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Abstract We show that strong measure zero sets (in a o -totally bounded metric space)
can be characterized by the nonexistence of a winning strategy in a certain infinite
game. We use this characterization to give a proof of the well known fact, originally
conjectured by K. Prikry, that every dense G5 subset of the real line contains a translate
of every strong measure zero set. We also derive a related result which answers a
question of J. Fickett.
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1 Introduction

A metric space X is said to have strong measure zero if, for every sequence (g, : n € N)
of positive numbers, there is a partition X = UneN X, with diam(X,) < g, for each
n. This notion was introduced by Borel [2], who conjectured that every strong measure
zero set of real numbers is countable. In fact, by a celebrated result of Laver [6], as
extended by Carlson [3], it is consistent with ZFC that every metric space of strong
measure zero is countable. On the other hand, as noted by Sierpinski [10], the existence
of an uncountable strong measure zero set of real numbers is a consequence of the
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continuum hypothesis. (Some properties related to strong measure zero are discussed
in the papers of Duda and Telgédrsky [4] and Lelek [7].)

In an unpublished manuscript (“Solutions of some games”, dated February 1970),
Mycielski and Solovay introduced a natural “gamification” of strong measure zero. In
Sect. 2 we define the Mycielski—Solovay game G(X), as well as a technical variant
G(X, F), and study conditions under which one player or the other has a winning
strategy. We show that, among o -totally bounded metric spaces, the strong measure
zero spaces are characterized by the nonexistence of a winning strategy for White in
these games.

Karel Prikry observed that a set X of real numbers has strong measure zero if
every dense open subset of the real line contains a translate of X; and he conjectured
that, conversely, every dense open subset and even every dense G subset of the real
line contains a translate of every strong measure zero set. In Sects. 3 and 4 we use
our game-theoretic characterization of strong measure zero to give a proof of Prikry’s
conjecture. In fact, a concise, elegant, game-free proof of Prikry’s conjecture is already
available in Miller’s [8] survey. Our proof is not shorter or simpler than Miller’s, and
from one point of view it may be regarded as merely an obfuscated presentation of
Miller’s argument. However, we think the motivating intuition from game theory may
be of some independent interest. Also, our main result (Theorem 3) can be viewed as
a generalization of Prikry’s conjecture.

James Fickett asked whether there is a similar characterization of the sets X of real
numbers such that every dense open set, or every dense G set, contains a homothetic
copy of X. The answer to Fickett’s question for dense G sets is that X has strong
measure zero; this is proved in Sect. 4. For dense open sets the answer is that X is the
union of a bounded set and a strong measure zero set; this is proved in Sect. 5.

Most of the results in this paper, except for Theorem 3 (about Cartesian products),
were announced in an abstract [5].

2 Strong measure zero games

Given a metric space X, we define an infinitely long game G (X) between two players,
White and Black. At move n, first White chooses a real number &, > 0, and then Black
chooses a set B, C X with diam(B,,) < &,. Black wins a play (1, B1, €2, B, ...) of
this game if |,y Bn = X, otherwise White wins. We say that the game G(X) is a
win for White (Black) if White (Black) has a winning strategy.

Theorem 1 For any metric space X, the game G(X) is a win for Black if and only if
X is countable.

Proof First, suppose X is countable, say X = {x, : n € N}. Then Black has an
obvious winning strategy: at move n, choose B, = {x,}.

Now suppose o is a winning strategy for Black. For each point x € X, choose
a finite sequence s(x) = (r{, ..., rr’l‘( x)) of positive rational numbers such that x €
o(rf‘ e rrf(x), r) for every rational number r > 0. (Such a sequence must exist, for
otherwise White could defeat Black’s strategy o by choosing an infinite sequence of
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rational numbers so that Black never covers x.) It is easy to see that the map x +— s(x)
is injective, and so X is countable. |

Let X be a o-totally bounded metric space, and let 7 = (F,, : n € N) be asequence
of totally bounded subsets of X, such that U F, = X and F,, C F,4 for each n. In
neN
this setting, besides the game G (X), we define another game G(X , F) which is more
difficult for Black. Namely, at move n, first White chooses ¢, > 0, and then Black
chooses B, C F, with diam(B,) < &,; Black wins if lim sup, B, = X, otherwise
White wins.

Lemma 1 Given a totally bounded metric space F and a number § > 0, we can find
a nonempty finite collection B of subsets of F, each of diameter at most 8, such that
every subset of F of diameter at most %8 is contained in some member of B.

Proof Since F is totally bounded, for some m € N we can write F = U U---U U,
with diam(U;) < %(S for each j € [m]. Let B = {Wy, ..., Wy}, where W; = {x €
F:d(x,u)f%S for some u € U;}. O

Theorem 2 If X is a o-totally bounded metric space, and if F = (F,, :n € N) isa
sequence of totally bounded subsets of X such that UF” = X and F,, C F,41 for

neN
each n, then the following statements are equivalent:

(1) X does not have strong measure zero;
(2) G(X)isa win for White;
(3) G(X, F) is a win for White.

Proof The implications (1) = (2) = (3) are clear; we will prove —(1) = —=(3).
Assume that X has strong measure zero; we will show that G(X , F) is not a win for
White. Let o be any strategy for White in G(X, F).

Using Lemma 1, we can recursively define §,,, B, (n € N) so that:

(i) 8, =min{o (B, B2, ..., By,—1) : B1eBi,ByeBy,...,B_1 € B_1};
(ii) B, is a nonempty finite collection of subsets of F}, of diameter at most §,,;
(iii) every subset of F;, of diameter at most %6,, is contained in some member of 53,,.

Partition N into disjoint sets M, (n € N) so that min(M,,) > n. Let oy = %Bk. Since
each F), has strong measure zero, we can choose sets Ax (k € N), withdiam(Ax) < ok,
so that for each n € N we have F,, = ¢y, Ax-

Ifk € N, then k € M,, forsomen € N, and so Ay C F,, C Fg; since diam(Ay) <
o = %Sk, we can choose By € By so that Ay C By. Finally, for each n € N let
&, = o(By, By, ...,B,_1). Since B, C F,, and diam(B,)) < §, < &,, the infinite
sequence (€1, B1, €2, B2, ..., &y, By, ...) is a o-play of the game é(X, F).

We claim that limsup,, B, = X. To see this, consider any point x € X. Then
xe F, = U Ay for all sufficiently large n; therefore, for each sufficiently large n,

keM,
we have x € Ay C By for some k € M,. Since the sets M,, (n € N) are disjoint, it

follows that the set {k : x € By} is infinite, whence x € limsup, B,.
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Thus Black wins the o-play (e1, By, €2, Ba, ..., &p, BI“"') of G(X, F). As
White’s strategy o was arbitrary, it follows that the game G (X, F) is not a win for
White. O

3 A theorem on Cartesian products

For metric spaces X and Y, aset A € X x Y is vertically dense if, for each x € X,
theset{yeY :(x,y) € A}isdensein Y.

Lemma 2 Let X, Y be metric spaces. Given a compact set K C X, a nonempty open
set W C Y, and a vertically dense open set A C X x Y, we can find a number ¢ > 0
such that, for any set B C K with diam(B) < ¢, there is a nonempty open set V.C W
with B x V C A.

Proof The collection
S={SC X:Sisopen,and S x V € A for some nonempty open set V C W}

is an open cover of X. By Lebesgue’s covering lemma, we can find a number ¢ > 0
such that, for any set B € K with diam(B) < &, we have B C S for some S € S, and
so B x V C A for some nonempty open set V C W. O

Theorem 3 If X is a o-compact metric space, Y is a complete metric space with no
isolated points, Z C X is a strong measure zero set, A C X x Y is a vertically dense
G set, U C Y is a nonempty open set, and D C Y is a dense G set, then there is a
nonempty perfect set P C U N D such that Z x P C A.

Proof Let A = ﬂAn, where A, isopenand A, D A,y foreachn;let D = ﬂ D,,
neN neN
where D,, is open and D, 2 D,y for each n; and let X = UK,,, where K, is

neN
compact and K, € K, 4| foreach n. Let F = {F,, : n € N} where F,, = Z N K,,;

thus Z = U F,, each F, is totally bounded, and F,, C F,,; for each n.
neN

By Theorem 2, White has no winning strategy in G(Z, F)iie., ifois any strategy
for White in G(Z, F), then there is a o-play (e, By, €2, B2, ...) of G(Z, F) such
that lim sup,, B, = Z. To prove Theorem 3, it will suffice to find a strategy for White
in G(Z, F) which ensures that (lim sup, B,) x P C A for some nonempty perfect
set PCUND.

Let Uy = U. At move n, suppose nonempty open sets Uy € ¥ (s € {0, 1}"~!) have
been defined. White chooses ¢, > 0 so that, for each set B C F,, with diam(B) < g,
and for each s € {0, l}”’l, there is a nonempty openset V C UsN D, with B x V C
Ay this is possible by Lemma?2. After Black chooses B, € F;, with diam(B,,) < ¢,
White chooses for each s € {0, 1}*~! a nonempty open set V; € U; N D, with
B, x Vi € A,, and two nonempty open sets Us~g, Uy~ of diameter at most 27",
with ﬁsﬂo U Usﬂl C Vi and ﬁsﬂo N ﬁy’\] = 0.
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Foreachs € {0, 1}N thereis aunique point f(s) € ¥ suchthat (), Us(1),52),....5(n)
= {f(s)}. The mapping f : {0, 1}V — ¥ so defined is continuous and injective,
whence the set P = {f(s) : s € {0, 1}N} is perfect.

Now P C U and P € D, foralln,so P € U N D. Finally, since B, x P C A,
for all n, it follows that (lim sup,, B,) x P C limsup, A, = ﬂ A, = A. O

neN

4 Prikry’s conjecture

Theorem 4 For any set Z C R the following statements are equivalent:

(1) Z has strong measure zero;

(2) there is a number k € N such that Z can be covered by k translates of every dense
open subset of R;

(3) for every dense Gs set D C R, there are countable sets A, B C R such that
Z C AD + B;

(4) for any dense G5 set D C R and any nonempty open set U C R, there is a
nonempty perfect set P € U N D such that Z + P < D.

Proof Clearly (4) = (2) and (4) = (3). We will prove (1) = (4), (2) = (1), and
3)= D).

(1) = (4): Let a strong measure zero set Z C R, a dense Gg set D C R, and a
nonempty openset U C Rbegiven.Let X =Y =R, andlet A = {(x,y) e Rx R :
x 4+ y € Dj}. Since the hypotheses of Theorem 3 are satisfied, there is a nonempty
perfectset P C U N D suchthat Z x P C A,ie.,Z+ P C D.

(2) = (1): Suppose Z € Rand k € Nare such that Z can be covered by k translates
of every dense open set; we have to show that Z has strong measure zero. Let positive
numbers ¢, (n € N) be given. Partition N into disjoint infinite sets My, ..., My and
define f : N — [k] so that n € My(,). For each j € [k], choose open intervals
I, (n € M;) with diam(/,) = &, so that the set D; = U I,, is dense in R. Since

neM;
D = Dy N---N Dy is a dense open set, there are numbers 71, . .., #; € R such that

ZE(f1+D)U~-'U(lk+D)E(t1+D1)U-~U(tk+Dk)=U(lf(n)—i-ln)-
neN

This shows that Z has strong measure zero.

(3) = (1): Suppose Z < R is such that, for every dense G5 set D C R, there are
countable sets A, B C R with Z € AD + B. Let positive numbers ¢, (n € N) be
given. Partition N into disjoint infinite sets M; (j € N). For each j € N, choose
open intervals I, (n € M;) with diam(/,) < %en, so that the set D; = U I, is

neM;
dense in R. Thus D = mD j is a dense G set. Choose countable sets A, B C R
jeN
with Z € AD + B. Choose an injection j : A x B — N with j(a,b) > |al. Let
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M = U M (q,p). For eachn € M, there is a unique pair (a,, b,) € A X B such

(a.b)eAxB
thatn € Mj,p,)- Now we have

ZCAD+B= U (aD + b)
(a,b)eAxB

c U (@Djun+b)
(a,b)eAxB

= U U @h+b

(a,b)eAxBneM;jq,p)

= U (anln + by).

neM
Since, for n € M, we have

|anlen

diam(a, I, + by) = |a,| diam(l,) < ———— < &,
J(an, by)

this shows that Z has strong measure zero. O

Corollary 1 (Prikry’s Conjecture) For any set X C R, the following statements are
equivalent:

(1) X has strong measure zero;
(2) every dense open set contains a translate of X;
(3) every dense G set contains a translate of X.

Proof Theorem4. O

This is called Prikry’s conjecture after Karel Prikry, who pointed out the impli-
cations (3) = (2) = (1) and conjectured that all three statements were equivalent.
That statements (2) and (3) hold for every countable set X had been proved earlier by
Scheeffer [9] and Bagemihl [1], respectively.

Sierpiniski [11] asked whether there is an uncountable set X of real numbers which
has strong measure zero, is always of the first category, and is such that every translate
of X is contained in X except for a countable set of points. The next corollary answers
Sierpiriski’s question in the negative.

Corollary 2 If X C R is a set of the first category, and if (X + t) \ X is countable
foreacht € R, then every strong measure zero subset of X is countable.

Proof 1If Z is a strong measure zero subset of X, then by Corollary 1 we have Z + ¢

-
R\ X forsomet € R,whence Z+t = (Z+t)\X C (X+)\Xand |Z| = |Z+1] <
[(X + D\X] < Ro. m|
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5 Fickett’s question

James Fickett asked us which sets X of real numbers have the property that every
dense open set, or every dense G set, contains a homothetic copy of X. For dense G
sets the answer is strong measure zero sets, as shown by Theorem 4. Fickett’s question
for dense open sets is answered by the following theorem.

Theorem 5 For every set X C R, the following statements are equivalent:

(1) for every dense open set D C R there exista,b € R,a > 0, withaX +b C D;
(2) X is the union of a bounded set and a strong measure zero set.

Proof (2) = (1):Let X = KUZ, where K is bounded and Z has strong measure zero,
and let D be a dense open set. Choose a > 0 and an interval B so thataK + B C D.
Choose a countable set M so that B+ M = R. Then G = ("),,c5;(D + m) is a dense
G set. Since aZ is a strong measure zero set, by Corollary 1 we haveaZ +1t C G for
somet € R. Writet = b+m whereb € B,m € M;thenaZ+b+m C G C D+m,
whence aZ + b C D. Since b € B, we alsohaveaK + b C D,andsoaX + b C D.

—(2) = —(1): Suppose X is not the union of a bounded set and a strong measure
zero set. It follows that, given k > 0, we can find sets X', X” C X such that neither
X’ nor X" has strong measure zero, and d(X’, X”) > k; hence we can find positive
numbers ¢, (n € N) such that X is not covered by any sequence of intervals whose
diameters are k, &1, &2, . . ..

Let {r,, : m € N} be dense in R. For each m € N we define J,,, K,,, k,,, and
em.n (n € N) satisfying the following conditions:

(1) Jy is a finite open interval containing r,,, and diam(J,,) < %e p.m—p for each
p € [m—1];
(i) K,y is a finite interval containing J; U - - - U Jp;;
(iii) k; = m - diam(K,,);
(iv) €m.1,€m.2, - .. are positive numbers such that X is not covered by any sequence
of intervals whose diameters are Ky, €5.1, Em.25 - - -

Now D = U Jn s adense open set. Assume for a contradiction thata, b € R, a > 0,

meN
and aX + b C D. Define § = 1(S — b) for § € R. Fix m € N with 1 < m. Then

~

XCD=JjU---UJpUldpsi Udpa U+ C Ky U1 Uy U-eo .

Since diam(I%m) < m - diam(K,,) = k;,, and diam(fm+,,) < m - diam(Jy4,) <
m - %8,,1,,1 = &m,n for each n € N, this contradicts condition (iv). O
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