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0 | introduction

I’m going to flip a fair coin twice. Howmuch more likely is it to land heads on the first
flip, h1, than it is to land heads on both flips, h1h2? Answer: it is twice as likely.1 After
all, getting a heads on any flip is just as likely as getting a heads on any other, and the
outcomes of different flips are independent of each other. In order for h1 to be true,
there must be one of these outcomes; and in order for h1h2 to be true, there must be
two. The probability of one of these outcomes is twice the probability of two. So h1 is
twice as likely as h1h2.

Now I’m going to flip a coin infinitely many times. How much more likely is it to
land heads on the first flip, h1, than it is to land heads on every odd flip, h1h3h5 . . . ? An-
swer: it is more than twice as likely, more than thrice as likely, and so on and so forth.
For any integer 𝑛, it is more than 𝑛 times as likely. In brief: it is infinitely more likely.
After all, heads on any one flip is still just as likely as heads on any other, and these
outcomes are still independent. In order for h1 to be true, there must be one of these
outcomes; and in order for h1h3h5 . . . to be true, theremust be infinitelymany of them.
The probability of one of these outcomes is infinitely greater than the probability of
infinitely many of them.

Howmuch more likely is the coin to land heads on every odd flip, h1h3h5 . . . , than
it is to land heads on every flip, h1h2h3 . . . ? Answer: again, it is more than twice as
likely, more than thrice as likely, and so on and so forth. After all, nothing about the
outcomes has changed, and in order for h1h2h3 . . . to be true, there must be infinitely
many more of these outcomes than there must be in order for h1h3h5 . . . to be true.
The probability of infinitely many more of these outcomes is infinitely lesser.

Draft of June 28, 2024;B: dmitri.gallow@gmail.com, comments especially welcome

1. When I talk about how much more or less likely one proposition is than another, I mean how many
times more or less likely it is. That is, I am asking: by which factor is the first’s probability greater or
lesser than the second’s?
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Or so it seems—but appearances may be misleading. My answers to the first two
questions are uncontroversial conventional wisdom, but my answer to the third is
heresy. Orthodox probability theory allows some propositions to be infinitely less
likely than others, but only if their probability is zero. And any two propositions with
zero probability are just as likely as each other. Orthodoxy permits us to say that
propositionswith positive probability are infinitelymore likely than propositionswith
zero probability. So it allows us to divide the propositions up into two groups, with the
propositions in one group being infinitely less likely than the propositions in the other.
But it only allows us to do this once. We cannot draw similar distinctions within either
of these groups. So once we’ve said that both h1h2h3 . . . and h1h3h5 . . . are infinitely
less likely than h1, we cannot say that one of them is infinitely less likely than the other.

The reason is that orthodox probabilities are real numbers, and real numbers have
theArchimedean property—for any twonon-zero real numbers, 𝑥 and 𝑦, there’s always
some integer 𝑛 such that 𝑛𝑥 > 𝑦. Picturesquely, for any two non-zero real heights, you
can always stack the smaller one on top of itself enough times that the stack ends up
taller than the larger one. In the field of real numbers, zero is the only number which
can’t be stacked up enough times to overtake any other number. My answers to the
second and third questions suggest that probabilities are not Archimedean. Nomatter
how many times you stack up the probability of h1h3h5 . . . , you’ll never overtake the
probability of h1. And no matter how many times you stack up the probability of
h1h2h3 . . . , you’ll never overtake the probability of h1h3h5 . . . .

Part of the difficulty in modeling non-Archimedean probabilities is finding an ap-
propriate number system. One option is to use the hyperreal numbers. The hyperreals
are a non-Archimedean field containing ‘infinitesimals’—non-zero numbers infinitely
smaller than any real number.2 Hyperreal-valued probabilities have been touted and
investigated by several philosophers, and criticized by several others.3 Myself, I’ve not
been moved by the critics. I think the best defenders of hyperreal probabilities have
adequate responses. Hyperreal probabilities have their oddities, no doubt; but so too
do real probabilities in infinite domains. No way out is pain-free; you have to pick
your poison. Nonetheless, the hyperreal numbers can feel somewhat intangible. On
the standard ultrapower construction, hyperreal numbers are identified with equiva-
lence classes of 𝜔-length sequences of real numbers, but these equivalence classes are

2. See Goldblatt, 1998.

3. See, for instance, Skyrms, 1980, Lewis, 1980, 1981, Williamson, 2007, Weintraub, 2008, Hájek, ms, Pruss,
2012, Hofweber, 2014, Easwaran, 2014, Wenmackers & Horsten, 2013, Wenmackers, 2016, Benci et al.,
2013, Benci et al., 2016, and Parker, 2018, among others.
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defined using a free ultrafilter.4 While we can prove that such ultrafilters exist (us-
ing the axiom of choice), they can’t be built up constructively. So in general, given
two 𝜔-sequences of real numbers, you won’t be able to tell whether they pick out the
same hyperreal number, or different ones. With the hyperreals, you can’t be quite sure
which numbers you’re dealing with. Additionally, reasoning about the hyperreals can
feel frustratingly circuitous. Because you can’t get your hands on them directly, you
have to prove that there’s a way of translating claims about the reals, which you can get
your hands on, to claims about the hyperreals. And you can prove that this translation
(called the ‘star map’) is truth-preserving. So, to reason about the hyperreals, you first
reason about the reals, and then translate your conclusion into one about the hyper-
reals. But you have to exercise care; the translation only says something about some of
the hyperreals. What the original claim says about all of the reals, the new claim says
only about the hyperreals in the image of the star map. For this reason, the translation
of ‘the powerset of 𝑋 ’ needn’t be the powerset of the translation of ‘𝑋 ’. And since ‘the
partial sums of the geometric series 1 + 1/2 + 1/4 + 1/8 + · · · + 1/2𝑛 + . . . converge to 2’ is
true in the reals, its translation will come out true in the hyperreals, even though these
partial sums do not converge in the hyperreals.

So the hyperreals live behind a veil and speak to us only in code. This leads Hájek
(2003) to complain that hyperreal probabilities are ineffable. He writes: “when philoso-
phers gesture at infinitesimal probability assignments, I want them to giveme a specific
example of one. But this they cannot do; the best they can do is gesture.”5 Of course,
for all their obscurity, we can nonetheless dimly perceive the hyperreal numbers. We
can learn about them indirectly. We can decipher their messages. And the hyperreals
can be fruitfully used to teach us things about the reals. But if you’re primarily inter-
ested in non-Archimedean probabilities, it’s natural to want a less Delphic system of
numbers.

Here, I’ll use John Conway’s surreal numbers to give a more direct system for
representing non-Archimedean probabilities. The surreal numbers allow us to meet
Hájek’s challenge and produce specific examples of infinitesimal probability assign-
ments. With minimal assumptions, we’ll be able to derive precise numerical values for
the probabilities of propositions which are infinitely unlikely. For instance, we will

4. It doesn’t matter what this is, but if you don’t know and are curious, the relevant ultrafilter is just a
collection of subsets of natural numbers which is closed under supersets and finite intersections and
which is maximal in the sense that it either contains 𝑆 or 𝑆’s complement, for every set of natural
numbers 𝑆; the ultrafilter is free if its intersection is empty. See Goldbring, 2022. In the ultrapower
construction, you identify two 𝜔-sequences of real numbers just in case the set of places in which they
match is included in the ultrafilter.

5. Hájek, 2003, p. 292. See also the criticisms in Easwaran, 2014.
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show that the probability of a fair coin landing heads on every odd flip, h1h3h5 . . . , is
2−1/4 · 𝔠−1/2 (where 𝔠 is the cardinality of the continuum of real numbers). The candor
of surreal probabilities is striking; it stands in stark contrast to the vague and hushed
pronouncements of hyperreal probabilities.

The name ‘surreal numbers’ is due to Donald Knuth.6 Conway just calls them
‘numbers’—or ‘all the numbers great and small’. ‘Surreal numbers’ is a much better
name; but it can leave you with the impression that the surreals are of interest pri-
marily for their peculiarity. In my view, this is a mistake. The surreal numbers are a
serious number system, no more peculiar than Cantor’s ordinals (which are contained
within the surreals). In contrast to the hyperreals, the surreal numbers can be explic-
itly constructed. You can watch as they are born. There is no trouble picking out a
particular infinitesimal surreal number, nor any trouble distinguishing two different
infinitesimal surreals. There are simple and natural rules for adding and multiplying
them together. And they give us all the probabilistic distinctions we could ask for—all
the probabilistic distinctions the hyperreals give and more.

In section 1, I will give an introduction to the surreal numbers. This introduction
will give us all we need to do some basic probability theory with surreal numbers. In
section 2, I’ll discuss which axioms we should impose on surreal-valued probabilities.
And in section 3, I’ll give a model of surreal probabilities for the case of flipping a fair
coin infinitely often. We’ll see that, from minimal assumptions, we will be able to de-
fine surreal probabilities for a large collection of infinitely unlikely propositions about
how the coin lands. Along the way, I will respond to an argument from Williamson,
2007, which attempts to show that the probability of an infinite sequence of heads
must be zero. But this paper won’t offer a sustained defense of surreal probabilities
over their real counterparts. Instead, I simply want to get surreal probabilities out on
the table. To date, there has been almost no investigation of surreal probabilities in ei-
ther mathematics or philosophy. In philosophy, Chen & Rubio (2020) assume surreal
probabilities and use them to define surreal-valued utilities via an analogue of the von
Neumann & Morgenstern representation theorem. They show how surreal-valued
utilities can be used to address Pascal’s wager and other puzzling decisions involving
infinity.7 I know of no work on surreal probabilities within mathematics. With such
limited development, it is difficult to evaluate the prospects of using surreal numbers
to model the kinds of non-Archimedean judgments I opened with, just as it is difficult
to evaluate Chen & Rubio’s proposal to use surreal numbers to put a value on Pascal’s
wager. My main goal here is to at least begin to remedy this situation. I will provide

6. Knuth, 1974.

7. See also §4.1 of Hájek, 2003.
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a ‘user’s guide’ to surreal probabilities, show how to calculate their values in the case
of flipping a fair coin infinitely many times, and attempt to showcase some of their
benefits.

1 | conway’s paradise

In this section, I will provide an introduction to surreal numbers. I won’t assume that
you have any prior familiarity with them, though I will assume that you have some
familiarity with ordinal numbers, as well as basic arithmetic on the real numbers. I
won’t be carefully proving properties of the surreal numbers—you can find the proofs
elsewhere.8 My goal is to just give you a basic understanding: how to build these
numbers up, how to break them down, how to locate them on their number line, and
how to add and multiply them together.

1.0 | Construction

Each surreal number has a birthday. Zero is born on the zeroth day. On the first day,
one and negative one are born. The next day, −2, −1/2, 1/2, and 2 are born. Each day,
new numbers are born to fill in the gaps between the older numbers. When we awake
on day 𝑛, we find the collection of numbers born before day 𝑛. We then cut these
numbers in twain, dividing them into two sets, 𝐿 and 𝑅 (for left and right), where
every number in 𝐿 is less than every number in 𝑅. Then, a new number is born which
is strictly greater than every number in 𝐿 and strictly less than every number in 𝑅. A
number like this is born for every possible way of cutting the already born numbers
in twain (even the trivial cuts, which place all of the already existing numbers to one
side or the other).

We can represent these cuts with ‘{𝐿 | 𝑅}’, where 𝐿 is the set of numbers to the
left of the cut and 𝑅 is the set of numbers to its right. At the start of day zero, there
are no numbers, so the only cut is the trivial one, { | }.9 This cut divides nothing in
twain, leaving nothing on the left and nothing on the right. Since all of the none of the
numbers on the left are less than all of the none of the numbers on the right, this counts
as a cut. So the number corresponding to this cut is born. Call it ‘0’. On the morning
of the first day, there is only one pre-existing number, so there are only two possible
cuts: { | 0} and {0 | }. Since all of the none of the numbers on the left are less than all

8. The interested reader can consult Conway, 1976 first, and then (in no particular order) Gonshor, 1986,
Alling, 1986, Ehrlich, 1994, Ehrlich, 2001, Erlich, 2011, Rubinstein-Salzedo & Swaminathan, 2014, and
Costin & Ehrlich, 2022.

9. Strictly speaking, this should be written ‘{{} | {}}’. But it’s standard to omit the inner set brackets in
the interests of readability.
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of the numbers on the right, { | 0} is a cut, and corresponding to this cut, a number is
born. Because of the cut that birthed it, this number must be less than zero. Call it ‘−1’.
Similarly, since all of the numbers on the left are less than all of the none of the numbers
on the right, {0 | } is a cut, and corresponding to this cut, a number is born. Because of
the cut that birthed it, this number must be greater than 0. Call it ‘1’. On day two, we
have four possible cuts: { | −1, 0, 1}, {−1 | 0, 1}, {−1, 0 | 1}, and {−1, 0, 1 | }. For each
of these cuts, a number is born. These numbers sit where their cuts were drawn, so
let’s call them ‘−2’, ‘−1/2’, ‘1/2’, and ‘2’, respectively. (For now, we can take these names
to be stipulative; but once we have the rules for addition and multiplication, we’ll find
that 0 = { | } is the additive identity, and 1 = {0 | } the multiplicative identity. We’ll
also have 1+1 = {0 | } + {0 | } = {0, 1 | } = 2, 1/2+1/2 = {0 | 1} + {0 | 1} = {0 | } = 1,
and so on. So the stipulative names are well-chosen.)

Any dyadic fraction—any rational numberwhose denominator is a power of two—
is born in a finite number of days. These are all of the numbers which can be repre-
sented with a terminating binary decimal expansion. But no other numbers are born
in a finite number of days. The square root of two is not yet born, nor is one third,
nor 𝜋 . But once infinitely many days have passed, we can awake on the 𝜔th day (the
next day after any finite number of days have passed) and once again start splitting the
numbers in twain. On the 𝜔th day, 1/3 will be born. For 1/3 is the number greater than
1/4, 1/4 + 1/16, 1/4 + 1/16 + 1/64, . . . , and less than 1/2, 1/2 − 1/8, 1/2 − 1/8 − 1/32, . . . .
Similarly, every other real number will be born on day 𝜔, since every real number has
a decimal expansion in binary. For any real number, 𝑟, cut all of the dyadic fractions
into those less than 𝑟 and those greater than 𝑟. This will be a cut, and so on day 𝜔, a
new number will be born sitting in that cut’s place. 𝑟 is the only real number sitting at
this cut’s position, so call the number born of the cut ‘𝑟’.

But there are other numbers born on day 𝜔. Consider the trivial cut with all of the
pre-existing numbers on the left and nothing on the right. This is a number greater
than every dyadic fraction. There is no such real number, but there is a surreal number
like this. Call it ‘𝜔’, after Cantor’s first infinite ordinal. Or consider the cut which places
zero and every pre-existing negative number on the left and every pre-existing positive
number on the right. This is a number strictly greater than zero but strictly less than
every dyadic fraction. That is, it is greater than zero, but less than 1/2, 1/4, 1/8, . . . .
There is no such real number, but there is a surreal number like this. Call it ‘𝜖’. (We’ll
see later on that 𝜖 = 𝜔−1.) On day 𝜔 + 1, we continue cutting, and we get even more
numbers—𝜔 + 1, 𝜔 − 1, 𝜖/2, and 2𝜖, for instance. In general, we keep cutting for as
many days as there are ordinal numbers. The surreals are the proper class of numbers
so-formed.

Another, equivalent, way of thinking about surreal numbers is like this: they are
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Figure 1: The surreal numbers are the nodes in the complete binary tree.

the nodes of the complete binary tree. This tree starts with a single root node (the
number zero) which branches into two children (one and negative one); each of its
children branch into two children, and so on and so forth. After 𝜔 many branches,
the tree continues growing. There is a new node which sprouts from the bottom of
each infinite path down the tree. The tree thereupon continues branching, with new
branches growing at each ordinal. There are exactly two children of every node in
this tree, and exactly one child of every downward path through the tree which is the
length of a limit ordinal. (See figure 1.)

Associated with any of these numbers is a sequence of decisions of whether to
travel left (in the negative direction) or right (in the positive direction) at each node.
The length of this sequence is the birthday of the associated number. For instance,
3/2 is associated with two steps in the positive direction followed by one step in the
negative direction, (+,+,−), and 2𝜖 is associated with the 𝜔 + 1-length sequence of
one step in the positive direction, infinitely many steps in the negative direction, and
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one step in the positive direction, (+,−,−,−, . . . ,+).10 The order of the numbers can
be read off of these associated sequences. Take any two numbers, 𝑥 and 𝑦, and go
to the first position in their associated sequences which don’t match; if 𝑥’s value in
that position is greater than 𝑦’s value in that position, then 𝑥 is greater than 𝑦. (By
stipulation, − is less than undefined, which is less than +.) This will give us a strict
total order.11

You can find Cantor’s ordinal numbers sitting at the right-most branch at every
level of the binary tree. Whereas one of Cantor’s ordinals is built from the set of all
its predecessors, 𝛽 = {𝛼}𝛼<𝛽 , one of Conway’s ordinals is built from the left set of all
its predecessors, 𝛽 = {𝛼 | }𝛼<𝛽 . We use the ordinals to count birthdays. A number’s
birthday is the ordinal it was born with—it is the ordinal at the same level as that
number in the binary tree. If one number’s birthday precedes another’s, then say that
the first number is simpler than the second. So zero is the simplest number of all, 3/4 is
simpler than 5/8, and every dyadic fraction is simpler than 1/3. Then, we can introduce
a convention for naming surreal numbers: if 𝐿 and 𝑅 are any sets of numbers such that
every number in 𝐿 is less than every number in 𝑅, then let {𝐿 | 𝑅} name the simplest
number greater than all the numbers in 𝐿 and less than all the numbers in 𝑅. For
instance, {−2 | 3} is another name for zero, and {−4 | −7/8} is another name for
−1. If 𝑥 is any surreal number, we can always find some collection of ‘representative’
numbers less than 𝑥, 𝑥𝐿, and some collection of ‘representative’ numbers greater than
𝑥, 𝑥𝑅.12 In the binary tree, if there’s amost recent predecessor of 𝑥 fromwhich you have
to step right (in the positive direction) in order to reach 𝑥, 𝑥𝐿, and some most recent
predecessor from which you have to step left (in the negative direction) in order to
reach 𝑥, 𝑥𝑅, then 𝑥 = {𝑥𝐿 | 𝑥𝑅}. If there’s no most recent predecessor like this, then
we’ll have to consider some representative sequence which approaches 𝑥 from the left
or the right. For instance, on your path to 2𝜖, you most recently stepped right at 𝜖
and there’s no most recent left-hand step, but rather an infinite sequence of steps with
no last left-hand step. So we can write 2𝜖 = {𝜖 | . . . , 1/8, 1/4, 1/2}. That is: 2𝜖 is the
simplest number greater than 𝜖 but less than 1/2, 1/4, 1/8, and so on.

Consider the surreal number

{𝜖, 2𝜖, 3𝜖, . . . | . . . , 1/8, 1/4, 1/2}

10. Gonshor, 1986 defines surreal numbers as these sequences of pluses and minuses.

11. That is: (a) no surreal is greater than itself; (b) if 𝑥 is greater than 𝑦, 𝑦 is not greater than 𝑥; (c) if 𝑥
is greater than 𝑦 and 𝑦 is greater than 𝑧, then 𝑥 is greater than 𝑧; and (d) for any two distinct surreal
numbers, 𝑥 and 𝑦, either 𝑥 is greater than 𝑦 or 𝑦 is greater than 𝑥.

12. Conway (1976) calls these numbers ‘typical’, rather than ‘representative’.
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This is the simplest number greater than any integer multiple of 𝜖 and less than any
fraction of 1. You reach it in the binary tree by taking one step right, in the positive
direction, to one, then taking infinitely many steps left, in the negative direction, ar-
riving at 𝜖, and then taking infinitely many steps right, in the positive direction. It is
associated with the 2𝜔-length sequence of one plus followed by infinitely many mi-
nuses, followed by infinitely many pluses, (+,−,−,−, . . . ,+,+,+, . . . ). A riddle for the
reader (to be answered below): what name should we give this number?

1.1 | Arithmetic

Arithmetic operations on the surreal numbers are defined recursively in terms of their
representative bounds. In general, if 𝑥 = {𝑥𝐿 | 𝑥𝑅} and 𝑦 = {𝑦𝐿 | 𝑦𝑅} (where these
representative bounds could be empty, they could be single numbers, or they could be
sequences of numbers),

𝑥 + 𝑦 = {𝑥 + 𝑦𝐿 , 𝑦 + 𝑥𝐿 | 𝑥 + 𝑦𝑅 , 𝑦 + 𝑥𝑅}
−𝑥 = {−𝑥𝑅 | − 𝑥𝐿}
𝑥𝑦 = {𝑥𝐿 𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿 𝑦𝐿 , 𝑥𝑅 𝑦 + 𝑥𝑦𝑅 − 𝑥𝑅 𝑦𝑅

| 𝑥𝐿 𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿 𝑦𝑅 , 𝑥𝑅 𝑦 + 𝑥𝑦𝐿 − 𝑥𝑅 𝑦𝐿}

In the case where the left- or right-hand representative bounds are sequences, you
apply these definitions to all of the numbers in the sequences. If there are no repre-
sentative bounds on the left or right, then you apply them to all of the none of the
numbers in those bounds. The fact that we can start with empty bounds allows the
recursive definitions to get going without a base case.13

To add 𝑥 to 𝑦, you put on the left all of the sums of 𝑥 and the left bounds of 𝑦 and
all of the sums of 𝑦 and the left bounds of 𝑥; and you put on the right all of the sums of
𝑥 and the right bounds of 𝑦 and all of the sums of 𝑦 and the right bounds of 𝑥. (By the
symmetry of this definition, we’ll automatically have that 𝑥 + 𝑦 = 𝑦 + 𝑥.) For instance,
to find the sum 0 + 0 = { | } + { | }, we put on the left all of the none of the sums of
zero and the left bounds of zero, and we put on the right all of the none of the sums
of zero and the right bounds of zero, yielding { | }. So 0 + 0 = 0. To add 0 = { | } and
1 = {0 | }, we put on the left the sum of zero and the left bound of one (along with all
of the none of the sums of one and the left bounds of zero) and we put on the right all
of the none of the sums of one and the right bounds of zero, together with all of the

13. These definitions will still be correct, even when you don’t use the representative bounds; but if you use
bounds less simple than the numbers being added, there’s no guarantee that applying the definitions
recursively will eventually terminate.
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none of the sums of zero and the right bounds of one, yielding {0 + 0 | } = {0 | } = 1.
So 0 + 1 is 1. From here, we can show

1 + 1 = {0 | } + {0 | } = {1 + 0, 1 + 0 | } = {1 | } = 2
0 + 1/2 = { | } + {0 | 1} = {0 + 0 | 0 + 1} = {0 | 1} = 1/2
1 + 1/2 = {0 | } + {0 | 1} = {1 + 0, 0 + 1/2 | 1 + 1} = {1/2, 1 | 2} = 3/2

1/2 + 1/2 = {0 | 1} + {0 | 1} = {0 + 1/2 | 1/2 + 1} = {1/2 | 3/2} = 1

If we let 𝑛 range over all the positive integers, then we can write 𝜔 as ‘{𝑛 | }’. Then,

𝜔 − 1 = 𝜔 + (−1) = {𝑛 | } + { | 0}
= {𝑛 − 1 | 𝜔 + 0}
= {𝑛 | 𝜔}

(Since 𝑛 ranges over all positive integers, the bound 𝑛 − 1, or 0, 1, 2, . . . , is no different
from the bound 𝑛, or 1, 2, 3, . . . .) So 𝜔 − 1 is the simplest number greater than every
positive integer but smaller than 𝜔. In the binary tree, you get to 𝜔 − 1 by traveling
right in the positive direction for infinitely many steps, arriving at 𝜔, and then taking a
single step left in the negative direction. It is associated with the 𝜔+1-length sequence
of infinitely many pluses followed by a single minus: (+,+,+, . . . ,−). Likewise, for any
fixed positive integer 𝑚, 𝜔 − 𝑚 = {𝑛 | 𝜔 − 𝑚 + 1} is the simplest number greater than
every positive integer but less than 𝜔 − (𝑚 − 1).

The definition of multiplication is more complicated. It is justified by the ob-
servation that, since 𝑥 is greater than 𝑥𝐿 and 𝑦 is greater than 𝑦𝐿, we should have
(𝑥 − 𝑥𝐿) ( 𝑦 − 𝑦𝐿) > 0. So if we want the numbers to behave, we should have 𝑥𝑦 >

𝑥𝐿 𝑦+𝑥𝑦𝐿−𝑥𝐿 𝑦𝐿. So we should have 𝑥𝐿 𝑦+𝑥𝑦𝐿−𝑥𝐿 𝑦𝐿 as a left bound of 𝑥𝑦. Similarly,
we should have (𝑥 − 𝑥𝐿) ( 𝑦𝑅 − 𝑦) > 0, giving us the right bound 𝑥𝐿 𝑦 + 𝑥𝑦𝑅 − 𝑥𝐿 𝑦𝑅.
The other bounds follow from the requirements that (𝑥𝑅 − 𝑥) ( 𝑦 − 𝑦𝐿) > 0 and
(𝑥𝑅 − 𝑥) ( 𝑦𝑅 − 𝑦) > 0. Since 0 has no representative bounds, multiplying by zero
will just return zero, so 𝑥 · 0 = 0 for any 𝑥. And, for any 𝑥, we’ll have

𝑥 · 1 = {𝑥𝐿 | 𝑥𝑅} · {0 | } = {𝑥𝐿 · 1 + 𝑥 · 0 − 𝑥𝐿 · 0 | 𝑥𝑅 · 1 + 𝑥 · 0 − 𝑥𝑅 · 0} = {𝑥𝐿 | 𝑥𝑅}

From here, you can verify that 1/2 · 2 = 1 and −1 · 1 = −1, for instance. For a more
interesting example, take 𝜔/2:

𝜔 · 1/2 = {𝑛 | } · {0 | 1}
= {𝑛/2 + 𝜔 · 0 − 𝑛 · 0 | 𝑛/2 + 𝜔 · 1 − 𝑛}
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= {𝑛/2 | 𝜔 − 𝑛/2}
= {𝑛 | 𝜔 − 𝑛}

(Since 𝑛 ranges over all positive integers, 𝑛/2 is the same bound as 𝑛, and 𝜔−𝑛/2 is the
same bound as 𝜔−𝑛.) So 𝜔/2 is the simplest number greater than every positive integer
𝑛 and less than 𝜔 − 𝑛, for any positive integer 𝑛. In the binary tree, you get to 𝜔/2 by
traveling infinitely many steps to the right, arriving at 𝜔, and then traveling infinitely
many steps to the left. It is associated with the 2𝜔-length sequence of infinitely many
pluses followed by infinitely many minuses: (+,+,+, . . . ,−,−,−, . . . ).

I won’t bother proving it here, but it can be proven that surreal addition and mul-
tiplication are associative and commutative, that multiplication distributes over ad-
dition, and that −𝑥 is the additive inverse of 𝑥. There is a way of defining the mul-
tiplicative inverse of 𝑥, 1/𝑥, and it can be shown that 𝑥 · (1/𝑥) = 1. So the surreal
numbers satisfy the field axioms—and they would be a field, but for the fact that they
are too large, forming a proper class rather than a set. Conway calls them a Field, on
the grounds that proper classes, like proper names, should be capitalized.

1.2 | Archimedean parts

The real numbers have the Archimedean property that, for any two positive real num-
bers, 𝑟 and 𝑠, there’s some integer 𝑛 such that 𝑛𝑟 > 𝑠. For any two positive numbers,
one can be stacked up enough times that it overtakes the other. In one sense, the surre-
als are not Archimedean. For any integer 𝑛, 𝑛𝜖 < 1. So we could say that 1 is infinitely
larger than 𝜖. Similarly, there’s no integer 𝑛 such that 𝑛𝜖2 > 𝜖. So we could say that
the square of 𝜖 is infinitely smaller than 𝜖 itself.

As an aside, I think that there’s a deeper sense inwhich the surreals areArchimedean.
For the surreals have their own distinct kind of integer. Say that 𝑛 is a surreal integer
iff 𝑛 is the simplest surreal number between 𝑛 − 1 and 𝑛 + 1, 𝑛 = {𝑛 − 1 | 𝑛 + 1}.14 It
can be shown that the surreal numbers have the following Archimedean-like property:
for any two positive surreal numbers, 𝑥 and 𝑦, there’s some surreal integer 𝑛 such that
𝑛𝑥 > 𝑦.15 The surreals appear non-Archimedean if you’re looking at them from the
perspective of the reals, and only allowing yourself to stack a number up a real integer
number of times. But within the Field of surreal numbers, you should allow yourself
to stack a number up any surreal number of times. Then, for any two positive surreal
numbers, you’ll be able to stack the one up enough times that it overtakes the other.

14. Conway calls them ‘omnific’ integers.

15. See Conway, 1976, ch. 5.
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But put that to the side. Let’s confine our attention to the real integers, and con-
tinue using ‘integer’ to mean real integer. Say that two positive surreal numbers, 𝑥 and
𝑦, are on the same Archimedean level iff there’s some integer 𝑛 so that 𝑛𝑥 > 𝑦 and
some integer 𝑚 so that 𝑚𝑦 > 𝑥. Being on the same Archimedean level is an equiv-
alence relation, so it partitions the positive surreal numbers into equivalence classes,
which we can call Archimedean levels—or just levels. These levels inherit the ordering
of their members. One is higher than another iff the numbers in one are greater than
the numbers in the other. (This will give us a strict total order.) If 𝑋 and 𝑌 are two
Archimedean levels of positive numbers, with 𝑋 higher than 𝑌 , then the numbers in 𝑋
are infinitely larger than the numbers in 𝑌 , and the numbers in 𝑌 are infinitely smaller
than the numbers in 𝑋 .

Each level has a unique simplest member. It is the firstborn of its level. Conway
calls it the ‘leader’. For instance, all of the positive reals are on the same level. (Though
they are not the only numbers on this level; they are joined by numbers like 5 − 6𝜖
and 12 + 𝜖5/

√
𝜔𝜔. In general, these levels are convex: if 𝑥 and 𝑦 are both on the same

level, and 𝑥 < 𝑧 < 𝑦, then 𝑧 is on the level, too.) Amongst all these numbers, 1 is the
firstborn. So 1 is the leader of its level. Similarly, 𝜔 and 𝜖 are the leaders of their levels.

Let 𝜔0 be the simplest leader of all. That is, 𝜔0 = 1. Let 𝜔1 be the simplest positive
number larger than any multiple of 𝜔0, and let 𝜔−1 be the simplest positive number
smaller than any fraction of 𝜔0. That is: 𝜔1 = 𝜔 and 𝜔−1 = 𝜖. We can likewise let
𝜔1/2 be the simplest positive number greater than any multiple of 𝜔0 and less than any
fraction of 𝜔1. That is,

𝜔1/2 =

{
0, 𝑛𝜔0

���� 𝜔12𝑛 } =

{
0, 𝑛

��� 𝜔
2𝑛

}
where 𝑛 ranges over all integers. In the binary tree, you reach 𝜔1/2 by taking infinitely
many steps in the positive direction, arriving at 𝜔, then infinitely many steps in the
negative direction, arriving at 𝜔/2. You then take infinitely many more steps in the
negative direction, arriving at 𝜔/4, followed by infinitely many more in the negative
direction, arriving at 𝜔/8, and so on and so forth, until you’ve taken an infinite number
of left steps an infinite number of times. 𝜔1/2 is associated with an 𝜔2-length sequence
of 𝜔-many pluses followed by 𝜔-many 𝜔 sequences of minuses.

In general, if 𝑥 is any surreal number, there will be a leader 𝜔𝑥 , defined to be the
simplest positive number greater than any multiple of 𝜔𝑥

𝐿

and less than any fraction
of 𝜔𝑥

𝑅

.

𝜔𝑥
def
=

{
0, 𝑛𝜔𝑥

𝐿

����� 𝜔𝑥𝑅2𝑛
}

These leaders can be thought of as powers of 𝜔, since they obey the usual laws of
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𝜔0

𝜔−1

𝜔−2

𝜔−3

𝜔−4

...

𝜔−𝜔

...
...
...

𝜔−5/2

...
...
...
...

𝜔−3/2

𝜔−7/4

...
...
...
...

𝜔−5/4

...
...
...
...

𝜔−1/2

𝜔−3/4

𝜔−7/8

...
...
...
...

𝜔−5/8

...
...
...
...

𝜔−1/4

𝜔−3/8

...
...
...
...

𝜔−1/8

...
...
...
...

𝜔1

𝜔1/2

𝜔1/4

𝜔1/8

...
...
...
...

𝜔3/8

...
...

𝜔1/3

...
...

𝜔3/4

𝜔5/8

...
...
...
...

𝜔7/8

...
...
...
...

𝜔2

𝜔3/2

𝜔5/4

...
...
...
...

𝜔7/4

...
...
...
...

𝜔3

𝜔5/2

...
...
...
...

𝜔4

...
...
...
...

𝜔𝜔

Figure 2: The leaders of the Archimedean levels of positive surreal numbers have the same
order and simplicity structure as the surreal numbers themselves.

exponents. In particular, 𝜔0 = 1, 𝜔𝑥 · 𝜔𝑦 = 𝜔𝑥+𝑦 , and 𝜔−𝑥 = 1/𝜔𝑥 .
The leaders are ordered in the same way as the surreal numbers themselves—

for they are built up in the very same way. (See figure 2.) Since the order of the
Archimedean levels is the same as the order of their leaders, this means that the levels
are also ordered in the same way as the surreal numbers. The levels of the leaders to
the left of 𝜔0 = 1 contain all of the positive numbers infinitely smaller than 1, and
the levels of the leaders to the right of 𝜔0 contain all of the positive numbers infinitely
larger than 1. (Since our topic is surreal probabilities, we will be concerned exclusively
with the level of 𝜔0 = 1 and the levels to its left.)

Any surreal number can be decomposed into a (perhaps infinite) sum of real mul-
tiples of these leaders. Take any surreal number 𝑥. 𝑥 is on some Archimedean level or
other. Let 𝜔𝑦0 be the leader of this level. Then, there will be some real number 𝑟0 such
that 𝑥 is 𝑟0 times 𝜔𝑦0 plus something infinitely smaller than 𝜔𝑦0—call it ‘𝑥1’. That is,
𝑥 = 𝑟0 · 𝜔𝑦0 + 𝑥1. It could be that 𝑥1 = 0, in which case we are done. But if not, 𝑥1 will
be some number infinitely smaller than 𝜔𝑦0 . So 𝑥1 will be on its own level. Let ‘𝜔𝑦1 ’
be the leader of that level. (Note that, since 𝑥1 is infinitely smaller than 𝑥, 𝑦1 must be
smaller than 𝑦0.) Then, there will be some real number 𝑟1 such that 𝑥1 is 𝑟1 times 𝜔𝑦1

plus something infinitely smaller than 𝜔𝑦1—call it ‘𝑥2’. That is, 𝑥1 = 𝑟1 · 𝜔𝑦1 + 𝑥2, and
therefore 𝑥 = 𝑟0 · 𝜔𝑦0 + 𝑟1 · 𝜔𝑦1 + 𝑥2. We can carry on in this way for as long as we have
to until we have no infinitesimal bits left over. In this way, we’ll have written out the
surreal number 𝑥 as a (perhaps infinite) sum of real multiples of leaders.

In general, then, for any surreal number 𝑥, we can find a decreasing sequence of
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surreal numbers ( 𝑦𝛼)𝛼<𝛽 (where 𝛼 and 𝛽 are ordinals), and a corresponding sequence
of real numbers (𝑟𝛼)𝛼<𝛽 , such that

𝑥 =
∑︁
𝛼<𝛽

𝑟𝛼 · 𝜔𝑦𝛼

This is called the Conway normal form of the surreal number 𝑥. It gives us a decompo-
sition of a surreal number into real multiples of its component Archimedean parts. All
surreal numbers have a Conway normal form, and any two distinct surreal numbers
have distinct Conway normal forms.

Doing surreal arithmetic from the foundational definitions can be confusing and
tedious. (But try proving that 1/2 + 1/2 = 1 in the field of real numbers starting from
the foundational definitions!) Breaking surreal numbers down into real multiples of
their Archimedean parts affords us amuch simpler andmore naturalway of adding and
multiplying them. We can just add and multiply the real multiples of the Archimedean
parts using the comfortable and familiar rules for the reals, together with the natural
rules for the powers of 𝜔.16 For instance, if we add 5+6𝜔−1+40𝜔−2 to 4𝜔−1+5𝜔−2+𝜔−3,
we get 5+ 10𝜔−1 + 45𝜔−2 + 𝜔−3. So addition works just as you would expect. Likewise
for multiplication. To get the product of 3𝜔−1/2+4𝜔−3/4 and 𝜔−1/2, just do what comes
naturally:

(3𝜔−1/2 + 4𝜔−3/4) · 𝜔−1/2 = 3𝜔−1 + 4𝜔−5/4

More carefully, if 𝑟 · 𝜔𝑦 appears in 𝑥’s normal form (𝑟 ≠ 0), say that 𝑥 has an 𝜔𝑦th
part. For instance, 5 + 6𝜖 has an 𝜔0th part and an 𝜔−1th part. And 12𝜔 + 7 has an
𝜔1th part and an 𝜔0th part. Now, suppose you want to take the sum or product of 𝑥
and 𝑦. Let (𝑧𝛼)𝛼<𝛽 be a decreasing sequence of surreal numbers such that, for every
𝛼 < 𝛽, either 𝑥 or 𝑦 (or both) has an 𝜔𝑧𝛼 th part, and every Archimedean part of either
𝑥 or 𝑦 appears somewhere in (𝜔𝑧𝛼 )𝛼<𝛽 . Then, we can write 𝑥 as

∑
𝛼<𝛽 𝑟𝛼 · 𝜔𝑧𝛼 and 𝑦

as
∑

𝛼<𝛽 𝑠𝛼 · 𝜔𝑧𝛼 , where (𝑟𝛼)𝛼<𝛽 and (𝑠𝛼)𝛼<𝛽 are real numbers—though some of these
real numbers could be zero, if one of 𝑥 or 𝑦 has an 𝜔𝑧𝛼 th part and the other does not.
Then, we will have that

𝑥 + 𝑦 =
∑︁
𝛼<𝛽

(𝑟𝛼 + 𝑠𝛼) · 𝜔𝑧𝛼

and 𝑥𝑦 =
∑︁
𝛼<𝛽

∑︁
𝛾<𝛽

𝜔𝑧𝛼+𝑧𝛾 · 𝑟𝛼 · 𝑠𝛾

16. See theorem 16 of Ehrlich, 2001.
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This is why we gave the name ‘𝜖2’ to the surreal number {0 | 𝜖/2𝑛}. This is the
number you reach in the binary tree by taking one step to the right from zero, then
infinitely many steps to the left from one, arriving at 𝜖, and then taking infinitely
many more steps to the left. (See figure 1.) It associated with the 2𝜔-length sequence
(+,−,−,−, . . . ,−,−,−, . . . ). And it is𝜔−2, since it is the simplest positive number smaller
than any fraction of 𝜔−1 = 𝜖. So it is the leader of the Archimedean level indexed by
{ | − 1} = −2. Using the rule for multiplication, 𝜔−2 = 𝜔−1 · 𝜔−1 = 𝜖 · 𝜖.

Go back to the riddle from §1.0: what name should we give the surreal number

{𝜖, 2𝜖, 3𝜖, . . . | . . . , 1/8, 1/4, 1/2}?

You may have been tempted to answer ‘𝜔𝜖’. After all, 𝜔 is what we get when we take
infinitely many steps to the right from one, so shouldn’t 𝜔𝜖 be what we get when we
take infinitely many steps to the right from 𝜖? The rules for multiplication teach us
that this tempting thought is incorrect. For 𝜔𝜖 = 𝜔1 · 𝜔−1 = 𝜔0 = 1. Instead, since
this is the simplest number greater than any multiple of 𝜔−1 but less than less than any
fraction of 𝜔0, it is the leader indexed by {−1 | 0} = −1/2. So the answer to the riddle
is ‘𝜔−1/2’, or ‘1/

√
𝜔’—or, since 𝜖 = 𝜔−1, we could call it ‘

√
𝜖’.

Conway normal form allows us to evaluate some (but not all) infinite series. Take,
for instance,

𝜖 + 𝜖/2 + 𝜖/4 + · · · + 𝜖/2𝑛 + . . .

The 𝑛th partial sum of this series is
∑𝑛

𝑖=0
𝜖/2𝑛. Now, we cannot talk sensibly about

these partial sums converging in the surreals, if what we mean by ‘convergence’ is the
epsilon-delta definition from real analysis. Take any increasing 𝜔 sequence of surreals,
𝑥1, 𝑥2, . . . , and take any supposed limit of this sequence, 𝑥. If it’s going to be a limit,
then 𝑥 must be greater than each 𝑥𝑖. But then, there will be a surreal number 𝑦 =

{𝑥1, 𝑥2, . . . | 𝑥}which is strictly greater than every number in the sequence and strictly
less than 𝑥. So let 𝜀 = 𝑥 − 𝑦, and we cannot have 𝑥 − 𝑥𝑛 < 𝜀 for any 𝑥𝑛.17 (Here, 𝜀 is
just some small number; it is not the simplest infinitesimal 𝜖.) But Conway provides
a different way of evaluating this infinite series. Each of the partial sums

∑𝑛
𝑖=0

𝜖/2𝑛 =(∑𝑛
𝑖=0

1/2𝑛
)
· 𝜔−1 is a real multiple of 𝜔−1. And, in the field of real numbers, these

multiples converge to 2. So we can evaluate the infinite series as 2 · 𝜔−1 = 2𝜖.

17. There is a corresponding notion of limit for the surreals, but it only applies to ordinal-length sequences,
not 𝜔 length sequences. See Rubinstein-Salzedo & Swaminathan, 2014.
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More generally„ suppose we have an infinite sum

∞∑︁
𝑖=1

©«
∑︁
𝛼<𝛽

𝑟𝑖𝛼 · 𝜔𝑦𝛼ª®¬
where the numbers being summed all have the same Archimedean parts 𝜔𝑦𝛼 and vari-
able real multiples 𝑟𝑖𝛼 ≠ 0. And, suppose that, for each 𝛼, the set of finite sums

∑𝑛
𝑖=1 𝑟

𝑖
𝛼

converge to 𝑟𝛼 in the reals. Then, we can assign this infinite series the value of
∑

𝛼<𝛽 𝑟𝛼 ·
𝜔𝑦𝛼 . However, if for any 𝛼, the finite sums of the real multiples

∑𝑛
𝑖=1 𝑟

𝑖
𝛼 fail to converge,

then the infinite sum of surreal numbers will be undefined.

That’s all we need to know about the surreal numbers to get going. In the next section,
I’ll discuss which axioms we should use for surreal-valued probabilities. And in §3,
I’ll define a particular surreal-valued probability for the case of flipping a fair coin
infinitely many times.

2 | assumptions about surreal probabilities

I’ll assume that surreal-valued probabilities have the same basic properties as real-
valued probabilities. In particular, I’ll assume that they are...

... non-negative: no proposition’s probability is less than zero;

... normalized: a proposition’s probability is one if it is guaranteed to be true and
zero if it is guaranteed to be false;

...monotonic: if 𝐴 entails 𝐵, then the probability of 𝐵 is no less than the probability
of 𝐴; and

... additive: the sumof 𝐴’s and 𝐵’s probability is equal to the sumof the probabilities
of their union and intersection: ℙ(𝐴) + ℙ(𝐵) = ℙ(𝐴 ∪ 𝐵) + ℙ(𝐴𝐵).

I’ll follow the usual conventions for real-valued probabilities by assuming that two
propositions are independent iff the probability of their conjunction is the product of
their probabilities,ℙ(𝐴𝐵) = ℙ(𝐴) ·ℙ(𝐵). And I’ll understand a conditional probability
to tell us how much less likely a conjunction is than one of its conjuncts, ℙ(𝐴 | 𝐵) =
ℙ(𝐴𝐵)÷ℙ(𝐵). So two propositions are independent iff their conditional probabilities
are equal to their unconditional probabilities,ℙ(𝐴 | 𝐵) = ℙ(𝐴) andℙ(𝐵 | 𝐴) = ℙ(𝐵).

In addition, I’ll assume that surreal-valued probabilities are regular, meaning that
a proposition’s probability is zero only if it is guaranteed to be false. This assumption
is pre-theoretically plausible, but it has to be rejected if probabilities are real-valued,
since any way of assigning positive real numbers to each of an uncountable number
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of possibilities will either violate additivity or normalization. But surreal probabilities
won’t encounter this difficulty. Inmy view, this is a series advantage of of using surreal
numbers to represent probabilities. I’ll have more to say about this in §4.

Are surreal probabilities countably additive? That is, must the probability given to
a countable union of disjoint propositions equal the infinite sum of the probabilities of
those propositions? Of course, infinite sums of probabilities needn’t be well-defined
in the surreals, but we can still ask whether probabilities are countably additive when
the relevant infinite sums are well-defined. That is, we can ask whether, if 𝐴𝑖𝐴𝑗 = ∅
for each 𝑖 ≠ 𝑗,

ℙ

(⋃
𝑖=1

𝐴𝑖

)
=

∞∑︁
𝑖=1

ℙ(𝐴𝑖) if defined

Because infinite series whose partial sums are bounded can fail to be defined, the sur-
real version of countable additivity is less constraining than its real analogue. If proba-
bilities are real-valued, then a countably infinite fair lottery is inconsistent with count-
able additivity. But there is no conflict if probabilities are surreal-valued. We are free
to say that each ticket has an infinitesimal probability of 𝜖 of winning. For the infinite
sum

∑∞
𝑛=1 𝜖 is not well-defined. (The partial sums of the real multiples of 𝜖,

∑𝑛
𝑖=1 1,

diverge to infinity.) So we are free to say that the probability of some ticket winning is
1.

Nonetheless, wemust reject the surreal analogue of countable additivity. Consider
the proposition that the coin lands heads on every flip, 𝐴 = h1h2h3 . . . . If probabil-
ities are surreal-valued, then this proposition should presumably receive a positive
infinitesimal probability. Call that probability, whatever it is, ‘𝑥’. Then, consider the
proposition that the coin doesn’t land heads on every flip, ¬𝐴 = ¬(h1h2h3 . . . ). ¬𝐴
says that there is at least one tails landing. Given our other assumptions about proba-
bilities, ¬𝐴must have a probability equal to 1−𝑥.18 But¬𝐴 is equivalent to the infinite
disjoint union t1 ∪ h1t2 ∪ h1h2t3 ∪ . . . . And the infinite sum of the probabilities of the
propositions in this disjoint union is well defined, and is equal to 1, not 1 − 𝑥.

ℙ(t1) + ℙ(h1t2) + ℙ(h1h2t1) + . . . = 1/2 + 1/4 + 1/8 + · · · + 1/2𝑛 + · · · = 1

So ifwewant probabilities to be surreal-valued, andwe continue to understand infinite
sums of surreal numbers as Conway taught us to understand them, then countable
additivity must be rejected. If we want a surreal version of countable additivity, then
we need a different way of evaluating infinite sums of surreal numbers.

18. From normalization, ℙ(𝐴 ∪ ¬𝐴) = 1 and ℙ(𝐴 ∩ ¬𝐴) = 0. So, from additivity, ℙ(𝐴) + ℙ(¬𝐴) = 1. So
ℙ(¬𝐴) = 1 − ℙ(𝐴).
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As an aside, let me note that this example doesn’t threaten a related principle
known as ‘countable subadditivity’. Let 𝐴1, 𝐴2, 𝐴3, . . . be an infinite sequence of propo-
sitions (which could be, but needn’t be, disjoint). And suppose that the infinite sum∑∞

𝑖=1 ℙ(𝐴𝑖) is well-defined. Then, countable subadditivity says that the probability
that at least one of the propositions 𝐴𝑖 is true cannot exceed the value of this infinite
sum—if that infinite sum is well-defined. That is,

ℙ

( ∞⋃
𝑖=1

𝐴𝑖

)
⩽

∞∑︁
𝑖=1

ℙ(𝐴𝑖) if defined

Countable subadditivity won’t require us to say that the probability of the coin having
at least one tails landing, ¬𝐴, is 1. Instead, it will only require its probability to be no
higher than 1. In the real numbers, countable subadditivity implies countable additivity
so long as probabilities are at least finitely additive. For suppose we have an infinite
collection of pairwise disjoint propositions, 𝐴1, 𝐴2, . . . . Then, finite additivity tells us
that the probability of

⋃∞
𝑖=1 𝐴𝑖 can be no less than the infinite sum

∑∞
𝑖=1 ℙ(𝐴𝑖). For the

infinite sum is defined to be the least upper bound of the finite partial sums. By finite
additivity, each finite partial sum is the probability of some finite union of the 𝐴𝑖s. And
by monotonicity, the probability of

⋃∞
𝑖=1 𝐴𝑖 cannot be less than the probability of any

finite union of the 𝐴𝑖s. So, in the reals, if we have an infinite collection of pairwise
disjoint propositions, then finite additivity and countable subadditivity will together
imply that

∞∑︁
𝑖=1

ℙ(𝐴𝑖) ⩽ ℙ

( ∞⋃
𝑖=1

𝐴𝑖

)
⩽

∞∑︁
𝑖=1

ℙ(𝐴𝑖)

Where the inequality on the left follows from finite additivity and the inequality on
the right follows from countable subadditivity. And this implies that, whenever the
𝐴𝑖s are pairwise disjoint, ℙ

(⋃∞
𝑖=1 𝐴𝑖

)
=

∑∞
𝑖=1 ℙ(𝐴𝑖), which is countable additivity.

However, given the way that infinite sums are defined in the surreals, finite additivity
will not imply that

∑∞
𝑖=1 ℙ(𝐴𝑖) ⩽ ℙ

(⋃∞
𝑖=1 𝐴𝑖

)
when the 𝐴𝑖s are pairwise disjoint. For,

in the surreal numbers, the infinite sum is not the least upper bound on the finite partial
sums. There will always be surreal numbers in between all of the finite partial sums
and the infinite sum. For instance, the surreal number 1 − 𝜖 is strictly greater than
each of the finite sums

∑𝑛
𝑖=1

1/2𝑖, but strictly less than the infinite sum ∑∞
𝑖=1

1/2𝑖 = 1.
If we understand infinite sums as Conway taught us to understand them, then surreal
probabilities cannot be countably additive; but they may yet be countable subadditive.

Consider an infinite fair lottery. Because the lottery is fair, every ticket must be
given the same probability of winning. There are infinitely many tickets, so the prob-
ability of any particular ticket winning must be infinitesimal. Which infinitesimal? As
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far as I can see, the probability axioms on their own don’t require us to make any
particular choice. But one answer naturally suggests itself: the reciprocal of the cardi-
nality of the number of tickets. After all, given any finite number of tickets, 𝑁 , a fair
lottery will give a probability of 𝑁−1 to each ticket winning. It’s natural to extend this
pattern when the number of tickets is infinite, and say that, if the cardinality of the set
of tickets is 𝛼, then a fair lottery will give a probability of 𝛼−1 to each ticket winning.
This is the simplest choice, and so it’s the one I will make. But I want to emphasize
I am not endorsing any general principle about the relationship between probability
and cardinality. In particular, we cannot say that a uniformmeasure over any partition
of cardinality 𝛼 should give probability 𝛼−1 to each cell in the partition.

To appreciate why, take the case of a countably infinite fair lottery. In this case, we
can model the relevant possibilities with the positive integers, W= {1, 2, 3, . . . }, with
the interpretation that 𝑛 is the world in which ticket 𝑛 wins. The cardinality of W is
𝜔. So I have proposed setting the probability of each𝑊 ∈ W to 𝜔−1 = 𝜖. But notice
that W can be partitioned into the following propositions (notice how the numbers
count along the anti-diagonals):19

𝐴0 = { 1, 3, 6, 10, 15, 21, . . . }
𝐴1 = { 2 5 9 14 20 27 . . . }
𝐴2 = { 4 8 13 19 26 34 . . . }
𝐴3 = { 7 12 18 25 33 42 . . . }
𝐴4 = { 11 17 24 32 41 51 . . . }

...

We already know how to calculate the probability that a ticket from 𝐴𝑚 wins if there
is a finite number of tickets 𝑛—call this probability ‘ℙ(𝐴𝑚,𝑛)’. As 𝑛 goes to infinity,
the ratio ℙ𝑛(𝐴𝑚,𝑛) ÷ ℙ𝑛(𝐴𝑚+1,𝑛) converges to 1. So it’s natural to assume that every
proposition in this countable partition should be just as likely as every other. By ad-
ditivity, ℙ(𝐴𝑚) must be greater than 𝜖, greater than 2𝜖, greater than 3𝜖, and so on and
so forth. So its probability must be on an Archimedean level greater than 𝜖 = 𝜔−1.
So we cannot say that the probability of 𝐴𝑚 is 𝜔−1, even though our probabilities are
uniform over the partition {𝐴0, 𝐴1, 𝐴2, . . . }, and this partition has a cardinality of 𝜔.
So there is no general principle for determining infinitesimal probabilities on the basis
of cardinality alone.

Nonetheless, I will assume that, if 𝛼 is the cardinality of W, then a uniform dis-
tribution over Wassigns a probability of 𝛼−1 to each𝑊 ∈ W. I’m inclined to regard

19. 𝐴0 contains all the triangular numbers {𝑇 (𝑛) | 𝑛 ∈ ℤ+}, where 𝑇 (𝑛) = ∑𝑛
𝑖=1 𝑖. And for 𝑚 ⩾ 1, 𝐴𝑚 is

{𝑇 (𝑛 + 𝑚) − 𝑚 | 𝑛 ∈ ℤ+}.
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this as no more than a matter of convention. After all, for any positive 𝑥 and 𝑦, the
interval of surreal numbers [𝜔−𝑥 , 1] is isomorphic to [𝜔−𝑦 , 1]. These intervals are dis-
tinguished by the simplicity of their endpoints; they cannot be distinguished by the
Field operations + and ×, for there is an isomorphism of the surreal numbers which
maps one of these intervals into the other.20 So any collection of surreal probabili-
ties living in one of these intervals has a matching collection of surreal probabilities
living in the other. In the field of real numbers, we represent probabilities by their
relative positions in the interval [0, 1]. Singling this interval out involves two conven-
tional choices: which number to use as the lowest possible probability and which to
use as the greatest possible probability. There’s no reason we have to use zero and one,
though it is convenient to do so. In the Field of surreal numbers, there’s an additional
conventional choice to be made: which infinitesimal value to use for a uniform distri-
bution. There’s no reason we have to use the reciprocal of the cardinality of W, but it
is convenient and simple to do so.

3 | surreal probabilities for coin flipping

3.0 | Assumptions about probabilities for coin flipping.

Suppose we will flip a fair coin infinitely many times. We can model this with a set of
infinite sequences of ‘h’s and ‘t’s. Let ‘W’ be the set of infinite sequences like this, and
call each sequence in W a ‘world’. Propositions about how the coin lands are sets of
worlds. For instance, the proposition that the coin lands heads on the first flip, h1, is
the set of all sequences from Wwhich begin with an h, and the proposition that the
coin lands heads on every third flip, h1h4h7h11 . . . is the set of all sequences from W

that have an ‘h’ in every third position.
Since the coin is fair, every sequence in W should be just as likely as every other.

That is, we should have ℙ(𝑊 ) = ℙ(𝑊∗) for any 𝑊,𝑊∗ ∈ W. There are as many
sequences of ‘h’s and ‘t’s in W as their are real numbers,21 so the cardinality of W
is 2𝜔 = 𝔠. Here, ‘2𝜔’ is not surreal exponentiation, but rather the cardinality of all
functions from 𝜔 to 2 = {0, 1}; that is, it is the cardinality of the powerset of 𝜔, which
is the cardinality of the set of real numbers. If we assume the continuum hypothesis,
𝔠 = 𝜔1, the first uncountable cardinal; but if the continuum hypothesis is false, 𝔠 could
be greater than 𝜔1. Since it won’t matter for our purposes whether the continuum

20. See Hamkins (2024).

21. To appreciate this, note that each sequence can be associated with a real number between zero and one.
Just swap out each ‘h’ with a ‘1’ and swap out each ‘t’ with a ‘0’, and interpret the resulting sequence
as the decimal expansion of a real number in [0, 1] in binary. Since there are uncountably many real
numbers in [0, 1] , there are uncountably many ways for the coin to land.
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hypothesis is true or false, I’ll just use ‘𝔠’. But note that 𝔠, whichever ordinal it is, is the
leader of its Archimedean level. For no infinite cardinal is any realmultiple of a smaller
infinite cardinal. So 𝔠−1 is some power of 𝜔. That is, there’s some surreal number 𝑥
such that 𝔠−1 = 𝜔−𝑥 . And thus, for any surreal number 𝑦, 𝔠−𝑦 = 𝜔−𝑥𝑦 , by the rules
for powers of 𝜔. So if we say that the probability of some 𝐴 ⊆ W is 𝑟 · 𝔠−𝑧 , for some
real number 𝑟 and some surreal number 𝑧, we are writing this probability in Conway
normal form, and we can continue to use the arithmetic rules from §1.2.

For the case of flipping a fair coin infinitely often, the standard approach to defin-
ing probabilities starts with propositions about how the coin lands on some finite
number of flips. We then say that the probability of a proposition specifying how the
coin lands on 𝑛 flips is 2−𝑛, and we appeal to common ‘extension’ theorems showing
that these probabilities can be (uniquely) extended to a (countably additive) probabil-
ity distribution over a 𝜎-algebra containing all the propositions about how the coin
lands on the first 𝑛 flips.22 On the orthodox approach, propositions like ‘the coin lands
heads on every odd flip’, h1h3h5h7 . . . , end up getting defined by the extension theo-
rems. Because orthodoxy only uses real-valued probabilities, all propositions like this
are assigned probability zero. Since we want to assign non-zero probability to propo-
sitions like these, we cannot rely on the standard extension theorems to define surreal
probabilities. So I will start with a different set of propositions.

These propositions will specify how the coin lands on particular flips. So they
will be (perhaps infinite) conjunctions of propositions of the form ‘h𝑛’. I won’t start
off assigning probabilities to disjunctive propositions like ‘the coin either lands heads
on every odd flip or it lands heads on each flip which is a multiple of four’. (Though
once we’ve assigned a probability to both ‘the coin lands heads on every odd flip’, ‘it
lands heads on each flip which is a multiple of four’, and ‘it lands heads on any flip
which is either odd or a multiple of four’, we will be able to determine the probability
of this disjunctive proposition.) I assume that, since the coin is fair, making changes
to how a proposition specifies the outcome of certain flips without changing whether
it specifies those outcomes won’t make any difference to the proposition’s probability.
For instance, the proposition h1h3h5h7h9 . . . , which says that the coin lands heads on
every odd flip, will have the same probability as the proposition t1h3t5h7t9 . . . , which
says that the coin lands tails on every 4𝑛− 3rd flip and heads on every 4𝑛− 1st flip. So
I’ll limit attention to propositions which say that the coin lands heads on certain flips.
Once we’ve given probabilities to these propositions, it’s straightforward to extend

22. A 𝜎-algebraAis a set of propositions containing Wwhich is closed under complementation and count-
ably union. That is, W ∈ A, 𝐴𝑐 ∈ Awhenever 𝐴 ∈ A, and

⋃∞
𝑖=1 𝐴𝑖 ∈ Awhenever 𝐴1, 𝐴2, · · · ∈ A. For

details, see Rosenthal, 2006.
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those probabilities to propositions which call tails landings.
Say that a proposition about how the coin lands is periodicwhenever the flips it calls

eventually settle into a repeating pattern. That is, a proposition is periodic whenever
there’s some 𝑁 and some 𝑝 (the period of the proposition) such that, for every 𝑛 > 𝑁 ,
the proposition calls flip 𝑛 if and only if it calls flip 𝑛+ 𝑝𝑘, for every positive integer 𝑘.
If a proposition is periodic, then we can specify what that proposition says by saying
how it calls some finite number of flips before it settles into its repeating pattern and
then saying how the pattern repeats from there. For instance, the proposition that the
coin lands heads on every flip is periodic with a period of 1. The proposition that the
coin lands heads on every odd flip is periodic with a period of 2. For amore interesting
example, take the proposition that the coin lands heads on every prime flip less than
100, and then on flips 101, 110, 200, 201, 210, 300, 301, 310 and so on. This proposition
is periodic with a period of 100. The repeating pattern starts after flip 100; from there
on out, it calls the first, tenth, and hundredth of every hundred flips.

Notice that the set of periodic propositions is closed under finite intersection. If 𝐴
is periodic with a period of 𝑝 and 𝐵 is periodic with a period of 𝑞, then 𝐴𝐵will be peri-
odic with a period of 𝑝𝑞. So the set of periodic propositions is what’s known as a meet
semi-lattice. In the appendix, I show that probabilities defined over ameet semi-lattice
may be uniquely extended to a probability over a full algebra of propositions. So if we
define surreal probabilities for every periodic proposition, we will have thereby de-
fined surreal probabilities for any Boolean combination of the periodic propositions.

I will make two assumptions about the surreal probabilities of coin flipping. These
assumptions leverage what we already know about the probabilities of propositions
calling a finite number of flips to tell us something about the probabilities of proposi-
tions calling an infinite number of flips. Firstly, I will assume that periodic propo-
sitions about different coin flips are independent. This will hold for any proposi-
tion which calls only finitely many heads. For instance, h1h5h117 is independent of
h9h110h200h201. I will assume that the same is true even when a proposition calls in-
finitely many heads. So, for instance, the proposition that the coin lands heads on
every odd flip,𝑂 = h1h3h5h7 . . . , is independent of the proposition that the coin lands
heads on every even flip, 𝐸 = h2h4h6h8 . . . .

Independence If 𝐴 and 𝐵 are propositions about different coin flips, then 𝐴 and 𝐵

are independent.

With the periodic propositions, it’s easy to specify what we mean by the proposition
being about a particular coin flip. If 𝐴 is periodic, then 𝐴 is about flip 𝑛 iff it includes
h𝑛 as a conjunct. With other propositions, matters get murkier. Consider the propo-
sitions ‘the coin lands heads on only finitely many flips’ and ‘the coin lands heads on
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only finitely many flips after the first’. It can seem that the first proposition is about the
first flip in a way that the second proposition is not—but these are one and the same
proposition.23

Given any periodic proposition 𝐴, let ‘𝐴𝑛’ say whatever 𝐴 says about the first 𝑛
flips, and no more. For instance, if 𝑂 is the proposition that the coin lands heads on
all odd flips, h1h3h5 . . . , then 𝑂10 = h1h3h5h7h9. And if 𝐻 is the proposition that the
coin lands heads on every hundredth flip, then 𝐻320 = h100h200h300. It could be that 𝐴
says nothing about the first 𝑛 flips. In that case, 𝐴𝑛 will be the tautology, true of every
sequence, 𝐴𝑛 = W.24 My second assumption will be that we can use the limiting
behavior of the probabilities of 𝐴𝑛 and 𝐵𝑛 to infer something about the Archimedean
levels ofℙ(𝐴) andℙ(𝐵). In particular, suppose that the ratioℙ(𝐴𝑛) ÷ℙ(𝐵𝑛) diverges
to infinity as 𝑛 goes to infinity. Then, as the number of flips 𝑛 gets larger, 𝐴𝑛 gets
increasinglymore likely than 𝐵𝑛. There’s somenumber of flips afterwhich 𝐴𝑛 is always
at least twice as likely as 𝐵𝑛; some number of flips after which 𝐴𝑛 is always at least
thrice as likely as 𝐵𝑛, and so on and so forth. In this case, we should say that 𝐴 is
infinitely more likely than 𝐵. That is, we should putℙ(𝐴) on a higher level thanℙ(𝐵).
By the same token, if the ratio ℙ(𝐴𝑛) ÷ ℙ(𝐵𝑛) converges to zero, then we should say
that 𝐴 is infinitely less likely than 𝐵, and we should put ℙ(𝐴) on a lower level than
ℙ(𝐵). (ℙ(𝐴𝑛) ÷ ℙ(𝐵𝑛) will converge to zero iff ℙ(𝐵𝑛) ÷ ℙ(𝐴𝑛) diverges to infinity.)
However, if as 𝑛 goes off to infinity, the ratio remains within an interval (1/𝑟, 𝑟), for
some real number 𝑟, then we should say that neither 𝐴 nor 𝐵 is infinitely more likely
than the other, and we should put both ℙ(𝐴) and ℙ(𝐵) on the same level.

Let #𝐴𝑛 be how many of the first 𝑛 flips the proposition 𝐴 says something about.
Then, the ratio ℙ(𝐴𝑛) ÷ ℙ(𝐵𝑛) will be 2#𝐵𝑛−#𝐴𝑛 . This number will diverge to infinity
as 𝑛 goes to infinity iff the difference #𝐵𝑛 − #𝐴𝑛 grows without bound, going off to
∞ in the limit. So another way of putting this assumption is to say that, if #𝐵𝑛 − #𝐴𝑛

diverges to∞, then ℙ(𝐴) is on a higher level than ℙ(𝐵). If, however, as 𝑛 goes off to
infinity, #𝐵𝑛 − #𝐴𝑛 remains bounded between −𝑁 and 𝑁 , for some natural number
𝑁 , then ℙ(𝐴) and ℙ(𝐵) are on the same level.

Probabilities and Limits Take any two periodic propositions, 𝐴 and 𝐵. If, as 𝑛 goes
to infinity, the difference between the number of heads called by 𝐵 by the 𝑛th
flip and the number of heads called by 𝐴 by the 𝑛th flip, #𝐵𝑛 − #𝐴𝑛, is bounded,
then ℙ(𝐴) and ℙ(𝐵) are on the same Archimedean level. If, on the other hand,
the difference #𝐵𝑛−#𝐴𝑛 diverges to∞ as 𝑛 gets larger, thenℙ(𝐴) is on a higher
level than ℙ(𝐵).

23. Cf. Builes’ paradox (Builes, 2020, and Dorr et al., 2021).

24. In general, if𝑊𝑛 is the set of sequences which match the first 𝑛 outcomes of𝑊 , then 𝐴𝑛 =
⋃

𝑊 ∈𝐴𝑊𝑛.
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𝑛 1 2 3 4 5 6 7 8 9 10 · · ·
ℙ(𝑂𝑛) 1/2 1/2 1/4 1/4 1/8 1/8 1/16 1/16 1/32 1/32 · · ·
ℙ(𝐸𝑛) 1 1/2 1/2 1/4 1/4 1/8 1/8 1/16 1/16 1/32 · · ·

ℙ(𝑂𝑛) ÷ ℙ(𝐸𝑛) 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 · · ·

Table 1: As 𝑛 goes off to infinity, the ratio ℙ(𝑂𝑛) ÷ℙ(𝐸𝑛) will fluctuate between one half and
one forever.

3.1 | The Archimedean levels of surreal probabilities

With these assumptions, we can begin to calculate the Archimedean levels of the prob-
abilities of periodic propositions. Consider 𝐴, which says that the coin lands heads
on all flips, 𝐴 = h1h2h3h4 . . . ; 𝐸, which says that the coin lands heads on all even
flips, 𝐸 = h2h4h6h8 . . . ; and 𝑂, which says that the coin lands heads on all odd flips,
𝑂 = h1h3h5h7 . . . . Notice that, as 𝑛 gets larger, the ratio of ℙ(𝑂𝑛) ÷ ℙ(𝐸𝑛) will flip
back and forth between one half and one forever. For odd 𝑛, the ratio is one half,
and for even 𝑛, the ratio is 1. (See table 1.) So our assumptions tell us that 𝑂 and 𝐸

must be on the same level. Call that level, whatever it is, 𝔠−𝑥0 . So we can write that
ℙ(𝑂) = ∑

𝑖⩾0 𝑟𝑖 · 𝔠−𝑥𝑖 and ℙ(𝐸) =
∑

𝑗⩾0 𝑠𝑗 · 𝔠−𝑥 𝑗 , for some increasing sequence of sur-
real numbers 𝑥0, 𝑥1, 𝑥2, . . . , and some real numbers 𝑟0, 𝑟1, 𝑟2, . . . and 𝑠0, 𝑠1, 𝑠2, . . . such
that both 𝑟0 and 𝑠0 are non-zero. Next, notice that 𝑂 and 𝐸 are independent, and that
their conjunction is just 𝐴. And we already know that the probability of 𝐴 is 𝔠−1. So
we must have

ℙ(𝐴) = ℙ(𝑂) · ℙ(𝐸)

𝔠−1 =

(∑︁
𝑖⩾0

𝑟𝑖 · 𝔠−𝑥𝑖
)
·
(∑︁
𝑖⩾0

𝑠𝑖 · 𝔠−𝑥𝑖
)

𝔠−1 =
∑︁
𝑖⩾0

∑︁
𝑗⩾0

𝑟𝑖𝑠𝑗 · 𝔠−(𝑥𝑖+𝑥 𝑗)

Since the left-hand-side has just a single Archimedean part, the right-hand-side must
also have just a single Archimedean part. So we must have all but one of the products
𝑟𝑖𝑠𝑗 = 0. Since we already know that 𝑟0𝑠0 is non-zero,

𝔠−1 = 𝑟0𝑠0𝔠
−2𝑥0

So 𝑥0 = 1/2, and 𝑟0𝑠0 = 1. So the Archimedean level of both ℙ(𝑂) and ℙ(𝐸) is 𝔠−1/2,
or 1/

√
𝔠. And their real multiples are reciprocals of each other. (I’ll return to these real

multiples in the next section, but let’s put them to the side for now.)
Next, consider the proposition 𝑇1 = h1h4h7h10h13 . . . , which says that the coin

24 / 35



§3 surreal probabilities for coin flipping

𝑛 1 2 3 4 5 6 7 8 9 10 · · ·
ℙ(𝑇1,𝑛) 1/2 1/2 1/2 1/4 1/4 1/4 1/8 1/8 1/8 1/16 · · ·
ℙ(𝑇2,𝑛) 1 1/2 1/2 1/2 1/4 1/4 1/4 1/8 1/8 1/8 · · ·
ℙ(𝑇3,𝑛) 1 1 1/2 1/2 1/2 1/4 1/4 1/4 1/8 1/8 · · ·

ℙ(𝑇1,𝑛) ÷ ℙ(𝑇2,𝑛) 1/2 1 1 1/2 1 1 1/2 1 1 1/2 · · ·
ℙ(𝑇2,𝑛) ÷ ℙ(𝑇3,𝑛) 1 1/2 1 1 1/2 1 1 1/2 1 1 · · ·

Table 2: As 𝑛 goes off to infinity, the ratiosℙ(𝑇1,𝑛)÷ℙ(𝑇2,𝑛) andℙ(𝑇2,𝑛)÷ℙ(𝑇3,𝑛)will fluctuate
between one half and one forever.

lands heads on the first of every three flips, 𝑇2 = h2h5h8h11h14 . . . , which says that
the coin lands heads on the second of every three flips, and 𝑇3 = h3h6h9h12h15 . . . ,
which says that the coin lands heads on the third of every three flips. Our assumptions
tell us that 𝑇1, 𝑇2, and 𝑇3 are all on the same level. For, as 𝑛 gets larger, the ratios
ℙ(𝑇1,𝑛) ÷ℙ(𝑇2,𝑛) andℙ(𝑇2,𝑛) ÷ℙ(𝑇3,𝑛) will fluctuate back and forth between one half
and one forever. (See table 2.) So they will be bounded, and none of 𝑇1, 𝑇2, and 𝑇3 are
infinitely more likely than any of 𝑇1, 𝑇2, and 𝑇3. These three propositions are about
different flips, so they are independent.25 And their conjunction is 𝐴 = h1h2h3h4 . . . .
Sowemust haveℙ(𝐴) = ℙ(𝑇1)·ℙ(𝑇2)·ℙ(𝑇3). The kind of reasoningwewent through
in the previous paragraph shows that, in general, two numbers whose product has a
single Archimedean part cannot have more than one Archimedean part. So we know
that each of ℙ(𝑇1), ℙ(𝑇2), and ℙ(𝑇3) have just one Archimedean part, and we can
write that ℙ(𝑇1) = 𝑟 · 𝔠−𝑦 , ℙ(𝑇2) = 𝑠 · 𝔠−𝑦 and ℙ(𝑇3) = 𝑡 · 𝔠−𝑦 . Then,

ℙ(𝐴) = ℙ(𝑇1) · ℙ(𝑇2) · ℙ(𝑇3)
𝔠−1 = (𝑟 · 𝔠−𝑦) · (𝑠 · 𝔠−𝑦) · (𝑡 · 𝔠−𝑦)
𝔠−1 = 𝑟𝑠𝑡 · 𝔠−3𝑦

So 𝑦 = 1/3, and 𝑟𝑠𝑡 = 1. So the level of ℙ(𝑇1),ℙ(𝑇2), and ℙ(𝑇3) is 𝔠−1/3. By similar
reasoning, ℙ(𝑇1𝑇2), ℙ(𝑇1𝑇3), and ℙ(𝑇2𝑇3) are on level 𝔠−2/3, with real multiples 𝑟𝑠,
𝑠𝑡, and 𝑟𝑡, respectively.
We can apply this kind of reasoning more generally. Pick any rational number 𝑞/𝑝

with both 𝑞 and 𝑝 integers greater than zero and 𝑞 less than 𝑝. Then, let 𝑃1 say that
the coin lands heads on the first of every 𝑝 flips, let 𝑃2 say that it lands heads on the
second of every 𝑝 flips, and so on and so forth. The sequence of ratiosℙ(𝑃𝑖) ÷ℙ(𝑃𝑖+1),
for each 𝑖 < 𝑝, will be bounded, so each ℙ(𝑃𝑖) must be on the same level. Each 𝑃𝑖 is

25. Not only are 𝑇1, 𝑇2, and 𝑇3 independent, but also 𝑇1𝑇2 and 𝑇3 are independent, since 𝑇1𝑇2 and 𝑇3 are
about different flips.
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independent of every other, since they each call different flips.26 And 𝑃1𝑃2 . . . 𝑃𝑝 is the
proposition 𝐴 = h1h2h3h4 . . . . So

ℙ(𝐴) = ℙ(𝑃1) · ℙ(𝑃2) · · · · · ℙ(𝑃𝑝)
𝔠−1 = (𝑟1 · 𝔠−𝑧) · (𝑟2 · 𝔠−𝑧) · · · · ·

(
𝑟𝑝 · 𝔠−𝑧

)
𝔠−1 = 𝑟1𝑟2 . . . 𝑟𝑝 · 𝔠−𝑝𝑧

So 𝑧 = 1/𝑝, and 𝑟1𝑟2 . . . 𝑟𝑝 = 1. By similar reasoning, we will get that ℙ(𝑃1𝑃2 . . . 𝑃𝑞)
must live on the level 𝔠−𝑞/𝑝.

So for every rational number between 0 and 1, there is a correspondingArchimedean
level of surreal probabilities about how the coin lands. And since 𝔠−𝑥 > 𝔠−𝑦 whenever
𝑦 > 𝑥, the ordering of these levels is the reverse of the ordering of the rationals. So the
levels of surreal probabilities are dense—between any two are infinitely many others.

3.2 | Shifted propositions

Given any proposition 𝐴, let 𝐴⊕𝑚 (read ‘𝐴 shift𝑚’) say about the 𝑛+𝑚th flip whatever
𝐴 says about the 𝑛th flip. For instance, if we let 𝐴 be the proposition that the coin lands
heads on all flips, h1h2h3h4 . . . , then 𝐴 ⊕ 1 = h2h3h4h5 . . . , 𝐴 ⊕ 2 = h3h4h5h6 . . . , and
so on. 𝐴 ⊕ 𝑚 must be 2𝑚 times as likely as 𝐴. For 𝐴 itself is just the conjunction
of a proposition saying that the first 𝑚 flips land heads and 𝐴 ⊕ 𝑚. So we must have
ℙ(𝐴) = ℙ(h1h2 . . . h𝑚) ·ℙ(𝐴⊕𝑚) andwe know thatℙ(h1h2 . . . h𝑚) = 2−𝑚. Therefore,
ℙ(𝐴 ⊕ 𝑚) = 2𝑚 · ℙ(𝐴).

Williamson (2007) objects to non-Archimedean probabilities because he believes
that 𝐴 ⊕ 1 should be just as likely as 𝐴. After all, any infinite sequence of heads land-
ings is qualitatively indistinguishable from any other. Qualitatively indistinguishable
outcomes should have the same probability. So the probability of ℙ(𝐴 ⊕ 1) should be
equal to the probability of ℙ(𝐴). Moreover, we must have ℙ(𝐴) = ℙ(h1) · ℙ(𝐴 ⊕ 1),
and ℙ(h1) = 1/2, so we must have ℙ(𝐴) = 0.

What this shows us is that, if we think that there are non-Archimedean probabil-
ities, then we must deny that qualitatively indistinguishable outcomes have the same
probabilities. This is a cost, to be sure, but no way out is cost-free. The following
claims are all independently plausible but jointly inconsistent given normalization: (a)
𝐴 ⊕ 1 is just as likely as 𝐴; (b) 𝐴 ⊕ 1 is twice as likely as 𝐴; and (c) 𝐴 is more likely
than a contradiction. Williamson’s reasoning shows us that (a) and (b) imply that the
probability of 𝐴must be zero. But if the probability of 𝐴 is zero, then 𝐴 is just as likely

26. Moreover, any conjunction of the 𝑃𝑖 ’s is about different flips than any conjunction of the rest of the 𝑃𝑖 ’s.
So those propositions are independent, too.
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as a contradiction. Williamson decides to reject (c) and say that 𝐴 is no more likely
than a contradiction; non-Archimedean approaches to probability reject (a) and say
that qualitatively indistinguishable outcomes can have different probabilities.

Talk of one probability being twice another onlymakes sense given themultiplica-
tive structure of some field of numbers. But as Williamson notes, we can formulate a
similar argument using only qualitative comparative relations like ‘𝑋 is more likely
than 𝑌 ’. Assume that this relation obeys a version of additivity according to which, if
𝑍 is disjoint from 𝑋 and 𝑌 , then 𝑋 is more likely than 𝑌 only if 𝑋 ∪ 𝑍 is more likely
than 𝑌 ∪ 𝑍. Then, the following two claims are inconsistent:

(1) 𝐴 ⊕ 1 is no more likely than 𝐴.

(2) Anything possible is more likely than anything impossible.

To appreciate the inconsistency, consider the proposition 𝐵, which says that the coin
lands tails on the first flip and heads thereafter, 𝐵 = t1h2h3h4 . . . . Since 𝐵 is possible,
(2) tells us that 𝐵 is more likely than a contradiction, ⊥. So the additivity assumption
tells us that 𝐴 ∪ 𝐵 = 𝐴 ⊕ 1 is more likely than 𝐴 ∪ ⊥ = 𝐴, contradicting (1).

It’s no doubt counterintuitive to deny (1); but it is likewise counterintuitive to deny
(2). Deciding between these counterintuitive conclusions requires a more systematic
investigation of the total theories which endorse (1) and those which endorse (2). Shift-
ing the flips you call forward doesn’t seem like it should make a difference to the prob-
ability of your claim. But nor does it seem that shifting the guests in your hotel over
one room should make a difference to whether you have any vacancies. Actual infini-
ties require us to deny intuitive claims like these. Of course, denying intuitive claims
is still a cost; but it appears to be the cost of admission to the realm of the infinite.
You can seek solace in finitism; but if you wish to theorize about the probabilities of
infinite sequences, there is a price to be paid. Either probabilities distinguish between
qualitatively identical outcomes or else they do not distinguish between the possible
and the impossible. You must pick your poison.

Consider again the proposition that the coin lands heads on every odd flip, 𝑂 =

h1h3h5h7 . . . . We learnt in the previous subsection that 𝑂 and 𝐸 = 𝑂 ⊕ 1 are on the
same Archimedean level, 𝔠−1/2, and that their real multiples are reciprocals of each
other. Moreover, since𝑂 is just the conjunction of h1 and𝑂 ⊕ 2, we know that𝑂 ⊕ 2
is twice as likely as 𝑂. And since 𝑂 ⊕ 1 is just the conjunction of h2 and 𝑂 ⊕ 3, we
know that𝑂 ⊕ 3 is twice as likely as𝑂 ⊕ 1. This pattern continues. So we know that,
for some real multiple 𝑟,

ℙ(𝑂) = 𝑟 · 𝔠−1/2 ℙ(𝑂 ⊕ 1) = 𝑟−1 · 𝔠−1/2

ℙ(𝑂 ⊕ 2) = 2𝑟 · 𝔠−1/2 ℙ(𝑂 ⊕ 3) = 2𝑟−1 · 𝔠−1/2
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ℙ(𝑂 ⊕ 4) = 4𝑟 · 𝔠−1/2 ℙ(𝑂 ⊕ 5) = 4𝑟−1 · 𝔠−1/2

...
...

Assuming that these probabilities do not get smaller as we shift𝑂’s calls further to the
right, wemust have 𝑟 between 2−1/2 and 1, inclusive. As far as I can see, there’s nothing
forcing 𝑟 to be any particular value in the interval [2−1/2, 1]. We could let 𝑟 = 1. Then,
we would say that, while 𝑂 ⊕ 1 is just as likely as 𝑂, 𝑂 ⊕ 2 is twice as likely as 𝑂 ⊕ 1.
This sudden change in probability strikesme as unmotivated. If shifting𝑂’s calls to the
right twice makes those calls more likely, shifting them to the right once should also
make them more likely. Moreover, it is natural to expect that the factor by which the
probability increases should be the same with each rightward shift. So there should be
some fixed multiple 𝜆 such that ℙ(𝑂 ⊕ 𝑚) = 𝜆𝑚 · ℙ(𝑂). Since ℙ(𝑂 ⊕ 2) = 2 · ℙ(𝑂),
this implies that 𝜆 = 21/2. So 𝑂 ⊕ 1 should be

√
2 times as likely as 𝑂, and 𝑂 ⊕ 2

should be
√
2 times as likely as 𝑂 ⊕ 1. In general, shifting 𝑂’s calls to the right 𝑚

places makes it 2𝑚/2 times more likely. Recall that, as 𝑛 went off to infinity, the ratio
ℙ(𝑂𝑛) ÷ ℙ(𝐸𝑛) fluctuated back and forth between 2−1 and 20 forever. If we assume
that shifting𝑂’s calls to the right makes them 21/2 times as likely, then we assume that
the ratio ℙ(𝑂) ÷ ℙ(𝐸) is 2−1/2, which is the geometric mean of 2−1 and 20. With this
assumption, we can solve for 𝑟. For, if ℙ(𝑂 ⊕ 1) =

√
2 · ℙ(𝑂), we must have that

𝑟−1 =
√
2 · 𝑟. So 𝑟 = 2−1/4. And in general, we will have ℙ(𝑂 ⊕ 𝑚) = 2(2𝑚−1)/4 · 𝔠−1/2.

Or consider the proposition 𝑇 = h1h4h7h10 . . . , which says that the coin lands
heads on the first of every three flips. We saw in the previous subsection that ℙ(𝑇),
ℙ(𝑇⊕1), andℙ(𝑇⊕2) all live on the same Archimedean level, 𝔠−1/3, and that their real
multiples have a product of 1. For some 𝑟, ℙ(𝑇) = 𝑟 · 𝔠−1/3. And ℙ(𝑇 ⊕ 3) = 2𝑟 · 𝔠−1/3.
Assuming that each shift to the right increases the probability by a constant factor, that
factor must be 21/3. Then, in general 𝑇 ⊕ 𝑚 will be 2𝑚/3 times as likely as 𝑇 . Recall
that, as 𝑛 went off to infinity, the ratio between ℙ(𝑇𝑛) and ℙ(𝑇 ⊕ 1𝑛) cycled through
the values 20, 20, and 2−1 over and over. By assuming that ℙ(𝑇 ⊕ 1) is 21/3 times as
likely as ℙ(𝑇), we assume that ℙ(𝑇) ÷ ℙ(𝑇 ⊕ 1) = 2−1/3, which is the geometric
mean of 20, 20, and 2−1. If we assume that shifting 𝑇 ’s calls to the right makes them
21/3 times as likely, then we then we can solve for 𝑟 in ℙ(𝑇) = 𝑟 · 𝔠−1/3. For we must
have ℙ(𝑇 ⊕ 1) = 𝑟21/3 · 𝔠−1/3 and ℙ(𝑇 ⊕ 2) = 𝑟22/3 · 𝔠−1/3. We saw in the previous
subsection that the product of these real multiples must be one. So we must have

𝑟 · 21/3𝑟 · 22/3𝑟 = 1
2𝑟3 = 1

𝑟 = 2−1/3
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And, in general, we will have ℙ(𝑇 ⊕ 𝑚) = 2(𝑚−1)/3 · 𝔠−1/3.

We can generalize. Pick any positive integer 𝑝 and let 𝑃 = h1h𝑝+1h2𝑝+1h3𝑝+1 . . .
say that the coin lands heads on the first of every 𝑝 flips. We learnt in the previous
subsection that, for any 𝑚, ℙ(𝑃 ⊕ 𝑚) is on the Archimedean level 𝔠−1/𝑝, and that the
real coefficients of ℙ(𝑃),ℙ(𝑃 ⊕ 1), . . . , and ℙ(𝑃 ⊕ 𝑝 − 1) (written in Conway normal
form) have a product of 1. Assume that shifting 𝑃’s calls to the right increases their
probability by a constant multiple, 𝜆. Then, since ℙ(𝑃 ⊕ 𝑝) = 2 · ℙ(𝑃), we must have
𝜆 = 21/𝑝. So, in general, 𝑃 ⊕ 𝑚 will be 2𝑚/𝑝 times as likely as 𝑃. If ℙ(𝑃) = 𝑟 · 𝔠−1/𝑝,
then ℙ(𝑃 ⊕ 𝑚) = 2𝑚/𝑝𝑟 · 𝔠−1/𝑝. We can therefore use the fact that the real coefficients
of the probabilities of the first 𝑝 − 1 shifts of 𝑃 multiply to one to solve for the value
of 𝑟:

𝑝−1∏
𝑚=0

2𝑚/𝑝 · 𝑟 = 1

2(𝑝−1)/2 · 𝑟𝑝 = 1
𝑟 = 2(1−𝑝)/2𝑝

And, in general, we will have

ℙ(𝑃 ⊕ 𝑚) = 2(1−𝑝+2𝑚)/2𝑝 · 𝔠−1/𝑝

We’ve now said enough to determine the probability of every periodic proposition.
For any periodic proposition can be decomposed into two parts: some finite number
of initial flips, before the proposition settles into its repeating pattern of calls, and
its periodic repeating pattern. We can refer to the first part of the proposition as its
‘initial calls’, and the second part as its ‘periodic calls’. By independence, we can factor
the proposition’s probability into the probability of these two parts,

ℙ(𝐴) = ℙ(𝐴’s initial calls) · ℙ(𝐴’s periodic calls)

If it doesn’t have any initial calls, then this first factor will be 1; and if it doesn’t
have any periodic calls, the second factor will be 1. If 𝐴 settles into a repeating pat-
tern after 𝑁 flips, and the repeating pattern has a period of 𝑝, then 𝐴’s periodic calls
can be expressed as a conjunction

⋂𝑘
𝑗=1 𝑃 ⊕ 𝑁 + 𝑚 𝑗, for some collection of integers

𝑚1𝑚2, . . . , 𝑚𝑘 < 𝑝. Each of these these conjuncts is about different flips, so by inde-
pendence, we can get the probability of the conjunction by multiplying together the
probability of the conjuncts. So, if 𝐴makes 𝑖 initial calls before flip 𝑁 and then, after
flip 𝑁 , settles into a repeating pattern of calling the𝑚1th, 𝑚2th, . . . , and𝑚𝑘th of every
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𝑝 flips thereafter, then 𝐴’s probability will be

ℙ(𝐴) = ℙ(𝑖 initial calls) ·
𝑘∏
𝑗=1

ℙ(𝑃 ⊕ 𝑁 + 𝑚 𝑗)

= 2−𝑖 ·
𝑘∏
𝑗=1

2(1−𝑝+2𝑁+2𝑚 𝑗)/2𝑝 · 𝔠−1/𝑝

= 2[(𝑘−𝑘𝑝+2𝑘𝑁+2∑𝑘
𝑖=1 𝑚 𝑗)/2𝑝]−𝑖 · 𝔠−𝑘/𝑝

3.3 | Further vistas

The periodic propositions are an easily managed class of propositions. But there are
many, manymore propositions about how the coin lands than these. And their surreal
probabilities lie on many, many more Archimedean levels of probability.

Take any propositions which says that the coin lands heads on the 𝑚th of every
𝑝 flips, 𝑃 ⊕ 𝑚. Notice that this proposition is associated with a certain function,
𝑓𝑃⊕𝑚(𝑛) = 𝑝𝑛 + 𝑚. This function lists the calls made by 𝑃 ⊕ 𝑚. First, it calls a
heads on the 𝑝(1) + 𝑚th flip; second, it calls a heads on the 𝑝(2) + 𝑚th flip; and so
on. It’s natural to ask about higher-degree polynomials. What about the proposition
𝑆 = h1h4h9h16h25 . . . which says that the coin lands heads on every square flip? This
proposition is associated with the function 𝑓𝑆 (𝑛) = 𝑛2. Or what about the proposition
𝑄 = h17h382h1947h6152 . . . associated with the quartic function 𝑓𝑄 (𝑛) = 24𝑛4+5𝑛−12?
Let’s call a proposition with an associated polynomial listing the flips it calls a ‘poly-
nomial proposition’.

Suppose 𝑓𝐴 lists 𝐴’s calls and 𝑓𝐵 lists 𝐵’s calls. And suppose that, for any 𝑚, even-
tually 𝑓𝐴(𝑛) > 𝑓𝐵(𝑛 + 𝑚).27 Then, for any 𝑚, eventually, 𝐵 will call the 𝑛 + 𝑚th head
before 𝐴 has a chance to call its 𝑛th head. So the difference between the number of
heads called by 𝐵 and the number called by 𝐴must grow without bound. In that case,
our assumptions tell us that 𝐴 is infinitely more likely than 𝐵, and ℙ(𝐴) is on a higher
level than ℙ(𝐵). In the other direction, if there’s some 𝑚 such that 𝑓𝐴(𝑛) is always less
than 𝑓𝐵(𝑛 + 𝑚), then 𝐵 will never get more than 𝑚 calls ahead of 𝐴, so the difference
between the number of heads called by 𝐵 and the number called by 𝐴 will not grow
arbitrarily high. So, given our assumptions, 𝐴will not be infinitely more likely than 𝐵.

So we can say: if, for any𝑚, eventually 𝑓𝐴(𝑛) > 𝑓𝐵(𝑛+𝑚), then 𝐴 is infinitely more
likely than 𝐵 andℙ(𝐴) is on a higher Archimedean level thanℙ(𝐵). On the other hand,
if there’s some 𝑚 such that 𝑓𝐴(𝑛) is always less than 𝑓𝐵(𝑛 + 𝑚), then 𝐴 is not infinitely
more likely than 𝐵. This allows us to read information about the Archimedean level

27. By ‘eventually, 𝑓𝐴(𝑛) > 𝑓𝐵 (𝑛+𝑚)’, I mean that there’s some𝑁 such that, for all 𝑛 > 𝑁 , 𝑓𝐴(𝑛) > 𝑓𝐵 (𝑛+𝑚).
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of a proposition’s probability off of its associated polynomial. For illustration, take the
propositions 𝑆 and𝑇 , corresponding to the polynomials 𝑛2 and 𝑛2 + 10𝑛, respectively.
𝑆 calls a head on every square flip, 𝑆 = h1h4h9h16h25 . . . , and 𝑇 calls a head 10𝑛 flips
after the 𝑛th square, 𝑇 = h11h24h39h56h75 . . . . For 𝑚 ⩾ 5, 𝑛2 + 10𝑛 ⩽ (𝑛 + 𝑚)2 and
𝑛2 ⩽ (𝑛 +𝑚)2 + 10(𝑛 +𝑚). So neither 𝑆 nor 𝑇 is infinitely more likely than the other,
and ℙ(𝑆) and ℙ(𝑇) live on the same level.

As this example suggests, propositions with higher degree polynomials are in-
finitely more likely than those with lower degree polynomials. (The degree of a poly-
nomial 𝑓 (𝑛) is just the greatest power of 𝑛 that appears in the polynomial.) If 𝑑 > 𝑐,
then for large 𝑛, 𝑛𝑑 ≫ 𝑛𝑐, and for fixed 𝑚, 𝑛𝑑 ≫ (𝑛 + 𝑚)𝑐, too. Similarly, if 𝑓𝐴 and
𝑓𝐵 have the same degree but 𝑓𝐴’s highest degree coefficient is greater than 𝑓𝐵’s, then
𝐴 will be infinitely more likely than 𝐵. For large 𝑛, 5𝑛3 ≫ 4𝑛3, and for fixed 𝑚,
5𝑛3 ≫ 4(𝑛 + 𝑚)3, too. And the same goes whenever one polynomial’s highest degree
coefficient is greater than another’s. However, if 𝑓𝐴 and 𝑓𝐵 have the same degree and
the same highest-degree coefficient, then neither will be infinitely more likely than the
other. For (𝑛 + 𝑚)𝑑 =

∑𝑑
𝑖=0

(
𝑑
𝑖

)
𝑚𝑑−𝑖𝑛𝑖 will include a term 𝑛𝑖 for every degree 𝑖 ⩽ 𝑑,

and we can always choose 𝑚 high enough that the coefficient of the degree 𝑛𝑖 term is
greater than the coefficient in the other polynomial’s degree 𝑛𝑖 term. So if 𝑓𝐴 and 𝑓𝐵
have the same degree and the same highest-degree coefficient, then there will always
be some 𝑚 such that 𝑓𝐴(𝑛) ⩽ 𝑓𝐵(𝑛 + 𝑚) and 𝑓𝐵(𝑛) ⩽ 𝑓𝐴(𝑛 + 𝑚). So neither 𝐴 nor 𝐵
will be infinitely more likely than the other.

We’ve seen that each ‘linear’ proposition (each proposition corresponding to a lin-
ear polynomial 𝑝𝑛 + 𝑚) lives on an Archimedean level 𝔠−1/𝑝 indexed by a rational
number between −1 and 0. The simplest non-linear proposition is 𝑆 = h1h4h9h16 . . . ,
which calls a heads on every square flip. 𝑆 is infinitely more likely than every linear
polynomial proposition. So it must live on an Archimedean level higher than 𝔠−1/2,
𝔠−1/4, 𝔠−1/8, and so on. The simplest such level is 𝔠−𝜖 so, just to give it a home, let’s
place ℙ(𝑆) there. Then, notice that 𝑆 is a conjunction of the propositions 𝑆21 and 𝑆22 ,
corresponding to (2𝑛 − 1)2 = 4𝑛2 − 4𝑛 + 1 and (2𝑛)2 = 4𝑛2, respectively. Because
the polynomials associated with 𝑆21 and 𝑆

2
2 have the same degree and the same highest-

degree coefficient, their probabilities must live on the same Archimedean level. They
are about different flips, so the probability of their conjunctionmust equal the product
of their probabilities. So they must live on the level 𝔠−𝜖/2. Likewise, 𝑆 is a conjunc-
tion of 𝑆31 , 𝑆

3
2 , and 𝑆

3
3 , corresponding to the polynomials (3𝑛 − 2)2 = 9𝑛2 − 12𝑛 + 4,

(3𝑛 − 1)2 = 9𝑛2 − 6𝑛 + 1, and (3𝑛)2 = 9𝑛2. These propositions have probabilities on
the same level, since their associated polynomials have the same degree and the same
highest-degree coefficients. And they are about different flips, so the probability of
their conjunction is the product of their probabilities. So those probabilities must live
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on the Archimedean level 𝔠−𝜖/3. The pattern suggests that a polynomial proposition
whose leading term is 𝑝𝑛2 will have a probability on the level 𝔠−𝜖/

√
𝑝.

The next simplest polynomial proposition is 𝐶 = h1h8h27h64 . . . , which calls a
head on every cube flip. This proposition’s probability must lie on an Archimedean
level higher than 𝔠−𝜖/2, 𝔠−𝜖/4, 𝔠−𝜖/8, and so on. The simplest such level is 𝔠−𝜖

2
. Let

us place ℙ(𝐶) there. Notice that 𝐶 is a conjunction of 𝐶21 and 𝐶22 , corresponding to
(2𝑛 − 1)3 = 8𝑛3 − 12𝑛2 + 6𝑛 − 1 and (2𝑛)3 = 8𝑛3, respectively. These propositions
are characterized by polynomials with the same degree and the same highest-degree
coefficients, so their probabilities must live on the same level; since they are about
different flips, the probability of their conjunction is the product of their probabilities.
So their probabilities must live on the level 𝔠−𝜖

2/2. The general pattern suggests that a
polynomial proposition whose leading term is 𝑝𝑛3 will have a probability on the level
𝔠−𝜖

2/ 3√𝑝.

Generalizing, the pattern suggests that a polynomial proposition whose leading
term is 𝑝𝑛𝑚 will have a probability on the Archimedean level 𝔠−𝜖

𝑚−1/ 𝑚
√
𝑝.

We can climb higher. There are propositions more likely than any polynomial
proposition. Consider the proposition h1h4h27h256h3125 . . . , whose calls are listed by
the function 𝑓 (𝑛) = 𝑛𝑛. This proposition is more likely than any polynomial propo-
sition. So it must live on an Archimedean level higher than 𝔠−𝜖 , 𝔠−𝜖

2
, 𝔠−𝜖

3
, and so

on. And of course we can keep climbing from there. We can build a hierarchy of
functions 𝑓𝛼 , indexed by the countable ordinals. We start with 𝑓𝜔(𝑛) = 𝑛, and let
𝑓𝛼+1 = 𝑓𝛼 (𝑛) + 1. If 𝛼 is a limit ordinal, we choose an 𝜔 sequence of ordinals less
than 𝛼, 𝛽1, 𝛽2, . . . whose limit is 𝛼, and let 𝑓𝛼 (𝑛) = 𝑓𝛽𝑛 (𝑛).28 For instance, we can let
𝑓2𝜔(𝑛) = 𝑓𝜔+𝑛(𝑛) = 2𝑛, and 𝑓3𝜔(𝑛) = 𝑓2𝜔+𝑛(𝑛) = 3𝑛. Proceeding in this way, we can let
the polynomial 𝑎𝑚𝑛𝑚+𝑎𝑚−1𝑛𝑚−1+· · ·+𝑎1𝑛+𝑎0 be the function indexed by the ordinal
𝑎𝑚𝜔

𝑚+𝑎𝑚−1𝜔𝑚−1+· · ·+𝑎1𝜔+𝑎0, andwe can let 𝑛𝑛 be the function indexed by 𝜔𝜔. In this
hierarchy of functions, each function indexed by a limit ordinal must correspond to
a proposition which is infinitely more likely than any proposition corresponding to a
function indexed by a lesser ordinal. So there will be as many ascending Archimedean
levels of probability in this hierarchy as there are countable limit ordinals. And there
will be many, many Archimedean levels of probability lying in between the levels in
this hierarchy. After all, we will need levels to house all of the conjunctions of the
propositions whose calls are listed by the functions in this hierarchy.

28. A common hierarchy of functions like this known as the ‘slow-growing hierarchy’.
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3.4 | In Summary

As the discussion in §3.3 makes vivid, even in the simple case of flipping a fair coin
infinitely often, the space of surreal probabilities is truly gargantuan. Even when we
confine ourselves to the periodic propositions, there are at least as many Archimedean
levels of probability as there are rational numbers. And the Archimedean levels of
probability for propositions about how the coin lands extend much, much further.
Nonetheless, as we saw in §§3.1–3.2, the structure imposed by our relatively weak as-
sumptions is enough to allow us to calculate many precise values for these probabili-
ties. No doubt with stronger assumptions, we could show more.

4 | conclusion

Pre-theoretically, probabilities in infinite domains appear to be non-Archimedean.
The proposition that the coin lands heads on the first flip, h1, appears to be infinitely
more likely than the proposition that it lands heads on every odd flip, h1h3h5h7 . . . ,
which appears in turn to be infinitely more likely than the proposition that it lands
heads on every flip, h1h2h3h4 . . . . The standard mathematical tools cannot respect
these pre-theoretic judgments, because the standardmathematical tools represent prob-
abilities with real-valued functions, and the real numbers are Archimedean.

The standard mathematical tools also deny plausible principles like ‘anything pos-
sible is more likely than anything impossible’. Call this thesis regularity. In uncount-
ably infinite domains, standard real-valued probabilities will assign a probability of
zero to every possible outcome. And this is exactly the probability they assign to any
impossible proposition. So real-valued probabilities have a habit of telling us that an
impossible outcome is just as likely as the actual outcome, in violation of regularity.
Repeated exposure has inured many of us to the oddity of this claim—but take a step
back, and listen to it afresh: a radon atom decays at some particular time, and you
ask ‘what are the chances it would decay just then?’. If we’re modeling the chances
with real-valued functions, the model will tell us: It was exactly as likely to decay just
then as it was to both decay and not decay, which is just as likely as it being more mas-
sive than itself. It seems to me that these violations of regularity are merely artifacts of
our mathematical model—not to be taken too seriously. Of course, real-valued prob-
abilities are enormously helpful tools, and the models they provide can tell us many
true things. But they also tell some falsehoods, and they don’t tell all there is to tell.
When they tell us that one proposition is more likely than another, they always speak
truly; but they don’t always tell us when one proposition is more likely than another.
Sometimes, they say that two propositions are equally likely when they are not. This
is an expressive limitation of the model; there are more probabilistic distinctions to
be drawn than the real numbers allow us to draw.
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These probabilistic distinctions are relevant to rational choice. Suppose I offer
you a choice between two bets—one of which pays out $1 if the radon atom decays
at 𝑡 and the other of which pays out $1 if the radon atom is more massive than itself.
You should prefer the former. Likewise if one of the bets pays out $1 if the radon atom
decays at a time other than 𝑡 and the other pays out $1 if it decays at all. You should
prefer the guaranteed $1 to the bet which pays out $1 with a probability which can only
be represented in the real numbers with 100%.

The standard mathematical tools are not the only possible tools. Here, I’ve tried to
put new tools on the table. Inmy view, these tools havemuch to be said for them. They
not only respect the pre-theoretic judgments suggesting that probabilities are non-
Archimedean. They additionally allow us to rigorously investigate the extent to which
they are non-Archimedean in particular cases—how many distinct Archimedean lev-
els of probability there are, and where on those levels the infinitely unlikely propo-
sitions sit. Surreal probabilities also evade some of the objections which have been
levied against hyperreal probabilities. In particular, they are not susceptible to Hájek’s
complaint of ineffability. Hájek complains: “when we are dealing with sets on this tiny
scale, where minute differences count for a lot, we want things pinned down very pre-
cisely. ‘𝜖’ is a nice name for an infinitesimal probability, but what is it exactly?”29 In the
surreal numbers, ‘𝜖’ is not just a name for any old infinitesimal number, never mind
which—it is the name of a specific, precise infinitesimal number. It is the simplest num-
ber greater than zero but less than every dyadic fraction. You reach it in the binary tree
to taking one step right to 1, then infinitely many steps to the left. It corresponds to the
𝜔 length sequence of one plus followed by infinitely many minuses, (+,−,−,−, . . . ).
Hájek, ms, and Pruss, 2013, note that even hyperreal-valued probabilities will have

to give possible outcomes a probability of zero if the space of possibilities is large
enough. For instance, Hájek imagines throwing an infinitely precise dart, not at the
real number line, but instead at the hyperreal number line. Then, there is no way to
give positive probability to every possible outcome. Hájek writes: “I envisage a kind
of arms race: we scotched regularity for real-valued probability functions by canvass-
ing sufficiently large domains: making them uncountable. The friends of regularity
fought back, enriching their ranges: making them hyperreal-valued. I counter with
a still larger domain: making its values hyperreal-valued. Perhaps regularity can be
preserved over that domain by enriching the range again, as it might be, making it
hyper-hyperreal-valued. I counter again with a yet larger domain: making its values
hyper-hyperreal-valued.” Unlike hyperreal-valued probabilities, surreal-valued proba-
bilities are able to give positive probability to every individual outcome in any set-sized

29. Hájek, 2003, p. 293.
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domain, no matter its cardinality. If you have a set of possibilities of cardinality 𝛼, a
uniform surreal probability distribution will assign a probability of 𝛼−1 > 0 to each
possibility in the domain. With surreal probabilities, the only way to get the arms race
going is to consider a proper class of possibilities too large to have a cardinality. There
cannot be any regular surreal-valued probability over a proper class of possibilities—
but that’s because there cannot be any function over a proper class of possibilities; it’s
irrelevant what values we want the function to take on.

Here, I’ve only scratched the surface of surreal probabilities. Several outstanding
questions remain—both philosophical and mathematical. Philosophical: should we
require surreal probabilities to be countably subadditive? Or should we perhaps find
a different way of taking infinite sums of surreal numbers, and say that surreal prob-
abilities are countably additive (or fully additive), given this alternative understand-
ing of infinite summation? Mathematical: can the extension theorems for real-valued
probabilities be generalized to cover surreal-valued probabilities?30 Is there a general-
ization of Lebesgue integration for surreal-valued measures?31 A complete evaluation
of surreal probabilities would require answering these questions—and they are un-
fortunately beyond my reach. However, in my view, surreal-valued probabilities are
promising enough that these further questions are worth investigating.

30. For an introduction to the Carathéodory extension theorem, see Billingsley, 1995 or Rosenthal, 2006.
For an overview of other extension theorems—especially extension theorems for merely finitely addi-
tive measures—see Bhaskara Rao & Bhaskara Rao, 1983.

31. For an overview of Lebesgue integration, see Bartle, 1966. There are several proposals for generalizing
Riemann integration, though many of them seem to give the wrong results in some cases. For instance,
they evaluate

∫ 𝜔

0 𝑒𝑥𝑑𝑥 as 𝑒𝜔, rather than 𝑒𝜔 − 1. Costin & Ehrlich (2022) provide a method for extend-
ing real-valued functions on the reals to surreal-valued ‘functions’ on the surreals. They show how to
define antiderivatives for these extended ‘functions’, and they use these antiderivatives to define surreal
integration. Their integral correctly evaluates

∫ 𝑦

0 𝑒𝑥𝑑𝑥 as 𝑒𝑦 − 1.
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