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Abstract

Proof-theoretic methods are developed and exploited to establish properties of the
variety of lattice-ordered groups. In particular, a hypersequent calculus with a
cut rule is used to provide an alternative syntactic proof of the generation of the
variety by the lattice-ordered group of automorphisms of the real number chain.
Completeness is also established for an analytic (cut-free) hypersequent calculus
using cut elimination and it is proved that the equational theory of the variety is
co-NP complete.
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1. Introduction

A lattice-ordered group (`-group) is an algebraic structure

(L,∧,∨, ·, −1, 1)

such that (L,∧,∨) is a lattice, (L, ·, −1, 1) is a group, and · preserves the order in
both arguments; i.e., a ≤ b implies a · c ≤ b · c and c · a ≤ c · b for all a, b, c ∈ L.
It follows also from this definition that the lattice (L,∧,∨) is distributive and that
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1 ≤ a ∨ a−1 for all a ∈ L. We refer to [1] for proofs and further standard facts
about this class of structures.

Commutative `-groups include the real, rational, and integer numbers with
the standard total order and addition. For non-commutative examples, consider a
chain (totally-ordered set) Ω and denote by Aut(Ω) the set of all order-preserving
bijections on Ω. Then Aut(Ω) constitutes an `-group Aut(Ω) under coordinate-
wise lattice operations, functional composition, and functional inverse. It was
proved by Holland in [10] that the variety of `-groupsLG is generated by Aut(R),
where R is the real number chain, or indeed by any Aut(Ω), where Ω is an n-
transitive chain for all n (i.e., for any two n-tuples of elements of Ω there is a
bijection that maps the first tuple to the second). The standard proof relies on
Holland’s embedding theorem, which states, analogously to Cayley’s theorem for
groups, that every `-group embeds into an `-group Aut(Ω) for some chain Ω [9].
Although not every `-group embeds into Aut(R), each identity that fails in some
`-group fails, by the embedding theorem, in some automorphism `-group, and
a simple argument then shows that the identity must also fail in Aut(R). This
generation result for LG was subsequently exploited by Holland and McCleary to
provide an algorithm for checking if an identity is valid in all `-groups [11].

The first main contribution of this paper is a new syntactic (and first axiom
of choice free) proof that Aut(R) generates the variety LG of `-groups. A proof
system is defined in a one-sided hypersequent framework such that derivability of
a hypersequent (interpreted as a disjunction of group terms) implies the validity
of a corresponding identity in all `-groups. A rule is then added to the system and
it is shown, following closely the Holland-McCleary algorithm of [11], that this
augmented system derives all identities (rewritten in a certain form) that are valid
in Aut(R). Finally, it is proved syntactically that applications of this rule can be
eliminated from derivations. Hence an identity is valid in Aut(R) if and only if it
is valid in all `-groups, and so, by Birkhoff’s variety theorem, Aut(R) generates
LG. This proof illustrates the usefulness of proof-theoretic methods for tackling
algebraic problems, and is similar to proofs of generation of varieties by dense
chains via density elimination (see [4, 14]) or of properties such as interpolation
and amalgamation via cut elimination (see, e.g., [7, 18]).

The second main contribution is the introduction of a first analytic (cut-free)
proof calculus for `-groups. In contrast to the well-developed proof theory for
well-behaved families of varieties of residuated lattices (which provide algebraic
semantics for substructural logics, see [2,3,7,14,17,18]), there has been relatively
little success in obtaining cut-free systems for algebraic structures related to `-
groups. Hypersequent calculi have been defined for abelian `-groups and related
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varieties in [13, 15–17], but a calculus for the general non-commutative case has
until now been lacking. The virtue of such a calculus is illustrated by the fact
that we obtain not only the known decidability result for the equational theory of
`-groups, but also, via cut elimination, a (first) procedure for obtaining proofs of
valid `-group identities in equational logic (i.e., using only defining identities of
LG). More generally, the analytic hypersequent calculus presented here provides
a crucial first step towards developing a uniform proof theory for the wide range of
algebras and logics related in some way to `-groups: in particular, MV-algebras
and GMV-algebras (which may be viewed as intervals in abelian `-groups [20]
and `-groups [6, 8], respectively) and cancellative residuated lattices (which may
be viewed as `-groups with a co-nucleus [19]).

The final contribution of the paper is a first proof that the equational theory of
`-groups is co-NP complete, matching the complexity of the equational theories
of both abelian `-groups [21] and distributive lattices [12].

2. Preliminaries

Let us call a variable x and its inverse x−1 literals. Using De Morgan identities
valid in all `-groups, we consider only normalized `-group terms s, t built from
literals and the operation symbols 1, ∧, ∨, and ·, with an inductively defined
inverse:

1 = 1 (s · t) = t · s
x = x−1 (s ∧ t) = s ∨ t

x−1 = x (s ∨ t) = s ∧ t.

As usual we write st for s · t, omit brackets in group terms (built using literals, ·,
and 1), and define t0 = 1 and tn+1 = t · tn for n ∈ N. We also write s ≤ t as an
abbreviation for the identity s ∧ t ≈ s.

Given a class of `-groupsK, we letK |= s ≈ t denote that the `-group identity
s ≈ t is valid in all members of K. Using standard distributivity laws in `-groups,
every `-group term t is equivalent either to 1 or to a meet of joins of group terms
(see [1] for basic facts about `-groups). That is, for some index sets I and Ji 6= ∅
(i ∈ I) and group terms tij , assuming also

∧
∅ = 1,

LG |= t ≈
∧
i∈I

∨
j∈Ji

tij.

Moreover, for any `-group terms s, t,

LG |= s ≈ t ⇔ LG |= 1 ≤ (st) ∧ (ts),
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and for any finite family of `-group terms (ti)i∈I ,

LG |= 1 ≤
∧
i∈I

ti ⇔ LG |= 1 ≤ ti for each i ∈ I.

Hence checking the validity of `-group identities amounts to checking the validity
of inequations of the form 1 ≤ t where t is a join of group terms. Following proof-
theoretic treatments of related classes of algebras (see [2, 3, 13–18]), we present
such terms and identities here in the framework of sequents and hypersequents.

An `-sequent, denoted by Γ, ∆, Π, or Σ, is a finite (possibly empty) sequence
of `-group terms, written

(t1, . . . , tn),

and interpreted as an `-group term by

I() = 1 and I(t1, . . . , tn) = t1 · . . . · tn.

The inverse of an `-sequent is defined as

(t1, . . . , tn) = (tn, . . . , t1).

For `-sequents Γ and ∆, we denote their concatenation by (Γ,∆) or simply by
Γ,∆. An `-sequent will be called basic if it is a sequence of literals, and a basic
`-sequent Γ will be called group valid if 1 ≈ I(Γ) is valid in all groups.

An `-hypersequent, denoted by G orH, is a finite (possibly empty) multiset of
`-sequents, written

Γ1 | . . . | Γn,

and interpreted, when n ≥ 1, as an `-group term by

I(Γ1 | . . . | Γn) = I(Γ1) ∨ . . . ∨ I(Γn).

An `-hypersequent G will be called basic if it contains only basic `-sequents. It
will be called valid in an `-group L if L |= 1 ≤ I(G), and `-valid if it is valid in
all `-groups.

An `-hypersequent rule is the set of its instances, each instance consisting of
a finite set of `-hypersequents called the premises and an `-hypersequent called
the conclusion of the instance. Typically, such rules are written schematically
using s, t to denote arbitrary `-terms and Γ,Π,Σ,∆ and G,H to denote arbitrary
`-sequents and `-hypersequents, respectively. An `-hypersequent calculus GL is a
set of `-hypersequent rules. A GL-derivation of an `-hypersequent G from a set
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G | Γ (GV) G | ∆ | ∆
(EM)

Γ group valid

G | Γ,∆ G | ∆,Σ

G | Γ,Σ (CUT) G
G | H (EW)

G | H | H
G | H (EC)

Figure 1: The basic `-hypersequent calculus G`

of `-hypersequents S is a finite tree of `-hypersequents with root G such that each
node is either in S or the node and its parents form an instance of a rule of GL. In
this case, we write S `GL G and say that G is GL-derivable from S.

A rule is said to be GL-derivable if for each of its instances, the conclusion
is GL-derivable from the premises, and GL-admissible if for each of its instances,
whenever the premises are GL-derivable, the conclusion is GL-derivable. A rule
will also be called `-sound if for each of its instances, whenever the premises
are `-valid, the conclusion is `-valid, and `-invertible if for each of its instances,
whenever the conclusion is `-valid, the premises are `-valid.

3. A Basic Calculus

Figure 1 presents a proof system G` for basic `-hypersequents, where (GV)
stands for group valid, (EM) for excluded middle, (EW) for external weakening,
and (EC) for external contraction. Occurrences of the sequents Γ in (GV), ∆ and
∆ in (EM), (Γ,∆), (∆,Σ), and (Γ,Σ) in (CUT), and the sequents in H in (EW)
and (EC) will be called active in applications of these rules in G`-derivations.

We remark that (EW) is useful for constructing G`-derivations but is not strictly
necessary: that is, (EW) is admissible in the calculus G` without (EW). This is
because instances of (EW) can be permuted upwards over instances of any other
rule in a derivation, while its effect on the axioms is subsumed by the form of
the axioms themselves. Note also that we could avoid using (EC) by redefining
`-hypersequents as finite sets of `-sequents.

To better understand G`, let us consider some useful G`-derivable rules.
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Lemma 3.1. The following rules are G`-derivable:

G | Γ G | Σ
G | Γ,Σ (MIX)

G | Γ,∆
G | Γ | ∆ (SPLIT)

G | Γ,Σ
G | Γ,∆,∆,Σ

(SIMP) G | Γ,Σ G | Π,∆

G | Γ,∆ | Π,Σ
(COM)

Proof. Observe first that (MIX) consists of instances of (CUT) where ∆ = (). For
(SPLIT) and (SIMP), we make use of G`-derivations:

G | Γ,∆
G | Γ,∆ | ∆ (EW) G | ∆ | ∆

(EM)

G | Γ | ∆ (CUT)
G | Γ,Σ G | Σ,∆,∆,Σ

(GV)

G | Γ,∆,∆,Σ
(CUT)

The following G`-derivation takes care of (COM):

G | Π,∆

G | Γ,∆ | Π,∆
(EW)

G | Γ,Σ
G | Γ,∆,∆,Σ

(SIMP)

G | Γ,∆ | ∆,Σ
(SPLIT)

G | Γ,∆ | Π,Σ
(CUT)

Example 3.2. We illustrate G` and some G`-derivable rules in the following
derivation of an `-hypersequent corresponding to the inequation 1 ≤ xx∨yy∨xy:

x, x, x, x | y, y (GV)

x, x, x | y, y | x (SPLIT)

x, x | y, y | x | x (SPLIT)

x, x | y, y | x (EC)

x, x | y, y, y, y (GV)

x, x | y, y, y | y (SPLIT)

x, x | y, y | y | y (SPLIT)

x, x | y, y | y (EC)

x, x | y, y | x, y (MIX)

We show now that G` derives only `-valid basic `-hypersequents.

Lemma 3.3. The following (quasi-)identities are valid in all `-groups:

(i) xy ∧ 1 ≤ x ∨ y

(ii) (1 ≤ xy ∨ z) ⇒ (1 ≤ x ∨ y ∨ z)

(iii) (1 ≤ y ∨ x) ⇒ 1 ≤ y ∨ x2

(iv) (1 ≤ x ∨ y) & (1 ≤ x ∨ z) ⇒ 1 ≤ x ∨ yz.
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Proof. We show that each of these (quasi-)identities holds in any `-group L with
arbitrary elements a, b, c ∈ L:

(i) Note first that 1 ≤ b(ab)−1 ∨ a1 because 1 ≤ a−1 ∨ a. So also 1 ≤
(a ∨ b)(ab)−1 ∨ (a ∨ b)1. By distributivity, 1 ≤ (a ∨ b)((ab)−1 ∨ 1). Hence
ab ∧ 1 = ((ab)−1 ∨ 1)−1 ≤ a ∨ b.

(ii) From (i), (ab∧ 1)∨ c ≤ a∨ b∨ c. If 1 ≤ ab∨ c, then by distributivity also
1 ≤ (ab ∧ 1) ∨ c, so 1 ≤ a ∨ b ∨ c as required.

(iii) If 1 ≤ a∨b, then also 1 ≤ a∨b(a∨b). I.e., 1 ≤ a∨ba∨b2 and hence 1 ≤
a∨(ba∧1)∨b2, by distributivity. Note that (ba∧1)−1(a∨b2) = (1∨(a−1b−1))(a∨
b2) = a ∨ b2 ∨ a−1b−1a ∨ a−1b. Using 1 ≤ 1 ∨ b2 = (a(a−1b−1a)a−1b) ∨ b2, (ii)
yields 1 ≤ (ba ∧ 1)−1(a ∨ b2). I.e., ba ∧ 1 ≤ a ∨ b2. So 1 ≤ a ∨ b2.

(iv) If 1 ≤ a ∨ b and 1 ≤ a ∨ c, then also 1 ≤ a ∨ (b ∧ c). But then by (iii),
1 ≤ a ∨ (b ∧ c)2 and from (b ∧ c)2 ≤ bc follows 1 ≤ a ∨ bc as required.

Lemma 3.4. If a basic `-hypersequent G is G`-derivable, then it is `-valid.

Proof. By induction on the height of a G`-derivation of G. The base case follows
because in all `-groups, 1 ≤ 1∨b and 1 ≤ a∨b∨b−1. For the induction step, if the
last application of a rule is (EW) or (EC), then we are done because 1 ≤ a implies
1 ≤ a ∨ b and 1 ≤ a ∨ a implies 1 ≤ a in all `-groups. If the last application of
a rule is (CUT), then we use the fact that if 1 ≤ a ∨ bc and 1 ≤ a ∨ c−1d, then by
Lemma 3.3 (iv), 1 ≤ a ∨ bcc−1d = a ∨ bd.

4. An Augmented Basic Calculus

We now define G`∗ as the extension of G` with the following rule for basic
`-hypersequents:

G | ∆ G | ∆
G (∗)

where ∆ is not group valid.

The condition that ∆ is not group valid is clearly necessary; otherwise, ∆ and
∆ are both group valid and the premises are derivable using (GV) for any basic
`-hypersequent G. Moreover, it is not at all obvious that the rule is `-sound. In
particular, it is not true that in any `-group, if 1 ≤ a ∨ b and 1 ≤ a ∨ b−1 with
b 6= 1, then 1 ≤ a. Consider, e.g., the direct product of the additive `-group of the
integers Z × Z where (0, 0) ≤ (0,−1) ∨ (1, 0) and (0, 0) ≤ (0,−1) ∨ (−1, 0),
but (0, 0) 6≤ (0,−1). Observe, however, that for soundness, we require something
weaker: namely, that for any basic `-hypersequent G and basic `-sequent ∆ that
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is not valid in all groups, if G | ∆ and G | ∆ are both valid in all `-groups,
then G is valid in all `-groups. Equivalently, for any n and for any elements
a1, . . . , an, b of the ω-generated free group interpreted in the corresponding free
`-group, whenever 1 ≤ a1 ∨ . . . ∨ an ∨ b and 1 ≤ a1 ∨ . . . ∨ an ∨ b−1, either
1 ≤ a1 ∨ . . . ∨ an or 1 = b.

First, we establish the completeness of the augmented calculus with respect to
Aut(R): that is, we show that any basic `-hypersequent that is valid in Aut(R) is
G`∗-derivable. Let us say that a set S of inequations of the form x > y where x, y
are variables from some set X is chain-consistent if S is satisfiable as a set of first-
order formulas in the structure consisting of R with the standard order; otherwise
S is said to be chain-inconsistent. It follows by an easy induction on the number
of distinct variables occurring in S that S is chain-inconsistent if and only if there
exists a sequence z1, z2, . . . , zn of variables from X such that (zi > zi+1) ∈ S for
1 ≤ i ≤ n − 1 and (zn > z1) ∈ S. The base case is trivial. For the induction
step, eliminate a variable x (adding y > z whenever y > x and x > z are in
S, and then remove all inequations containing an occurrence of x) to obtain a set
of inequations S ′ that is chain-consistent if and only if S is chain-consistent; the
desired result then follows using the induction hypothesis applied to S ′.

Observe now that Γ ∼ ∆ if and only if (Γ,∆) is group valid defines an equiv-
alence relation (namely, equivalence in groups) on the set of basic `-sequents. Let
[Γ] = {∆ : (Γ,∆) is group valid} denote the corresponding equivalence classes.
For each such equivalence class [Γ], we define a fresh variable a[Γ]. We will say
that a basic `-hypersequent G is chain-inconsistent if there exist (Γi,∆i) ∈ G for
1 ≤ i ≤ n such that {a[∆i] > a[Γi] : 1 ≤ i ≤ n} is a chain-inconsistent set of
inequations; otherwise G is said to be chain-consistent.

Lemma 4.1. If G is chain-inconsistent, then G is G`∗-derivable.

Proof. Suppose that (Γi,∆i) ∈ G for 1 ≤ i ≤ n where {a[∆i] > a[Γi] : 1 ≤ i ≤ n}
is a chain-inconsistent set of inequations. We prove the lemma by induction on n.

For the base case n = 1, we have a[Γ1] = a[∆1], which means also that [Γ1] =
[∆1]. So Γ1,∆1 is group valid and G is G`∗-derivable using (GV).

For the induction step, {a[∆i] > a[Γi] : 1 ≤ i ≤ n} is chain-inconsistent and
hence we may assume without loss of generality that a[Γ1] = a[∆2]. So Γ1,∆2 is
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group valid. Then the required G`∗-derivation ends with

G | Γ1,∆2

(GV)
...

G | Γ2,∆1

G | Γ1,∆1 | Γ2,∆2

(COM)

G | Γ1,∆1

(EC)

G (EC)

where the right premise is G`∗-derivable using the fact that {a[∆1] > a[Γ2]} ∪
{a[∆i] > a[Γi] : 3 ≤ i ≤ n} is a chain-inconsistent set of inequations and applying
the induction hypothesis.

Observe now that an `-hypersequent G containing variables x1, . . . , xn is valid
in Aut(R) if and only if for every n-tuple ~f of functions in Aut(R),

id ≤
∨
{I(Γ)Aut(R)(~f ) : Γ ∈ G},

where id is the identity function on R. Moreover, this inequation holds in Aut(R)

if and only if for every point p ∈ R, the value of at least one I(Γ)Aut(R)(~f ) at p
is greater than or equal to p. Equivalently, there is no point p ∈ R such that the
value of every I(Γ)Aut(R)(~f ) at p is strictly less than p.

Lemma 4.2. If G is valid in Aut(R), then G is G`∗-derivable.

Proof. Suppose that Aut(R) |= G, and consider the set of equivalence classes of
initial subsequences of sequents in G:

is(G) = {[Γ] : (Γ,∆) ∈ G}.

We apply the rule (∗) backwards finitely many times to G using a representative
sequent Γ,∆ of [Γ,∆] for all distinct [Γ], [∆] ∈ is(G). We will show that every
leaf G | H resulting from this process is chain-inconsistent and therefore G`∗-
derivable. It follows that G is also G`∗-derivable.

Let us suppose for a contradiction that G | H is chain-consistent. Then for
each [Γ] ∈ is(G) we can assign a[Γ] to a real number r[Γ] such that for any distinct
[Γ], [∆] ∈ is(G), either (Γ,∆) ∈ H and r[∆] > r[Γ] or (∆,Γ) ∈ H and r[Γ] > r[∆].
Moreover, we may assume that r[] > r[Γ] for each Γ ∈ G.

Now for each variable x we define a map x̂ that sends r[Γ] to r[Γ,x] when
[Γ], [Γ, x] ∈ is(G) and r[∆,x] to r[∆] when [∆, x], [∆] ∈ is(G).
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Let us check that x̂ does not violate the order-preserving condition. It suf-
fices, by Lemma 4.1, to show that if x̂ violates the condition, then G | H is G`∗-
derivable. First suppose that x̂ maps r[Γ] to r[Γ,x] and r[∆] to r[∆,x], but r[∆] > r[Γ]

and r[Γ,x] > r[∆,x]. ThenH contains sequents in [Γ,∆] and [∆, x, x,Γ], and is G`∗-
derivable using (SPLIT) and (GV). Alternatively, suppose that x̂ maps r[Γ] to r[Γ,x]

and r[∆,x] to r[∆], but r[∆,x] > r[Γ] and r[Γ,x] > r[∆]. Then H contains sequents in
[Γ, x,∆] and [∆, x,Γ], and is G`∗-derivable using (SPLIT) and (GV). Other cases
are very similar.

Finally, we extend each x̂ to a function in Aut(R) (for example, linearly be-
tween the given points). Consider now each Γ ∈ G and its evaluation as a function

ˆI(Γ) in Aut(R). This function maps r[] ∈ R to r[Γ] ∈ R where r[] > r[Γ]. But this
contradicts the assumption that G is valid in Aut(R), so we are done.

The proof of the previous lemma follows quite closely the argument for the
adequacy of the Holland-McCleary algorithm given in [11]. For readers familiar
with this algorithm, recall that a basic `-hypersequent G corresponds to a disjunc-
tion of group terms that, for simplicity, we may assume are already in reduced
form. We consider, in both cases, the initial subterms of these group terms and
all the ways that they can be totally ordered. The Holland-McCleary algorithm
searches for a failure or inconsistency, and hypersequents are interpreted accord-
ingly as conjunctions. Likewise, a sequent Γ in a hypersequent is not interpreted
as the inequality 1 ≤ Γ, but rather as the strict inequality 1 > Γ. In essence,
hypersequents are viewed as sets/conjunctions of strict inequalities. The Holland-
McCleary algorithm automatically closes each such set under transitivity and, in
the case where the set is chain-consistent, this provides a total ordering of the
group terms involved. Such a set is called a diagram if it is further equipped
with labeled arrows: for example, we have an arrow with label x for each pair of
group terms (Γ,Γx) in the diagram. Moreover, in each step of the algorithm, new
elements of is(G) are inserted in the possible relative positions of the diagram,
creating new inequalities. A backward application of the rule (∗) has the same
effect, but without closing under transitivity at each step; however, exhaustive ap-
plications of (∗) to is(G), as described in the above proof, subsumes transitivity
closure. Finally, checking whether x̂ violates the order-preserving condition cor-
responds to the Holland-McCleary algorithm checking whether arrows with label
x cross. Here, branches involving inconsistency in the order give rise to derivable
hypersequents.
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5. A Generation Theorem

We have shown that the calculus G` derives only `-valid basic `-hypersequents
(Lemma 3.4) and that the augmented calculus G`∗ derives all basic `-hypersequents
valid in Aut(R) (Lemma 4.2). To complete the circle and show that derivability
in these calculi, `-validity, and validity in Aut(R) all coincide, it suffices to show
that (∗) is G`-admissible. This will also provide a syntactic proof that the variety
of `-groups is generated by Aut(R).

We begin with some useful terminology. Given a G`-derivation d of G | H,
we inductively label sequents occurring in d as G-sequents as follows. To be
precise, we label occurrences of sequents, thus allowing for some occurrences of
a sequent in a hypersequent to be G-sequents and some not to be; we trust the
reader to interpret correctly which are the corresponding occurrences of a sequent
in the premises and the conclusion of a rule. Each sequent in G at the root is a
G-sequent. For the induction step, we consider an instance of a rule in d and the
following three cases:

(i) The instance has premises G ′ | Γ,∆ and G ′ | ∆,Σ and conclusion G ′ | Γ,Σ:
each G-sequent in G ′ in the conclusion is a G-sequent in G ′ in the premises,
and if Γ,Σ is a G-sequent in the conclusion, then Γ,∆ and ∆,Σ are G-
sequents in the premises.

(ii) The instance has premise G ′ and conclusion G ′ | H′: each G-sequent in G ′
in the conclusion is a G-sequent in G ′ in the premise.

(iii) The instance has premise G ′ | H′ | H′ and conclusion G ′ | H′: each G-
sequent in G ′ | H′ in the conclusion is a G-sequent in G ′ | H′ | H′ (twice if
it occurs inH′) in the premise.

It follows that each (occurrence of a) sequent occurring in d is strictly either a
G-sequent or anH-sequent.

A G`-derivation of G | H will be called H-cut-free if it contains no appli-
cation of (CUT) with an active H-sequent (an H-cut). Consider an H-cut in a
G`-derivation of G | H

G ′ | H′ | Γ,∆ G ′ | H′ | ∆,Σ

G ′ | H′ | Γ,Σ

where the G-sequents are in G ′ and theH-sequents are inH′ | Γ,Σ in the conclu-
sion and inH′ | Γ,∆ andH′ | ∆,Σ in the premises. We call thisH-cut significant
if it is not the case that bothH′ | Γ,∆ andH′ | ∆,Σ are G`-derivable.
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We obtain the following partial cut-elimination lemma.

Lemma 5.1. If `G` G | H, then either `G` H or there is an H-cut-free G`-
derivation of G | H.

Proof. We show that an uppermost significantH-cut can be eliminated from a G`-
derivation d of G | H. It then follows that all significantH-cuts can be eliminated
inductively from d to obtain a significant-H-cut-free G`-derivation d′ of G | H. If
d′ contains no applications ofH-cuts, then there is anH-cut-free G`-derivation of
G | H. Otherwise, consider a lowest (non-significant)H-cut in d′ with conclusion
G ′ | H′ | Γ,Σ where the G-sequents are in G ′ and all other sequents are H-
sequents. Note that, by assumption, `G` H′ | Γ,Σ. Below this application in d′,
the only rule applications with active H-sequents are (EW) and (EC). So H is
derivable fromH′ | Γ,Σ using (EW) and (EC). But alsoH′ | Γ,Σ is G`-derivable,
so `G` H.

To show that an uppermost significant H-cut can be eliminated from a G`-
derivation of G | H, we prove that if both G1 | H1 | Γ1,Σ | . . . | Γ1,Σ and
G2 | H2 | Σ,Γ2 | . . . | Σ,Γ2 are significant-H-cut-free G`-derivable where the
G-sequents are in G1 and G2 and all other sequents are H-sequents, then G1 | G2 |
H1 | H2 | Γ1,Γ2 is significant-H-cut-free G`-derivable, proceeding by induction
on the combined heights of these derivations.

We consider the last steps of both derivations. If either step is an application of
(EW) or (EC), then the claim follows immediately using the induction hypothesis
and possibly an additional application of (EW) or (EC).

Suppose that both last steps are (non-significant) H-cuts or instances of (GV)
or (EM) whose active sequents are H-sequents. It follows that H1 | Γ1,Σ | . . . |
Γ1,Σ and H2 | Σ,Γ2 | . . . | Σ,Γ2 are G`-derivable. So, using (CUT) and (EW),
G1 | G2 | H1 | H2 | Γ1,Γ2 is significant-H-cut-free G`-derivable as required.

If either a group valid sequent or ∆ | ∆ occurs in G1 | G2 | H1 | H2, then
G1 | G2 | H1 | H2 | Γ1,Γ2 is clearly significant-H-cut-free G`-derivable. Also, if
both Γ1,Σ and Σ,Γ2 are group valid, then Γ1,Γ2 is group valid and G1 | G2 | H1 |
H2 | Γ1,Γ2 is derivable by (GV).
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If G2 = G ′2 | Γ2,Σ, then we have a significant-H-cut-free G`-derivation

G1 | G ′2 | Γ2,Γ1 | H1 | H2 | Γ1,Γ2

(EM)

...
G1 | H1 | Γ1,Σ | . . . | Γ1,Σ

...
(EC)

G1 | H1 | Γ1,Σ
(EC)

G1 | G ′2 | Γ1,Σ | H1 | H2 | Γ1,Γ2
(EW)

G1 | G ′2 | Γ2,Σ | H1 | H2 | Γ1,Γ2

(CUT)

The case where G1 = G ′1 | Σ,Γ1 is very similar.
Suppose now that one of the derivations ends with a G-cut; e.g., G2 = G ′2 |

∆1,∆2 and we have

...
G ′2 | ∆1,Π | H2 | Σ,Γ2 | . . . | Σ,Γ2

...
G ′2 | Π,∆2 | H2 | Σ,Γ2 | . . . | Σ,Γ2

G ′2 | ∆1,∆2 | H2 | Σ,Γ2 | . . . | Σ,Γ2

(CUT)

We apply the induction hypothesis to the derivations of G1 | H1 | Γ1,Σ | . . . |
Γ1,Σ and G ′2 | ∆1,Π | H1 | Σ,Γ2 | . . . | Σ,Γ2 to obtain an H-significant-cut-free
G`-derivation of G1 | G ′2 | ∆1,Π | H1 | H2 | Γ1,Γ2. Similarly, we obtain an
H-significant-cut-free G`-derivation of G1 | G ′2 | Π,∆2 | H1 | H2 | Γ1,Γ2. So we
obtain an H-significant-cut-free G`-derivation of G1 | G2 | H1 | H2 | Γ1,Γ2 using
(CUT).

Lemma 5.2. (∗) is G`-admissible.

Proof. It suffices, using the rule (EC), to prove that whenever `G` G | Γ | . . . | Γ
and `G` H | Γ where Γ is not group valid, then `G` G | H. If Γ is not group valid,
then 6`G` Γ. So by Lemma 5.1, we may prove the claim by induction on the height
of a Γ | . . . | Γ-cut-free G`-derivation of G | Γ | . . . | Γ. For the base case, there
are two possibilities. If there is a group valid sequent or occurrence of ∆ | ∆ in
G, then clearly `G` G | H. Otherwise, G = (G ′ | Γ) and, because `G` H | Γ,
also `G` G | H using (EW). For the induction step, suppose that G | Γ | . . . | Γ
is the conclusion of an instance of (CUT) with premises G ′ | Γ1,Σ | Γ | . . . | Γ
and G ′ | Σ,Γ2 | Γ | . . . | Γ where G = (G ′ | Γ1,Γ2). By the induction hypothesis
twice, `G` G ′ | Γ1,Σ | H and `G` G ′ | Σ,Γ2 | H. Hence, using (CUT), `G` G ′ |
Γ1,Γ2 | H as required. The cases of (EW) and (EC) are straightforward.

Putting together Lemmas 3.4, 4.2, and 5.2, we obtain:
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Theorem 5.3. For any basic `-hypersequent G, the following are equivalent:

(1) G is G`-derivable.
(2) G is `-valid.
(3) G is valid in Aut(R).
(4) G is G`∗-derivable.

It follows that an identity is valid in all `-groups if and only if it valid in
Aut(R). Hence, as the variety generated by a class of algebrasK is, by Birkhoff’s
variety theorem, the smallest class satisfying the same identities as K, we obtain:

Theorem 5.4 ([10]). The variety of `-groups is generated by Aut(R).

Note that Holland’s original proof of this generation theorem in [10] is based
on his embedding theorem for `-groups [9] and, unlike the proof presented here,
makes use of the axiom of choice. Let us remark also that although the Holland-
McCleary algorithm decides the `-validity of `-group identities, it does not pro-
duce corresponding derivations in equational logic (i.e., derivations from defining
`-group identities). However, by applying the constructive (∗)-elimination proce-
dure described here to the derivation of an `-group identity in G`∗, we obtain a
G`-derivation of the identity. This derivation may then easily be translated into an
equational logic derivation.

6. An Analytic Calculus

Although G` and G`∗ provide bases for decision procedures for `-groups, these
calculi are not analytic. They contain rules, (CUT) and (∗), where terms occurring
in the premises may not occur as subterms in the conclusion. Observe that, follow-
ing the proofs in Sections 4 and 5, a basic `-hypersequent G is valid in Aut(R) if
and only if it is derivable in the analytic calculus consisting of (GV), (EM), (EW),
(EC), and the restricted (∗) rule

G | Γ,Π G | Π,Γ

G | Γ,∆ | Π,Σ

where Γ,Π is not group valid.

However, this restricted rule makes use of a side-condition and cannot be inter-
preted as a quasiequation valid in all `-groups. Also the completeness proof for
the calculus is heavily dependent on the particular class of algebraic structures
and cannot be expected to generalize easily to other classes.
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G | Γ (GV) G
G | H (EW)

G | H | H
G | H (EC)

Γ group valid

G | Γ G | ∆
G | Γ,∆ (MIX)

G | Γ,Σ G | Π,∆

G | Γ,∆ | Π,Σ
(COM)

Figure 2: The basic `-hypersequent calculus GLGb

In this section we establish soundness and completeness for an analytic basic
`-hypersequent calculus GLGb, presented in Figure 2, that replaces (CUT) and
(EM) in G` with the analytic rules (MIX) and (COM). The key step in the proof is
to show that (CUT) is GLGb-admissible, obtained as the culmination of a series of
lemmas establishing the GLGb-admissibility of related rules.

Let us write G[Γ] to denote a basic `-hypersequent G with specific occurrences
(perhaps none) of a sequence of literals Γ; a subsequent reference to G[∆] then
denotes the `-hypersequent obtained by replacing these occurrences with ∆.

Lemma 6.1. The following rule is GLGb-admissible:

∆ G[]

G[∆]

Proof. We proceed by induction on the height of a GLGb-derivation of G[]. For
the base case, it suffices to observe that if Γ[] is group valid, then, because ∆ is
group valid, also Γ[∆] is group valid. For the induction step, suppose that the last
step in the derivation of G[] is an application of (COM) of the form

H[] | Γ1[],Π2[] H[] | Π1[],Γ2[]

H[] | Γ1[],Γ2[] | Π1[],Π2[]
(COM)

Then by the induction hypothesis twice,

`GLGb H[∆] | Γ1[∆],Π2[∆] and `GLGb H[∆] | Π1[∆],Γ2[∆].

So by an application of (COM) as required,

`GLGb H[∆] | Γ1[∆],Γ2[∆] | Π1[∆],Π2[∆].

The cases where the last step in the derivation of G[] is an application of (EW),
(EC), or (MIX) are very similar.
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Lemma 6.2. The following rule is GLGb-admissible:

G | Γ, t,∆ G | Π, t,Σ

G | Γ,Σ | Π,∆

Proof. Let us define (Γ1, t,Γ2, t, . . . ,Γn, t,Γn+1)@(Π, t,Σ), where the t and t are
distinguished (but perhaps not all) occurrences in the sequents, as

(Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γn,Σ | Π,Γn+1),

noting that (Γ)@(Π, t,Σ) is just Γ.
Then it suffices (using (EC)) to prove that the following rule is GLGb-admissible:

∆1[t] | . . . | ∆n[t] G | Π, t,Σ

G | (∆1[t])@(Π, t,Σ) | . . . | (∆n[t])@(Π, t,Σ)

We proceed by induction on the height of a GLGb-derivation of ∆1[t] | . . . | ∆n[t].
For the base case, we may assume without loss of generality that ∆1[t] is group

valid. We prove that `GLGb G | (∆1[t])@(Π, t,Σ) by (a new) induction on the
number of terms in ∆1[t]. Clearly, if ∆1[t] contains no distinguished occurrences
of t, then (∆1[t])@(Π, t,Σ) = ∆1, and G | (∆1[t])@(Π, t,Σ) is an instance of
(GV). Otherwise, there are three possibilities. First, ∆1[t] can have the form

Γ1, t,Γ2, t, . . . ,Γk, t, t,Γk+1, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t,Γ2, t, . . . ,Γk,Γk+1, t, . . . ,Γn, t,Γn+1,

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

But also `GLGb G | Π, t,Σ, so using (COM) and (EW),

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Σ | Π, t,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Now suppose that ∆1[t] has the form

Γ1, t,Γ2, t, . . . ,Γk, t, t,Γk+1, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t,Γ2, t, . . . ,Γk,Γk+1, t, . . . ,Γn, t,Γn+1,

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.
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But also `GLGb H | Π, t,Σ, so by (COM) and (EW) as required:

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γk, t,Σ | Π,Γk+1,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Finally, ∆1[t] might have the form

Γ1, t,Γ2, t, . . . ,Γ
1
k, s, s,Γ

2
k, t, . . . ,Γn, t,Γn+1.

Applying the induction hypothesis to Γ1, t,Γ2, t, . . . ,Γ
1
k,Γ

2
k, t, . . . ,Γn, t,Γn+1,

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k,Γ

2
k,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

But then by Lemma 6.1, we obtain as required

`GLGb G | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k, s, s,Γ

2
k,Σ | . . . | Π,Γn,Σ | Π,Γn+1.

Now let us return to the inductive step of the main induction proof. Note that
the cases of (EW) and (EC) follow immediately using the induction hypothesis.
Suppose that the derivation ends with an application of (COM) of the form

H | Γ1, t, . . . ,Γ
1
k,Θ

2
r, t, . . . ,Θm, t,Θm+1 H | Θ1, t, . . . ,Θ

1
r,Γ

2
k, t, . . . ,Γp, t,Γp+1

H | Γ1, t, . . . ,Γ
1
k,Γ

2
k, t, . . . ,Γp, t,Γp+1 | Θ1, t, . . . ,Θ

1
r,Θ

2
r, t, . . . ,Θm, t,Θm+1

whereH = ∆3[t] | . . . | ∆n[t]. By the induction hypothesis twice,

`GLGb H′ | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k,Θ

2
r,Σ | . . . | Π,Θm,Σ | Π,Θm+1

and `GLGb H′ | Θ1,Σ | Π,Θ2,Σ | . . . | Π,Θ1
r,Γ

2
k,Σ | . . . | Π,Γp,Σ | Π,Γp+1

where H′ = G | (∆3[t])@(Π, t,Σ) | . . . | (∆n[t])@(Π, t,Σ). Hence, using (EW)
and (COM),

`GLGb H′ | Γ1,Σ | . . . | Π,Γ1
k,Γ

2
k,Σ | . . . | Π,Γp,Σ | Π,Γp+1 |

Θ1,Σ | . . . | Π,Θ1
r,Θ

2
r,Σ | . . . | Π,Θm,Σ | Π,Θm+1.

Now suppose that the last step in the derivation is an application of (MIX),

H | Γ1, t, . . . ,Γ
1
k H | Γ2

k, t, . . . ,Γp, t,Γp+1

H | Γ1, t, . . . ,Γ
1
k,Γ

2
k, t, . . . ,Γp, t,Γp+1

whereH = ∆2[t] | . . . | ∆n[t]. By the induction hypothesis twice,

`GLGb H′ | Γ1,Σ | Π,Γ2,Σ | . . . | Π,Γ1
k
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and `GLGb H′ | Γ2
k,Σ | . . . | Π,Γp,Σ | Π,Γp+1

where H′ = G | (∆2[t])@(Π, t,Σ) | . . . | (∆n[t])@(Π, t,Σ). Hence, using (EW)
and (MIX),

`GLGb H′ | Γ1,Σ | . . . | Π,Γ1
k,Γ

2
k,Σ | . . . | Π,Γp,Σ | Π,Γp+1.

Lemma 6.3. The following rule is GLGb-admissible:

G | Γ, t G | t,∆
G | Γ,∆

Proof. It suffices, using (EC), to prove the GLGb-admissibility of

G | Γ1, t | . . . | Γn, t H | t,∆
G | H | Γ1,∆ | . . . | Γn,∆

proceeding by induction on the height of a GLGb-derivation of G | Γ1, t | . . . |
Γn, t.

For the base case, we have two possibilities. If a sequent in G is group valid,
then clearly `GLGb G | H | Γ1,∆ | . . . | Γn,∆. Otherwise, some Γi, t is group
valid and therefore of the form Γ1

i , t,Γ
2
i , t where Γ1

i and Γ2
i are both group valid.

Hence by Lemma 6.1, `GLGb H | Γ1
i , t,Γ

2
i ,∆ and the result follows using (EW).

For the induction step, the cases of (EW) and (EC) follow immediately using
the induction hypothesis. Now suppose that the last step in the derivation is an
application of (COM) of the form

G | Γ1
1,Γ

2
2, t | . . . | Γn, t G | Γ1

2,Γ
2
1, t | . . . | Γn, t

G | Γ1
1,Γ

2
1, t | Γ1

2,Γ
2
2, t | . . . | Γn, t

By the induction hypothesis twice,

`GLGb G | H | Γ1
1,Γ

2
2,∆ | . . . | Γn,∆ and `GLGb G | H | Γ1

2,Γ
2
1,∆ | . . . | Γn,∆.

Hence, using (COM),

`GLGb G | H | Γ1
1,Γ

2
1,∆ | Γ1

2,Γ
2
2,∆ | . . . | Γn,∆.

Now suppose that the application of (COM) is of the form

G | Γ1
1 | . . . | Γn, t G | Γ2, t,Γ

2
1, t | . . . | Γn, t

G | Γ1
1,Γ

2
1, t | Γ2, t | . . . | Γn, t
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By the induction hypothesis twice,

`GLGb G | H | Γ1
1 | . . . | Γn,∆ and `GLGb G | H | Γ2, t,Γ

2
1,∆ | . . . | Γn,∆.

ButH | t,∆ is GLGb-derivable, so by Lemma 6.2,

`GLGb G | H | Γ2,∆ | Γ2
1,∆ | . . . | Γn,∆.

Hence, using (MIX),

`GLGb G | H | Γ1
1,Γ

2
1,∆ | Γ2,∆ | . . . | Γn,∆.

Now suppose that the last step in the derivation is an application of (MIX):

G | Γ1
1 | . . . | Γn, t G | Γ2

1, t | . . . | Γn, t

G | Γ1
1,Γ

2
1, t | . . . | Γn, t

By the induction hypothesis twice,

`GLGb G | H | Γ1
1 | . . . | Γn,∆ and `GLGb G | H | Γ2

1,∆ | . . . | Γn,∆

and the desired result follows by an application of (MIX).

Lemma 6.4. The following rule is GLGb-admissible:

G[t, t]

G[]

Proof. We proceed by induction on the height of a GLGb-derivation of G[t, t]. For
the base case, we simply observe that if a basic `-sequent Γ[t, t] is group valid,
then also Γ[] is group valid.

For the induction step, the cases of (EW) and (EC) follow immediately using
the induction hypothesis. Suppose now that the last step in the derivation is an
application of (COM). The only tricky case has the form

H[t, t] | Γ1[t, t], t,Π2[t, t] H[t, t] | Π1[t, t], t,Γ2[t, t]

H[t, t] | Γ1[t, t], t, t,Γ2[t, t] | Π1[t, t],Π2[t, t]
(COM)

By the induction hypothesis twice,

`GLGb H[] | Γ1[], t,Π2[] and `GLGb H[] | Π1[], t,Γ2[].
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But then, by Lemma 6.2, `GLGb H[] | Γ1[],Γ2[] | Π1[],Π2[] as required.
Now suppose that the last step in the derivation is an application of (MIX).

The only tricky case has the form

H[t, t] | Γ1[t, t], t H[t, t] | t,Γ2[t, t]

H[t, t] | Γ1[t, t], t, t,Γ2[t, t]

By the induction hypothesis twice,

`GLGb H[] | Γ1[], t and `GLGb H[] | t,Γ2[].

But then, by Lemma 6.3, `GLGb H[] | Γ1[],Γ2[] as required.

Lemma 6.5. (CUT) is GLGb-admissible.

Proof. Suppose that `GLGb G | Γ,∆ and `GLGb G | ∆,Σ. Then, using (MIX), also
`GLGb G | Γ,∆,∆,Σ. So, using Lemma 6.4 repeatedly, `GLGb G | Γ,Σ.

All the rules of GLGb are G`-derivable and, conversely, (EM) is GLGb-derivable
and (CUT) is GLGb-admissible. Hence, we obtain:

Theorem 6.6. A basic `-hypersequent G is GLGb-derivable if and only G is `-
valid.

7. A Full Calculus

In this section, we establish soundness and completeness for an analytic calcu-
lus GLG, presented in Figure 3, that derives all (not just basic) valid `-hypersequents
and uses simple initial sequents rather than all group valid sequents.

Example 7.1. The inequation (x · y) ∧ 1 ≤ x ∨ y can be transformed into an
inequation 1 ≤ ((y · x) ∨ 1) · (x ∨ y), which is derived in GLG as follows:

y, y
(ID)

x, x
(ID)

y, x, x | y (COM)

y · x, x | y (·)

y · x, x | 1, y (1)

y · x, x | (y · x) ∨ 1, y
(∨2)

(y · x) ∨ 1, x | (y · x) ∨ 1, y
(∨1)

(y · x) ∨ 1, x | (y · x) ∨ 1, x ∨ y
(∨2)

(y · x) ∨ 1, x ∨ y | (y · x) ∨ 1, x ∨ y
(∨1)

(y · x) ∨ 1, x ∨ y
(EC)

((y · x) ∨ 1) · (x ∨ y)
(·)
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We observe first that the `-sequent rules of GLG together with (MIX) provide
a simple calculus for groups.

Lemma 7.2. The following are equivalent for any basic `-sequent Γ:
(1) Γ is group valid.
(2) Γ is derivable using (ID), (CYCLE), and (MIX).

Proof. (1) ⇒ (2) follows by an induction on the length of a group valid basic
`-sequent Γ. For the base case, Γ is empty and derivable using (ID). For the
induction step, Γ must be of the form Γ1, t, t,Γ2. But then Γ1,Γ2 is group valid
and, by the induction hypothesis, derivable using (ID), (CYCLE), and (MIX). So
we obtain a derivation using these rules that ends with

t, t
(ID)

...
Γ1,Γ2

Γ2,Γ1
(CYCLE)

t, t,Γ2,Γ1

(MIX)

Γ1, t, t,Γ2

(CYCLE)

(2)⇒ (1) follows from the `-soundness of (ID), (CYCLE), and (MIX).

Theorem 7.3. An `-hypersequent G is `-valid if and only if G is GLG-derivable.

Proof. The right-to-left direction follows by a straightforward induction on the
height of a GLG-derivation and the `-soundness of the rules. For the left-to-right
direction, we first observe that (·), (1), (∧), and the following GLG-derivable
(using (∨1), (∨2), and (EC)) rule

G | Γ, t,∆ | Γ, s,∆
G | Γ, t ∨ s,∆

(∨)

are all `-invertible. Denote by mc(Γ) the multiset of the lengths of all occur-
rences of terms in an `-sequent Γ, and by mc(H), the multiset containing mc(Γ)
for each occurrence of a Γ in H. These multisets of multisets of positive integers
are well-ordered by the standard multiset well-ordering of [5]. Moreover, for any
premise H′ of an instance of (·), (1), (∧), and (∨) with conclusion H, clearly
mc(H′) is strictly smaller than mc(H). Hence if G is `-valid, then, by a straight-
forward induction on mc(G), it is GLG-derivable from a finite set of `-valid basic
`-hypersequents. By Theorem 6.6, each of these basic `-hypersequents is GLGb-
derivable. But GLG contains the rules (COM), (MIX), (EW), and (EC), and (GV)
is GLG-derivable, so these basic `-hypersequents are also GLG-derivable. Hence
G is GLG-derivable.
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Structural Rules

∆,∆
(ID) ∆,Γ

Γ,∆
(CYCLE)

G
G | H (EW)

G | H | H
G | H (EC)

G | Γ G | ∆
G | Γ,∆ (MIX)

G | Γ,Σ G | Π,∆

G | Γ,∆ | Π,Σ
(COM)

Operational Rules

G | Γ, t, s,∆
G | Γ, t · s,∆ (·)

G | Γ,∆
G | Γ, 1,∆ (1)

G | Γ, t,∆ G | Γ, s,∆
G | Γ, t ∧ s,∆

(∧)
G | Γ, t,∆
G | Γ, t ∨ s,∆

(∨1)
G | Γ, s,∆
G | Γ, t ∨ s,∆

(∨2)

Figure 3: The `-hypersequent calculus GLG

Note also that by adding to GLG an “exchange” rule

G | Π,∆,Γ,Σ

G | Π,Γ,∆,Σ
(EX)

or, alternatively, by reinterpreting `-sequents as multisets of terms, we obtain a
one-sided version of the calculus for abelian `-groups introduced in [16].

8. Co-NP Completeness

In this last section, we provide a first proof of co-NP completeness for the
equational theory of `-groups or, equivalently, the word problem for free `-groups.
Hardness is already guaranteed by the fact that the equational theory of distribu-
tive lattices is co-NP complete [12]. For inclusion, it suffices (by the reasoning
in Section 2) to prove that checking the `-validity of `-hypersequents is in co-NP.
Roughly, the idea is to apply the `-sound and `-invertible operational rules (·),
(1), (∧), and (∨) backwards to reach basic `-hypersequents, and then use the pro-
cedure (based on the Holland-McCleary algorithm [11]) described in Section 4 to
check `-validity non-deterministically. Note that the derived operational rule (∨)
may lead to an exponential increase in the size of the `-hypersequents considered,
but we can avoid this problem by introducing new variables.
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Lemma 8.1. The following rule is `-sound and `-invertible:

G | Γ, x | x,∆
G | Γ,∆

where x does not occur in G | Γ,∆.

Proof. The `-invertibility of the rule follows using the `-soundness of (SPLIT) and
(SIMP). To establish `-soundness, note first that it suffices to show that the rule is
`-sound when ∆ is empty. Suppose that this is the case and consider the general
situation where the `-hypersequent G | Γ, x | x,∆ is `-valid and x does not occur
in G | Γ,∆. Replacing x with ∆, y where y does not occur in G | Γ,∆, it follows
easily that G | Γ,∆, y | y is `-valid. But then, by assumption, also G | Γ,∆ is
`-valid.

It suffices now to prove that if G[x] | x is `-valid, then G[1] is `-valid, pro-
ceeding by induction on the number of operation symbols occurring in G[x]. The
induction step is straightforward using the `-sound and `-invertible rules (∧), (∨),
(·), and (1). For the base case, G[x] | x is an `-valid basic `-hypersequent. By
Lemma 5.1, there is an x-cut-free GLGb-derivation of G[x] | x. We prove that G[1]
is `-valid by a new induction on the height of such an x-cut-free GLGb-derivation.
For the base case, if G[x] is `-valid, then so also is G[1]. Otherwise, G[x] | x
has the form G ′[x] | x | x, and clearly G ′[1] | 1 is `-valid. The induction step is
straightforward.

Corollary 8.2. The following rule is `-sound and `-invertible:

G | Γ, x | x, t, y | x, s, y | y,∆
G | Γ, t ∨ s,∆

(∨′)

where x and y do not occur in G | Γ, t ∨ s,∆.

Theorem 8.3. The equational theory of LG is co-NP complete.

Proof. As mentioned above, it suffices to prove that checking the `-validity of
an `-hypersequent G is in co-NP. Note first that because the rules (∧), (∨′), (·),
and (1) are both `-sound and `-invertible, G fails to be `-valid if and only if any
backwards proof search using these rules leads to a set of basic `-hypersequents,
at least one of which is not `-valid. Moreover, the depth of the proof search tree
is bounded by the number of occurrences of operational symbols in G and the
sizes of the basic `-hypersequents are linear in the size of G. We choose non-
deterministically one of these basic `-hypersequents G ′.
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Now consider the process described in Lemma 4.2 applied to G ′ using (∗). G ′
fails to be `-valid if and only if at least one of the resulting basic `-hypersequents
obtained in this way is not `-valid. Moreover, both the depth of the proof search
tree and the sizes of the resulting basic `-hypersequents are polynomial in the size
of G ′ (the rule (∗) is applied using sequents of the form Γ,∆ where Γ and ∆ are
initial subsequences of sequents occurring in G ′). We choose non-deterministically
one of these basic `-hypersequentsH.

Finally,H fails to be `-valid if and only if it is chain-consistent and this can be
checked in polynomial time in the size ofH; we may consider it as the problem of
checking the satisfiability of an ordering of variables over the real number chain
where the number of variables is linear in the size ofH.
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