⊆ 2<ω determines a sublat-
tice [A,B]. Namely, A = {n ∈ ω : ∀c ∈ [T ] (c(n) = 1)} and B = {n ∈ ω :
∃c ∈ [T ] (c(n) = 1)}

We will show that ω → ((ω))ω holds in N1. For this we prove a more
general result.

Theorem 9. Let M be a transitive model of ZFC, let M [{aξ : ξ < ω1}]
be the generic extension obtained using the forcing notion Cω1 which adds
ω1 Cohen reals, and let N = L({aξ : ξ < ω1}) computed in the generic
extension M [{aξ : ξ < ω1}]. In N the property ω → ((ω))ω holds.

Proof. Notice that if y ∈ M [{aξ : ξ < ω1}] is Cohen generic over M ,
then the forcing Cω1 can be factored as C×Cω1 , where C is Cohen forcing.
So,

M [{aξ : ξ < ω1}] = M [y][G′],

where G′ is Cω1-generic over M [y].
We will prove that if A ⊆ [ω]ω in N , then there is a sublattice [K,H] ∈ N

such that [K,H] ⊆ A or [K,H] ∩ A = ∅.
Let A ⊆ [ω]ω be such that A ∈ N , and let α = rankN (A). There is a

formula Φ(z, aδ0 , . . . , aδk−1
) that defines A.

By the factoring mentioned at the beginning of the proof, we can assume
that the parameters aδi (i < k) of the formula are in the base model M .

Let P be the forcing of finite uniform subtrees of 2<ω ordered by end
extension, thus, T2 ≤ T1 if and only if T1 ⊆ T2 and T2�height(T1) = T1.
Here height(T1) is the length of any branch of T1 (all branches of a finite
uniform tree have the same length).

Since P is countable, it is Cohen forcing, therefore there are P-generic
filters over M in M [{aξ : ξ < ω1}]. A P-generic over M is a perfect uniform
tree, thus it is a sublattice [A,B].

Claim 10. Every element of [A,B] is Cohen generic over M .

Proof of claim. Take x ∈ [A,B], and consider the filter generated by x,
{x�F : F ⊂ ω finite}. Let D be a dense open subset of the Cohen forcing
(in M). Define D′ to be the set of all finite uniform perfect trees with all
branches in D.

The following standard construction shows that D′ is dense open in
P. Given p ∈ P, a finite uniform binary tree, list the branches of p as
{b0, b1, . . . , bk}. Extend b0 to some b10 ∈ D so that b10 = b0 a c0. For j ≤ k
put b1j = bj a c0.

Continue extending b11 to b21 ∈ D with b21 = b11 a c1 = b1 a c0 a c1. For
all j ≤ k put b2j = b1j a c1. Notice that b20 ∈ D since D is open and b1. ∈ D.
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Suppose we have defined bm0 , b
m
1 , . . . , b

m
k for m < k so that for each j ≤ k,

bmj = bj a c1 a · · · a cm−1, and for j ≤ m, bmj ∈ D.
Extend now bmm+1 to bm+1

m+1 ∈ D such that bm+1
m+1 = bmm+1 a cm, and put

bm+1
j = bmj a cm for every j ≤ k.

This completes the inductive definition of bm0 , . . . , b
m
k for all m ≤ k.

Clearly, the tree q whose branches are bk0, . . . , b
k
k end-extends p, is uniform

and belongs to D′. So, there is T ∈ D′ such that T is in the P-generic filter
determined by [A,B], i.e. T < [A,B]. Thus there is k such that x�k is a
branch of T , and so x�k ∈ D. Claim

We will see that for some [A′, B′] ⊆ [A,B], we have [A′, B′] ⊆ A or
[A′, B′]∩A = ∅. Take x ∈ [A,B]. If M [{aξ : ξ < ω1}] � x ∈ A, then in M [x],
by the weak homogeneity of the partial order Cω1 , we have

∅ 
Cω1
x̌ ∈ A,

i.e., the empty condition forces x̌ ∈ A, in the forcing Cω1 , where x̌ is the
canonical name for x as element of the base model M [x].

Therefore, in M , there is a Cohen condition p such that

p 
 “∅ 
Cω1
Γ̌ ∈ A”.

Here Γ is the canonical name for the C-generic, and we admit a slight abuse
of notation by writing Γ̌ for the canonical name for the object named by Γ .

Consider [A,B]�p, i.e. the sublattice [A′, B′] = {y ∈ [A,B] : p < y}.
Notice that A′ differs from A just by a finite set, and the same for B′

and B. For every y ∈ [A′, B′], since p 
 “∅ 
Cω1
Γ̌ ∈ A”, we have

M [y] � “∅ 
Cω1
y̌ ∈ A”.

Since the forcing that extendsM [y] to the full extensionM [{aξ : ξ < ω1}]
is (isomorphic to) Cω1 , we have

M [{aξ : ξ < ω1}] = M [y][G′] � y ∈ A.

We proceed in the same fashion if M [{aξ : ξ < ω1}] � x /∈ A.
It remains to show that there is such a homogeneous sublattice [A,B] in

the model N . We can code finite uniform subtrees of 2<ω by finite sequences
of 0’s and 1’s, i.e. by elements of 2<ω, in a canonical way. Dense subsets of
the partial order P will correspond to dense subsets of the Cohen partial
order. This means that any Cohen generic in the extension codes a generic
sublattice. Therefore, we will have generic sublattices in the model N .

Notice that from this proof it follows that in the model N , every A ⊆
[ω]ω is Silver measurable, since we can reproduce this argument below any
arbitrary [C,D].

This argument is similar to the one used in [3] for projective partitions.



258 C. A. Di Prisco and F. C. Galindo

Corollary 11. In the model N = L({aξ : ξ < ω1}) of the previous
theorem, every set A ⊆ [ω]ω contains or is disjoint from a perfect subset of
[ω]ω, i.e., there are no Bernstein sets in this model.

Definition 12. LetM be a transitive model of ZFC, andM [G] a generic
extension. A real x ∈ ωω is eventually different if for every y ∈ ωω∩M there
is k ∈ ω such that x(i) 6= y(i) for every i ≥ k.

Observation. Let M be a transitive model of ZFC, and let M [g] be a
Cohen extension. Then the Cohen generic real g is not eventually different.
This is because given y ∈ M and k ∈ ω, the set Dk = {p : ∃i ≥ k (p(i) =
y(i))} is dense. Moreover, for every y ∈ M and k ∈ ω, the set Ek = {p :
∃i ≥ k (p(i) = y(i) and p(i+ 1) = y(i+ 1))} is also dense, and therefore, for
every y ∈M , g(i) = y(i) and g(i+ 1) = y(i+ 1) for infinitely many i.

Observation. In a Cohen extension M [g] no eventually different reals
are added. To see this, let r ∈ ωω be such that r ∈ M [g] \M , and let ṙ
be a C-name for r in M . Enumerate the conditions of Cohen forcing C by
p0, p1, p2, . . . . Define x ∈ ωω by

x(n) := min{k : ∃q ≤ pn (q 
 ṙ(ň) = ǩ)}.
Then x ∈ M , and we will see that {i ∈ ω : r(i) = x(i)} is infinite. Suppose
not; then ∃n0 ∈ ω [∀n ≥ n0 (r(n) 6= x(n))]. By the Forcing Theorem there
is p such that p 
 ∀n ≥ ď (ṙ(n) 6= x̌(n)). Pick m > d such that pm ≤ p.
If x(m) = k, then (by definition) ∃q ≤ pm [q 
 ṙ(m̌) = ǩ]. Therefore
q 
 ṙ(m̌) = x̌(m̌), which is a contradiction.

Once we know that ∀x ∈ M [g] ∃y ∈ M ({i ∈ ω : x(i) = y(i)} is in-
finite), it is easy to see that for all x ∈ M [g] there is y ∈ M such that
{i ∈ ω : x(i) = y(i) ∧ x(i + 1) = y(i + 1)} is infinite: Let r1 ∈ ωω be such
that r1 ∈M [g]\M . Then consider the real r2 which codifies the consecutive
pairs of r1. Apply to r2 the previous result to find in M a real r3 such that
{i ∈ ω : r2(i) = r3(i)} is infinite. Decoding from r3 we obtain a real r∗3 in
M such that the set {i ∈ ω : r1(i) = r∗3(i)∧ r1(i+ 1) = r∗3(i+ 1)} is infinite.

Finally observe that if M [G] is obtained by adding ω1 many Cohen reals,
then no eventually different reals are added, because every new real is added
by countably many Cohen generic reals ([12]), thus by one Cohen generic
real.

Theorem 13 (Brendle). The polarized partition relation
ω

ω
...

→


2
2
...


fails in N1.
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Recall that N1 is the model obtained adding ω1 many Cohen reals to L,
and then computing L({aξ : ξ < ω1}) in the generic extension.

Proof. Since L[G] does not contain eventually different reals,

∀x ∈ L[G] ∃y ∈ L ({i ∈ ω : x(i) = y(i)} is infinite).

Moreover, for every x ∈ L[G], there is y ∈ L such that the set

{i ∈ ω : x(i) = y(i) and x(i+ 1) = y(i+ 1)}
is infinite, as observed in the paragraphs preceding the statement of the
theorem.

For every x, there is a first y ∈ L, in the Σ1
2 ordering of the reals in L,

for which {i ∈ ω : x(i) = y(i) and x(i+ 1) = y(i+ 1)} is infinite. We call it
f(x). Let ix be the first i such that x(i) = f(x)(i).

Define c : ωω → 2 by c(x) = 0 if and only if ix is even.
We show that no product of pairs is monochromatic for c. In L[G], let

{Hi}i∈ω be a sequence of pairs of integers, and let x ∈
∏
i∈ωHi. Notice that

we can assume that x(ix) = f(x)(ix) and x(ix + 1) = f(x)(ix + 1), since we
can modify a finite number of values of x and obtain another member of the
product with the same f(x) satisfying this requirement.

Now, modifying the ixth value of x we obtain x′ ∈
∏
i∈ωHi such that

c(x) 6= c(x′).
The coloring c is ∆1

2, since c−1{0} and c−1{1} are both Π1
2. To see this,

note that c(x) = 0 if and only if the first i such that x(i) = f(x)(i) is even;
and the function f is defined by a Π1

2 formula: given x, z = f(x) if and only
if ∀y (y ≤L z ⇒ {i : z(i) = x(i) and z(i+ 1) = x(i+ 1)} is finite).

We see that M [G] has the property that for every sequence {Hi}i∈ω of
pairs of natural numbers, there are x, y ∈

∏
i∈ωHi such that c(x) 6= c(y).

Since c is definable, it is in N1 = L({aξ : ξ < ω1}), and in this model the
above property holds. Thus the polarized partition property does not hold
in N1.

Corollary 14. The Bernstein property ω → (perfect)ω does not imply
ω

ω
...

→


2
2
...

 .

Neither of the properties ω → ((ω))ω and
ω

ω
...

→


2
2
...


implies the other.
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Proof. The model N1 considered above satisfies ω → ((ω))ω (and there-
fore ω → (perfect)ω) and fails the polarized partition property. In [8] it is
shown that a selective ultrafilter can be added generically to a Solovay model
L(R) to obtain a model L(R)[U ] in which the polarized partition property
holds but ω → ((ω))ω does not.

Clearly, 
ω

ω
...

→


2
2
...

 implies ω → (perfect)ω,

since a product of the form
∏
i∈ωHi, with {i ∈ ω : |Hi| ≥ 2} infinite, is a

perfect set. But the previous results show that the reverse implication does
not hold, considering that

ω → ((ω))ω implies ω → (perfect)ω,

since any [K,H] is a perfect subset of [ω]ω. This answers a question in [5].

4. A model with an ℵ1-sequence of reals. We will now describe a
model of the form L(A) for a certain set A, where there is a non-meager filter
on ω, there is an ℵ1-sequence of real numbers, and the sublattice property
holds.

Let L[{aβ : β < ω2}] be a generic extension of L obtained by forcing
with the Cohen order Cℵ2 adding ℵ2 generic reals. Let A = {〈aξ : ξ ∈ α〉 :
α < ℵ2}∪ {aξ : ξ < ℵ2}, and consider the model N2 = L(A) built in L[{aβ :
β < ω2}]. It can be shown, just as in Section 2, that A 6∈ N2 and N2 does not
satisfy the Axiom of Choice. Clearly, in N2 there is an ℵ1-sequence of reals.

Theorem 15. In N2 there is a non-meager filter on ω.

Proof. Consider the filter F on ω generated in N2 by {aξ : ξ < ℵ1} and
the cofinite sets. We show that F is non-meager. Let {Ti : i ∈ ω} be a se-
quence of nowhere dense closed sets, and suppose, aiming for a contradiction,
that

⋃
i∈ω Ti covers F .

Each Ti is in a model of the form L[G�B] where B ⊆ ℵ2 is countable,
G�B := {p ∈ CB : p ∈ G}, where CB := {p ∈ Cℵ2 : dom(p) ⊆ B × ω}. This
is because each Ti can be coded by a real. Moreover, there is a countable
set D of generic reals such that {Ti : i ∈ ω}, and therefore F , belongs to
L[G�D]. But then there is a generic real aξ (in N2), ξ < ℵ1, which is generic
over L[G�D]. This is a contradiction since aξ is an element of F .

Theorem 16. The model N2 has the sublattice property ω → ((ω))ω.

Proof. That the property ω → ((ω))ω holds in N2 is shown just as for
N1 (see proof of Theorem 9).
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This shows that although ω → ((ω))ω contradicts the existence of a non-
principal ultrafilter on ω, it is consistent with the existence of a non-meager
filter on that set.

If ℵ1 ≤ 2ω, there is an uncountable set of real numbers without perfect
subsets. This contrasts with the following corollary.

Corollary 17. ℵ1 ≤ 2ω does not imply the existence of a Bernstein
set.

Proof. By Theorem 16 and the fact that ω → ((ω))ω implies ω →
(perfect)ω.

It is known that the existence of a non-principal ultrafilter on ω provides
a counterexample to ω → (ω)ω [13]. In [4] a model is given where there is a
non-principal ultrafilter on ω and the Bernstein property holds. A stronger
result was obtained in [8], with a model for a non-principal ultrafilter on
ω and the polarized property. We end this section by observing that the
existence of a non-meager filter on ω contradicts ω → (ω)ω (see [13]).

Lemma 18 (Jalali-Naini and Talagrand, see [16]). The following are
equivalent for every non-principal filter F on ω:

(1) F is non-meager.
(2) For every infinite sequence n0 < n1 < · · · of natural numbers there

is an element C of F such that {i ∈ ω : C∩[ni, ni+1) = ∅} is infinite.

Theorem 19. If there is a non-meager filter on ω then ω 9 (ω)ω.

Proof. Let F be a non-meager filter on ω containing the cofinite sets.
Define c : [ω]ω → 2 as follows. If A = {n0, n1, . . . } is listed increasingly, then
c(A) = 0 if and only if

⋃
i∈ω[n2i, n2i+1) belongs to F .

No set of the form [A]ω is homogeneous for c. To see this, let A =
{n0, n1, . . . } be listed increasingly. By Lemma 18 there is a set C ∈ F and
an infinite set I ⊆ ω such that C is disjoint from the interval [ni, ni+1) if
and only if i ∈ I. Let B ⊆ A be obtained inductively as follows. Let ni0 = n0

and, if nij has been defined, let ij+1 be the least m > ij such that nm ∈ I
if and only if nij /∈ I. Put B = {nij : j ∈ ω}.

Now, c takes different values in B and B \ {min(B)}, because C is con-
tained in the union of the even intervals determined byB if and only if it is al-
most contained in the union of the odd intervals determined by B\{min(B)},
and vice versa, C is contained in the union of the odd intervals determined
by B if and only if it is almost contained in the union of the even intervals
determined by B \ {min(B)}.
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