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An indifference principle says that your initial, or ur-prior, credences should be dis-
tributed uniformly over each of the possibilities you recognise. A chance deference
principle says that your ur-prior credences should be aligned with the chances, in
the following sense: your ur-prior credence in P , given that the chance of P is x,
should be x. My thesis is that, if we are anti-Humeans about chance, then these two
principles are incompatible with each other. Anti-Humeans think that it is possi-
ble—though unlikely—for the actual frequencies to depart from the chances. So
long as you recognise possibilities like this, you cannot both invest equal credence
in every possibility and defer to the chances. If your ur-prior credences are spread
evenly over every possibility, then they will not defer to the chances; and if your
ur-prior credences defer to the chances, they will not be spread evenly over every
possibility.

In §§1–3 below, I’ll introduce anti-Humeanism (AH), a principle of chance
deference (CD), and an indifference principle (IP). The principles CD and IP both
say something about what your credences should be like in the absence of any
evidence—that is to say, they both impose constraints on your initial, or ur-prior,
credence function. In §4, I’ll explain why, if we’re anti-Humeans, we cannot sat-
isfy both of these constraints. In §5, I’ll consider some anti-Humean responses to
this incompatibility. In brief: anti-Humeans may retreat to a weaker indifference
principle according to which you should invest equal credence in each categorical
possibility—where a categorical possibility describes what happens, but does not
say what the objective chances are. Alternatively, anti-Humeans could move to an
even weaker indifference principle which says only that you should give equal cre-
dence to evidentially symmetric propositions, but does not say that, in the absence
of evidence, each possibility you recognise is evidentially symmetric with every
other. As I’ll explain in §5 below, this weaker indifference principle has prominent
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indifference to anti-humean chances

advocates—for instance, Keynes (1921) and White (2009). However, the indiffer-
ence principle which I will call ‘IP’ is not some straw man. Authors like Pettigrew
(2016) argue for exactly this principle.

1 Anti-Humeanism

I’ll suppose that you have degrees of belief, or credences, defined over the sentences
in some language. In the simplest case, this will be a truth-functional language
with a finite number of atomic sentences, A1,A2, . . . ,AN . In a language like this, a
state description is a conjunction of the form ±A1 ∧±A2 ∧ · · · ∧ ±AN , where each
±Ai is either the atomic sentence Ai or its negation. Let ‘Ω’ be the set of state de-
scriptions, and let ω ∈ Ω be some particular state description. If the language is
truth-functional, a state description will settle the truth-value of every other sen-
tence in the language, and every sentence in the languagewill be equivalent to some
disjunction of state descriptions.

Instead of taking your credences to be defined over sentences in a language, we
could instead start with a space of possible worlds,W , and take your credences to
be defined over propositions (sets of those possible worlds). Some defenders of in-
difference principles—Williamson (2010), for instance—use the sentential frame-
work, while others—Pettigrew (2016), for instance—use the propositional frame-
work. But the distinctions between these two frameworks won’t make a difference
to my discussion here. For it is straightforward to translate between them—I’ll
leave the details in this footnote.1 Here, I’ll stick to the sentential framework, but
the translation scheme allows everything I say about it to carry over to the propo-
sitional framework.

In the simplest case, your credences are defined over a simple truth-functional
language. However, if youwish to entertain sentences about the chances—sentences

1. We may take each state description ω ∈ Ω to correspond to a possible world w ∈ W . Each sen-
tence is equivalent to some disjunction of state descriptions. So we may associate each sentence
with the set of state descriptions in this disjunction, which we may in turn associate with a set of
possible worlds, or a proposition. While this translation scheme gives us a surjective function from
sentences to propositions (sets of possible worlds), the function is not a bijection. For there will
be multiple sentences translated to the same proposition. Even so, any two sentences translated
to the same proposition are equivalent. Since your ur-prior is a probability, it assigns equivalent
sentences the same probability. Consider the equivalence classes of equivalent sentences. The pro-
posed translation establishes a bijection between propositions and these equivalence classes. So the
probability which an ur-prior gives to a proposition (a set of possible worlds) will correspond to the
probability which an ur-prior gives to any sentence in the corresponding equivalence class. So we
may go back and forth between the two frameworks.
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§1 anti-humeanism

like ‘Ch(P) = x’ (‘the objective chance of P is x’) or ‘Ch = ch’ (‘ch is the objec-
tive chance function’)—then we will need to consider a slightly more complicated
language. We can generate an appropriately rich language by distinguishing two
different kinds of atomic sentences, which I’ll call the atoms and chance hypothe-
ses. The atoms are just the atomic sentences which aren’t chance hypotheses. Let
the atoms beA1,A2, . . . ,AN . The chance hypotheses say what the objective chance
function is—that is, the chance hypotheses are sentences of the form ‘Ch = ch’, for
some probability function ch.2 We then get the full language by taking the union
of the chance hypotheses and the atoms, and closing the resulting set under nega-
tion and disjunction. We may recover sentences like ‘Ch(P) = x’, since they are
equivalent to the disjunction ‘

∨
ch:ch(P)=x Ch = ch’.

With this richer language, we should change the way we think about a state
description. If ch and ch′ are two distinct probability functions, then both Ch =
ch and Ch = ch′ will be atoms. If we continue on with our old definition of a
state description, there would be a state description which included both of these
sentences as conjuncts. These sentences may be known a priori to be incompatible
with each other. This creates two problems. In the first place, a state description is
meant to represent an epistemic possibility. But if the state description is a priori
false, then it is cannot be an epistemic possibility. In the second place, there is a
problem for anyone who wishes to endorse an indifference principle like the one
I’ll introduce in §3. That principle says that every state description should receive
the same credence; so, if we used this understanding of ‘state description’, then
this indifference principle would require that you to have a positive credence in
something you may know a priori to be false.

Once we’ve got credences defined over chance hypotheses, we must change the
way we think about state descriptions. Which change is appropriate may depend
upon our metaphysical commitments. Consider the following example: we’re go-
ing to flip a coinN times, and then destroy it. No other coins have ever or will ever
be flipped throughout the history of the universe. Now, suppose that you have

2. Here we face a choice point. We could either take the potential chance functions ch to be defined
only over the sentences in the language generated from the atoms A1,A2, . . . ,AN , or we could take
them to be defined over every sentence in the language. If the objective chances may be uncertain
about what the objective chances are, then this second option leads to cardinality worries—since,
in general, the space of possible probability distributions over Ω is larger than Ω. However, anti-
Humeans should be happy to assume that the objective chances are certain of what the objective
chances are, so that, for each potential chance function ch, ch(Ch = ch) = 1. (This follows from
Lewis’s principal principle.) This means that, even if we take the objective chances to be defined
over sentences like ‘Ch = ch’, there will be exactly one such distribution for each function ch, and
we avoid cardinality concerns.
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credences defined over the atoms H1,H2, . . . ,HN , where Hi says that the ith flip
landed heads. Now, the question is whether, in this application, we should count
H1 ∧H2 ∧ · · · ∧HN ∧ Ch = ch as a state description if ch(Hi) = 50%, for each
i . That is: should we have a state description which tells us that the coin landed
heads every flip, and that the coin was fair? It’s quite natural to think ‘yes’—after
all, it appears to be possible for a fair coin to land headsN times in a row. Sure, it’s
unlikely, but that doesn’t make it impossible. This is what anti-Humeans think. But
Humeans will disagree.

As I’m using the term here, Humeans think that the chance laws supervene
upon the distribution of local matters of particular fact. According to Humeans,
chances are something like executive summaries of what actually happens in the
world. For instance, actual frequentism is a form of Humeanism. The actual fre-
quentist thinks that the chances are just the actual frequencies. In our example,
the actual frequentist will say that the chance of the coin landing heads on the ith
flip is just the proportion of flips which actually land heads. Thus, if every flip
lands heads, the chance of the ith flip landing heads would have to be 100%, and
not 50%. For this reason, H1 ∧H2 ∧ · · · ∧HN ∧Ch = ch will be impossible unless
ch(Hi) = 100%.

Anti-Humeans disagree. According to them, the chance laws have an inde-
pendent existence. Chance laws govern outcomes, but they are not reducible to
outcomes. A crude analogy: for the anti-Humean, when outcomes are objectively
chancy, God is rolling dice. Statements about the chances tell you something about
the bias of God’s dice, but the chance laws don’t necessitate that those dice land any
particular way, not even in the long-run. So, for instance, anti-Humeans say that
there’s no reason that a fair coin couldn’t land heads on every flip. More gener-
ally, they will say that there’s no reason some conjunction of (negations) of atoms
±A1 ∧±A2 ∧ · · · ∧ ±AN couldn’t be true even while the chance of it being truth is
minuscule. So, if we are anti-Humeans, then we should think that the conjunction
±A1 ∧±A2 ∧ · · · ∧ ±AN ∧ Ch = ch is possible—and we should count it as a state
description—even if ch(±A1 ∧±A2 ∧ · · · ∧ ±AN ) is miniscule.

In general, given a language which consists of a set of (non-chance hypothesis)
atomsA1,A2, . . . ,AN , andpotential chance hypothesesCh = ch1,Ch = ch2, . . . ,Ch =
chM , an anti-Humean should be happy to say that a state description is any conjunc-
tion of the form

±A1 ∧±A2 ∧ · · · ∧ ±AN ∧±Ch

where each ±Ai is either the atom Ai or its negation, and ±Ch is either one of
the chance hypotheses Ch = chi or else the negation of every chance hypotheses,
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§2 chance deference

∧M
i=1Ch , chi . In the possible worlds framework, thismeans that, for every chance

hypothesis and every assignment of truth-values to the atoms, there is a possible
world at which that chance hypothesis is true and that assignment of truth-values
is realised.

For my purposes, I won’t need a thorough-going anti-Humeanism. Instead, I
will need only the following consequence of it, which I will from here on out refer
to as ‘anti-Humeanism’, or ‘AH’:

Anti-Humeanism (AH) There is a pair of state descriptions which have the form
ϕ ∧Ch = ch and ψ ∧Ch = ch, where ch(ϕ) , ch(ψ).

Actual frequentists will want to deny this assumption in the case of Bernoulli pro-
cesses like coin flips, since any state description with the same chance function will
have to have the same frequency of heads landings (or whatever), and the chance
function will assign the same chance to state descriptions with the same frequen-
cies. Nonetheless, AH is a very minimal form of anti-Humeanism. Even ‘best sys-
tem’ Humeans like Lewis (1994) will be happy to accept AH in many contexts.

2 Chance Deference

Themost prominent principle of chance deference isDavid Lewis (1980)’s principal
principle.3 The principal principle says something about a rational initial, or ur-
prior, credence function, C—the credence function it would be rational to have
in the absence of any evidence.4 In particular, it says: if P is any sentence,5 t is
some future time, Cht(P) = x says that the time t chance of P is x, for some real
number x ∈ [0,1], and E is any time t admissible evidence which is compatible
with Cht(P) = x, then

C(P | Cht(P) = x∧E) = x

The time t won’t be important in my discussion, so I’ll fix t to be some future
time and omit explicit mention of t in the remainder. Likewise, the admissible ev-

3. For alternative chance deference principles, see Hall (1994), Ismael (2008), Levinstein (forthcom-
ing), and Dorst et al. (2021), for instance.

4. I will assume that C is a probability, by which I mean: 1) C(P) ⩾ 0, for every P ; 2) if P is a priori
knowable, then C(P) = 1; and 3) if it is a priori knowable that no two of P1,P2, . . . are true at once,
then C(P1 ∨P2 ∨ . . . ) = C(P1) +C(P2) + . . . .

5. Lewis assumes that the arguments of your credence function are propositions. Since I’m assuming
here that the arguments of your credence function are sentences, I’ve slightly emended his principal
principle. Given the translation scheme from §3, the formulation is equivalent.
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idence E won’t play any important role. I’ll assume only that information about
the chances is itself admissible at t. If Ch = ch is compatible with Ch(P) = x, then
ch(P) = x. And if ch(P) = x, then the conjunction Ch(P) = x∧Ch = ch is equiv-
alent to Ch = ch. So if we set E = Ch = ch in the principal principle, we get the
following:

Chance Deference (CD) Your ur-prior credence inP , given that the objective chance
function is ch, should be ch(P).

C(P | Ch = ch) = ch(P)

CD governs your conditional credences; but I’ll suppose that these conditional
credences place a constraint on your unconditional credences, via the product rule,
which says that, for any sentences P andQ, your credence in P ∧Q is equal to the
product of your credence that P given Q and your credence that Q. So, if C(Ch =
ch) > 0, CD implies that

(1)
C(P ∧Ch = ch)
C(Ch = ch)

= ch(P)

CD works well when there are at most a finite number of potential values for
x. However, you may want your credences to be defined over uncountably many
sentences of the form Ch(P) = x—one for each of the uncountablymany real num-
bers, x, between 0 and 1. In that case, CD may have to be generalised. I discuss
this generalisation in the appendix, §B.2.

3 Indifference

The indifference principle I’ll be interested in here says that, in the absence of evi-
dence, you should give every state description precisely the same probability.

Indifference Principle (IP) For any two state descriptions, ω and ω∗, your ur-
prior credence inω should be equal to your ur-prior credence inω∗,C(ω) =
C(ω∗).

In the propositional framework, IP says that, for any two possible worlds, w and
w∗, your ur-prior credence in wmust equal your ur-prior credence in w∗, C(w) =
C(w∗).

Let me separate out two different theses which together imply IP:
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§4 the incompatibility

Symmetry to Indifference (STI) If ‘P ’ and ‘Q’ are evidentially symmetric, then
your credence in ‘P ’ should equal your credence in ‘Q’.

State Description Symmetry (SDS) Any two state descriptions are evidentially sym-
metric.

As I will discuss in §5 below, not every defender of indifference principles has
endorsed SDS. So not every defender of indifference principles has endorsed the
principle I am here calling ‘IP’. However, as I will also discuss in §5, some promi-
nent defenders of indifference principles have endorsed the stronger IP. Moreover,
prominent arguments for indifference imply the stronger thesis IP, not just the
weaker STI.

If there are a finite number of atomic sentences in your language, then there
will be finitely many state descriptions in Ω. However, if there are a countable
infinity of atomic sentences, there will be uncountably many state descriptions. In
this case, IP will be trivially satisfied so long as every state description is given a
probability of zero. Nonetheless, there is another form of indifference which we
may want to impose in this case. I discuss this stronger indifference principle in
the appendix, §B.1.

4 The Incompatibility

In this section, I’ll show that AH,CD, and IP are incompatible by assuming all three
and deriving a contradiction. This will show that, if we are anti-Humeans, we must
choose between indifference and showing deference to the chances.

Assume AH, CD, and IP. By AH, there is a pair of state descriptions which have
the form ϕ ∧Ch = ch and ψ ∧Ch = ch, where ch(ϕ) , ch(ψ). Then,

C(ϕ ∧Ch = ch)
C(ψ ∧Ch = ch)

=
C(ϕ ∧Ch = ch)/C(Ch = ch)
C(ψ ∧Ch = ch)/C(Ch = ch)

=
ch(ϕ)
ch(ψ)

, 1

The final equality follows from (1), with ‘ϕ’ and ‘ψ’ substituted in for ‘P ’. As we
saw in §2, (1) follows from CD. It therefore follows from CD that

(2) C(ϕ ∧Ch = ch) , C(ψ ∧Ch = ch)

On the other hand, since IP requires that every state description get the same cre-
dence, it implies that

(3) C(ϕ ∧Ch = ch) = C(ψ ∧Ch = ch)
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Contradiction.

So, if we assume AH, CD, and IP, we arrive at a contradiction. Assuming we
are anti-Humeans, then, we face a choice between CD and IP. We cannot both be
indifferent and show deference to the chances.

Perhaps this incompatibility only arises because we considered a finite number
of chance hypotheses? In appendix B, I show that a similar incompatibility arises
even if there are uncountably many chance hypotheses.

5 Further Discussion

One kind of reaction to this incompatibility is to reject one of the principles and
leave it at that. For instance, Humeans may say: so much the worse for anti-
Humeanism! (As an anti-Humean myself, I am more inclined to see the foregoing
as a reason to reject IP, though I won’t insist upon that here.) I won’t have anything
further to say about this kind of reaction. However, there is a more moderate re-
action which is worth discussing: anti-Humeans may wish to defer to the chances
and still endorse some form of indifference principle. They may achieve this by
weakening the principle IP.

As I formulated IP, it says that your credence in any state description must be
equal to your credence in any other state description. And as I’ve understood it,
a state description specifies all of the things your language is able to tell you about
the world. It describes matters in as precise a detail as your language will permit. If
ω is a state description, then any other description of the world (in your language)
is either entailed by ω or incompatible with ω. However, we might weaken IP
by having it say that your credence in any categorical state description is the same
as your credence in any other—where a categorical state description is logically
weaker than a full state description. It specifies what happens, but fails to say what
the objective chances of those happenings are. Such a weakening of IP need not
conflict with CD and AH.

Again, suppose that you have some collection of atomic sentences in your lan-
guage: the ‘atoms’ A1,A2, . . . ,AN , and the ‘chance hypotheses’, Ch = ch1,Ch =
ch2, . . . ,Ch = chM . Say that a categorical state description describes the world in as
rich a detail as the atoms (excluding the chance hypotheses) permit. That is, it is a
conjunction of the form ±A1 ∧±A2 ∧ · · · ∧ ±AN , where each ±Ai is either Ai or
¬Ai . Then, consider the weakened principle WIP.

Weak Indifference Principle (WIP) For any two categorical state descriptions, ω
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§5 further discussion

and ω∗, your ur-prior credence in ω should be equal to your ur-prior cre-
dence in ω∗, C(ω) = C(ω∗).

There is no conflict between AH, CD, and WIP. So why not simply restrict IP in
this way so as to make it consistent with AH and CD?

We could certainly do so. However, I personally have a hard time seeing the
philosophical motivation for accepting WIP while rejecting IP. By way of explana-
tion, let me say something about what kind of constraint IP imposes on an ur-prior
credence, and why its defenders have thought you should satisfy this constraint
when you lack evidence. In general, a credence function will encode relations of
evidential relevance. If your credence in P given Q is greater than your credence
in P , this encodes the fact that you take Q to be evidence for P . The IP imposes a
rather demanding constraint on what kinds of evidential relevance relations you’re
permitted to recognise in the absence of evidence. It forbids taking any atomic
sentence of your language to be evidence for any other atomic sentence of your
language in the absence of evidence.

Williamson (2010) justifies the ur-prior recommended by IP on the grounds
that it is leads to maximally cautious actions: it “is on average the more cautious
policy when it comes to risky decisions”, in the sense that it “minimises worst-case
expected loss”.6 Similarly, Pettigrew (2016) argues for IP on the grounds that it
epistemically cautious: it minimises the worst case with respect to the accuracy of
your beliefs. According to Pettigrew, “what is wrong with assigning greater cre-
dence to one possibility over another in the absence of evidence is that by doing so
you risk greater inaccuracy than you need to risk. [If you violate IP, then] there is
an alternative [ur-prior] credence function, namely the uniform distribution...that
has lower inaccuracy in its worst-case scenario than you have in yours.”7 Neither
of these arguments depend in any way upon assumptions about the content of the
atomic sentences in your language, nor whether they are about chance hypotheses.
So I have a hard time seeing why we should find those arguments any less com-
pelling when some of the atomic sentences in your language are chance hypothe-
ses. Moreover, if we grant an exemption for the chance hypotheses, one wants to
know why a similar exemption cannot be granted for other atomic sentences.

Suppose your language contains only the atomic sentences B1, B2, . . . , BN ,
where Bi says that the ith raven is black. Some of us think that, even before receiv-
ing evidence, you should take the first k ravens being black to be evidence for the

6. Williamson (2010, pp. 62 & 65). See Williamson (2010, §3.4.4) for more.
7. Pettigrew (2016, p. 164). See Pettigrew (2016, part III) for more.
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k+1st raven being black. Some of us say that—even with this simple language, and
even in the absence of evidence—your credence in BN , given B1∧B2∧· · ·∧BN−1,
should be greater than your unconditional credence in BN . Both IP and WIP dis-
agree. They say that, with this simple language, before you have any evidence, you
must not take the fact that the first N − 1 ravens are black to be evidentially rele-
vant to whether the N th raven is black. They say that your credence in the state
description B1 ∧B2 ∧ · · · ∧BN−1 ∧BN (every raven is black) must be the same as
your credence in the state description B1 ∧ B2 ∧ · · · ∧ BN−1 ∧¬BN (every raven
is black except for the last one). And if that’s so, then your credence that the N th
raven is black, given that the firstN −1 ravens are black, will be 1/2, which will be
the same as your unconditional credence that theN th raven is black. (Exactly half
of the state descriptions include ‘BN ’, and exactly half contain its negation.) So, if
you satisfy either IP or WIP, then you won’t see the blackness of the first N − 1
ravens as evidence for theN th raven being black.

More generally, IP requires that—in the absence of evidence—every atomic
sentence is given a credence of 1/2, and every atomic sentence is probabilistically
independent of every other. So it forbids recognising evidential relations between
atomic sentences, unless you have evidence supporting those evidential relations.
This imposes a kind of a priori inductive skepticism. It forbids an ur-prior from
recognising many evidential relations typically recognised by inductive methods.
It says that, in the absence of evidence, it is irrational to take ‘John testifies that P ’
or ‘It appears that P ’ to be evidence for ‘P ’.

Weakening IP to WIP makes an exception to the general rule of not recog-
nising evidential relations between atomic sentences. Such an exception could, of
course, be granted. But the reasons provided for IP by defenders like Jaynes (1957),
Williamson (2010), and Pettigrew (2016) do not seem to motivate such an exemp-
tion. Take an anti-Humean ur-prior which satisfies CD by beingmore confident in
state descriptions in whichA∧Ch(A) = 0.6 than it is in state descriptions in which
¬A ∧ Ch(A) = 0.6. This ur-prior builds in more information, and so has greater
entropy, than one which satisfies IP by spreading its credence equally over all state
descriptions. If we shouldminimise prior information aboutwhether nature is uni-
form, whether testifiers are trustworthy, and whether appearances are deceiving,
then why shouldn’t we also minimise information about whether the chances are
accurate? If the outcome of a risky action depends upon whetherA∧Ch(A) = 0.6,
the ur-prior which satisfies CDwill lead to less cautious actions than the one which
satisfies IP. If we shouldn’t take incautious actions when it comes to whether na-
ture is uniform, whether testifiers are trustworthy, and whether appearances are
deceiving, then why should we take incautious actions when it comes to whether
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§5 further discussion

the chances are accurate? And, if we should minimise worst-case epistemic risk
when it comes to whether nature is uniform, testifiers are trustworthy, and ap-
pearances are deceiving, why shouldn’t we also minimise worst-case epistemic risk
when it comes to whether chance is accurate? I am not contending that there is no
reason for a selective a priori inductive skepticism, according to which we have a
priori grounds to trust in chance, but no a priori grounds to trust in regularities,
testifiers, or our senses. I am contending that, to my knowledge, no such reason
has been given.

Of course, we could weaken WIP further by allowing an ur-prior to build in
assumptions about the uniformity of nature, as well as the reliability of testifiers
and appearances. More generally, we could allow in any number of a priori ra-
tionality constraints, and say only that you should spread your ur-prior credences
as evenly as possible subject to these constraints. That is: your ur-prior credences
should be spread evenly, except when this conflicts with some other a priori norm
of rationality.

Let me make four observations about a principle like this. Firstly, some au-
thors who have defended indifference principles have a principle like this in mind.
For instance, White (2009) defends the following, which he calls “the principle of
indifference”:

If ‘P ’ and ‘Q’ are evidentially symmetrical, then your credence in ‘P ’
should equal your credence in ‘Q’

In §3, I called this principle ‘Symmetry to Indifference’ (STI). If we combine STI
with the assumption that, in the absence of evidence, any two state descriptions
are evidentially symmetrical (SDS), then we get back the principle IP. However,
White is not committed to the evidential symmetry of state descriptions. When
explaining what it takes for ‘P ’ and ‘Q’ to be evidentially symmetrical, he makes it
clear that this can include a priori reasons to think ‘P ’ is more likely than ‘Q’. He
writes: “I mean to understand evidence very broadly here to encompass whatever
we have to go on in forming an opinion about the matter. This can include non-
empirical evidence or reasons, if there are such.”8

Secondly, several other authors who have defended indifference principles have
the stronger thesis IP in mind. For instance, Pettigrew (2016, §12.1) explicitly re-
jects White’s thesis, and, in its place, advocates the following stronger formulation:

8. White (2009, p. 161–2)
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Suppose that F is a finite, rank-complete set of propositions. If an
agent has an initial credence function c0 defined onF , then rationality
requires that c0 is the uniform distribution onF ...[where the uniform
distribution] assigns to eachproposition the proportion of the possible
worlds at which it is true.9

Pettigrew formulates this principle in a framework where the arguments of your
credence function are sets of possible worlds. But, as I explained in §3 above, we
may translate between a framework like this and a frameworkwhere the arguments
of your credence function are sentences. Translating between the two frameworks,
his requirement that F be finite is analogous to requiring that there are finitely
many atomic sentences. (The notion of a rank complete set is a slightly technical
notion which is needed for Pettigrew’s theorem, but which isn’t relevant to our
discussion here. Just note that, given our translation scheme, this condition will
be satisfied so long as your language is closed under negation and conjunction and
you have a credence in every sentence in your language.10) Given the translation,
Pettigrew’s principle says exactly what IP does: your ur-prior should give every
state description the same credence.11

Thirdly, while there may be good reason for an anti-Humean to endorse STI
while rejecting stronger principles like WIP and IP, the arguments of Williamson
(2010) and Pettigrew (2016) do not support this more moderate position. An anti-
Humean ur-prior which satisfies CD will lead to less cautious actions than one
which satisfies IP. So adopting the weaker principles does not minimise worst-
case expected loss. Since Williamson’s justification of IP appeals to a principle of
minimising worst-case expected loss, that justification cannot be used to support
the moderate position. Similarly, an anti-Humean ur-prior which satisfies CD will
lead to less epistemic caution than one which satisfies IP. As Pettigrew taught us,
if you satisfy CD, then there is an alternative ur-prior—namely, the uniform ur-
prior—which has a lower inaccuracy in its worst-case scenario than you have in
yours (assuming AH). Since Pettigrew’s justification of IP appeals to a principle

9. Pettigrew (2016, p. 164)
10. For the curious: this is what it is for F to be rank-complete: if there is a proposition P ∈ F which

containsN possible worlds, then every other set ofN worlds is also included in F .
11. I believe that Williamson (2010) also endorses the principle I’ve called ‘IP’, though this is more

difficult to establish exegetically, since it hinges upon whether Williamson understands ‘evidence’
to include a priori knowledge, and the text says very little about evidence. In any case, Williamson
rejects CD, accepting instead a diachronic norm which says that, upon learning that the chance of P
is x, your credence in P should be x. This means, by the way, thatWilliamson rejects the diachronic
norm of conditionalisation.
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§6 in summation

which says that in the absence of evidence, you must minimise your worst-case in-
accuracy, that justification cannot be used to support accepting STI while rejecting
SDS, either.

Finally, depending upon how exacting the other a priori norms of rationality
are, there may be little to no work left over for STI to do. For instance, suppose
that the other a priori norms of rationality pin down a precise rational credence in
every state description. Then, STI would be vacuously satisfied—which is to say, it
would impose no constraint at all. There would be no difference between it and a
norm which says to spread your credence as unevenly as possible, given the (other)
a priori rational norms.

In closing, it’s worth noting that there is another, less conservative, reaction to
the incompatibility from§4. Anti-Humeansmay decide to abandon the framework
which represents your degrees of confidence with a precise real-valued credence
function, C . In its place, they may wish to move to a framework in which your
degrees of confidence are represented with a comparative confidence ordering, or
a framework in which they are represented with an imprecise probability distribu-
tion. For the interested reader, I discuss these alternative reactions in appendix A.
In brief: a similar incompatibility arises in both of these alternative frameworks.

6 In Summation

In sum: anti-Humeans cannot accept both CD and IP. If they wish to spread their
ur-prior credences evenly over each possibility they recognise, then they must not
defer to the chances; if they wish to defer to the chances, they cannot spread their
ur-prior credences evenly over each of the possibilities they recognise. We could
slightly weaken IP to render it compatible with AH and CD, though I personally
have a hard time seeing the philosophical motivation for this weakening. There is
also an even weaker indifference principle anti-Humeans could satisfy while defer-
ring to the chances. This principle allows an ur-prior credence distribution to be
uneven so long as this unevenness is required by some other a priori requirement
of rationality. It says merely that your ur-prior credences should be as even as the
other requirements of rationality allow them to be. This principle does not conflict
with AH and CD. While there may be good reason to endorse this weaker indiffer-
ence principle, it is not supported by the arguments of Williamson and Pettigrew.
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A Indifference with Comparative Confidence and Imprecision

I have been taking for granted a traditional Bayesian framework in which your de-
grees of confidence get represented with a precise probability function. However,
there are other frameworks available, and these other frameworks afford us dif-
ferent ways of thinking about what’s involved in being ‘indifferent’ between state
descriptions, and what’s involved in deferring to the chances. In this appendix, I’ll
look at two alternative approaches: an approach which represents rational degrees
of confidence with a comparative confidence ordering (§A.1), and an approach
which represents rational degrees of confidence with an imprecise probability func-
tion (§A.2).

A.1 Comparative Confidence

In this section, I’ll introduce comparative confidence orderings. Representing ra-
tional doxastic states with these orderings allows us to formulate indifference prin-
ciples which avoid the familiar objections to IP∞ from §B.1.1. However, even with
these orderings, we face an analogue of the incompatibility from §4.

The most general kind of comparative confidence ordering is a conditional
comparative confidence ordering. This is a binary relation between pairs of sen-
tences, which we may write ‘[A | E] ≽ [B | F]’, and give the interpretation that
you are at least as confident in A, given E, as you are in B, given F. From this
ordering, we may recover an unconditional comparative confidence ordering by
setting the ‘conditioning’ sentences equal to a tautology. That is, we assume that
you think A is not less likely than B exactly when [A | ⊤] ≽ [B | ⊤], which I will
abbreviate with ‘A ≽ B’.12 As usual, we may stipulate that [A | E] ≻ [B | F] iff
[A | E] ≽ [B | F] and it’s not the case that [B | F] ≽ [A | E]. And we may stipulate
that [A | E] ≈ [B | F] iff [A | E] ≽ [B | F] and [B | F] ≽ [A | E]. For my purposes,
I’ll only need to assume that ≽ is reflexive and transitive, and that A∧ E ≽ B∧ E
whenever [A | E] ≽ [B | E].13

In this framework, the natural analogue of CD is this:

Comparative Chance Deference (CCD) In the absence of any evidence, for any
sentences P , Q, and any ch: if ch(P) > ch(Q), then, given that the chance

12. See Fine (1973, ch. 2), and the references contained therein.
13. This follows from Fine’s qcc7 (see p. 30).
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function is ch, you should be more confident in P thanQ,

[P | Ch = ch] ≻ [Q | Ch = ch]

There are multiple ways we might try to formulate an indifference principle in
this framework. Adapting a proposal from Norton (2008), we could say that you
should be as confident in any one state description as you are in any other.

Comparative Indifference Principle (CIP) For any two state descriptions, ω and
ω∗, in the absence of evidence, you should be as confident inω as you are in
ω∗,

ω ≈ ω∗

CIP is incompatible with CCD whenever there is a pair of state descriptions
ϕ ∧Ch = ch and ψ ∧Ch = ch such that ch(ϕ) > ch(ψ). For CCD tells us that

(4) [ϕ | Ch = ch] ≻ [ψ | Ch = ch]

Given our assumptions, it follows from (4) that

ϕ ∧Ch = ch ≻ ψ ∧Ch = ch

But, by CIP, we have that

ϕ ∧Ch = ch ≈ ψ ∧Ch = ch

Contradiction.

Eva (2019) proposes another way of showing indifference. His suggestion is
that, in the absence of evidence, you shouldn’t have any comparative judgements
about one state description being more or less likely than another. That is: rather
than saying that any two states descriptions are equally likely, you should say that
any two state descriptions are incomparable. Abbreviate ‘(A % B)∧ (B % A)’ with
‘A ⊙ B’. Then, Eva’s proposal is this:

Comparative Indifference Principle′ (CIP′) For any two state descriptions,ω and
ω∗, in the absence of evidence, you should not make any comparative con-
fidence judgements about ω and ω∗,

ω ⊙ ω∗
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CIP′ is also incompatible with CCD, and for the same reason that CIP is. Again,
consider a pair a state descriptions, ϕ ∧Ch = ch and ψ ∧Ch = ch, where ch(ϕ) >
ch(ψ). Again, CCD implies that

ϕ ∧Ch = ch ≻ ψ ∧Ch = ch

whereas CIP′ implies that

ϕ ∧Ch = ch ⊙ ψ ∧Ch = ch

Contradiction.

A.2 Imprecision

In this section, I’ll introduce imprecise credence functions. Representing ratio-
nal doxastic states with imprecise credences allows us to formulate indifference
principles which avoid the familiar objections to IP∞ from §B.1.1. But imprecise
credences will nonetheless give rise to an analogue of the incompatibility from §4.

An imprecise credence function, C, is just a set of precise credence functions,
with the interpretation that your doxastic state has all and only the features shared
by every credence function in C. A helpful metaphor: each credence function
C ∈ C is a ‘committee member’ who gets a vote in determining your doxastic state.
Your doxastic state has a property iff the committee passes a motion saying that
it has the property. Each committee member C ∈ C votes in favour of a motion
saying your doxastic state has a certain property exactly when C has that prop-
erty. And the committee only passes a motion when the vote is unanimous. For
instance, suppose that, for every real number x between 1/3 and 2/3, there is a
committee member whose credence in P is x. Then, the committee unanimously
agrees that your confidence in P is between 1/3 and 2/3, though, when it comes to
your confidence in P , it does not agree on anything stronger than this.14

In this framework, it’s natural to impose a principle of chance deference by
demanding that every committee member defers to the chances.

Imprecise Chance Deference (ICD) For every sentence P , and every committee
memberC ∈ C,C ’s credence in P , conditional on the chance function being

14. For more comprehensive and thorough introductions to imprecise credences, see van Fraassen
(1990, 2006), Walley (1991), Seidenfeld & Wasserman (1993), Joyce (2010), Schoenfield (2017),
and Moss (2020), a.o.
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ch, is ch(P).
C(P | Ch = ch) = ch(P)

Corresponding to the setC is a set-valued function which we can write ‘C(P)’,
and which is defined to be the set of all real numbers x such that, for some C ∈ C,
C(P) = x. Likewise, we can let C(P | Q) be the set of real numbers x such that,
for some C ∈ C, C(P | Q) = x. In these terms, the principle ICD requires that
C(P | Ch = ch) = {ch(P)}.

Within this framework, your attitudes are maximally undecided exactly when
they are maximally imprecise. That is: what it is for you to assume nothing at all
about whether P is for your committee members to agree on nothing at all about
your attitude towards P , other than that it lies somewhere between 0 and 1. That
is: what it is for you to be maximally undecided about P is for C(P) to be the unit
interval.

In general, indifference principles say that, in the absence of evidence, your
doxastic state should build in as little information as possible about which state
description is true. So, in the imprecise framework, it is natural to formulate an
indifference principle by saying that, in the absence of evidence, you should be
maximally undecided about every state description.

Imprecise Indifference Principle (IIP) For every state description ω, in the ab-
sence of evidence, your credence in ω should be maximally imprecise,

C(ω) = [0,1]

Assuming there is at least one state description ϕ∧Ch = ch such that ch(ϕ) =
x < 1, ICD and IIP are incompatible. For ICD requires every committee member
C ∈ C to give a credence of x to ϕ, conditional on Ch = ch. This means that the
greatest credence any committee member could give to ϕ ∧ Ch = ch is x—any
greater, and its credence in ϕ, conditional on Ch = ch, would be greater than x, in
violation of ICD.15 So, if you satisfy ICD, you’ll have

C(ϕ ∧Ch = ch) ⊆ [0,x]

15. More carefully: C(ϕ | Ch = ch) is the ratio C(ϕ ∧Ch = ch)/C(Ch = ch). Since ICD says this ratio
must be equal to x, we have that C(ϕ ∧Ch = ch) = x ·C(Ch = ch). By setting C(Ch = ch) equal to
1, we may set C(ϕ∧Ch = ch) equal to x, but if C(Ch = ch) is any lower than 1, C(ϕ∧Ch = ch)will
be less than x.
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However, IIP requires that

C(ϕ ∧Ch = ch) = [0,1]

Since x < 1, there’s no way to satisfy both of these principles at once.

Joyce (2010, p. 289–290) proposes another, weaker, way of understanding ‘in-
difference’ in the imprecise framework. He puts forward an imprecise analogue
of the principle I called ‘Symmetry to Indifference’ (STI) in §3. According to this
principle, given any partition16 of evidentially symmetric sentences, your attitude
towards these sentences should be symmetric, in the sense that any committee
member who deviates from a uniform distribution is ‘balanced out’ by commit-
tee members who deviate from the uniform distribution to the same degrees, but
in different ways. More carefully:

Imprecise Symmetry to Indifference If E = {E1,E2, . . . ,EN } is a partition such
that, for every Ei ,Ej ∈ E , Ei and Ej are evidentially symmetric, then for
any C ∈ C, and any permutation p of E , there is some C∗ ∈ C such that, for
each E ∈ E , C∗(p(E)) = C(E).

If we combine this principle with the assumption that any two state descriptions
are evidentially symmetric (SDS), we get the following.

Imprecise Indifference Principle′ (IIP′) For any C ∈ C, and any permutation of
state descriptions, p, there is some C∗ ∈ C such that, for every state descrip-
tion ω, C∗(p(ω)) = C(ω).

Assume that there is a pair of state descriptions, ωϕ
def= ϕ ∧Ch = ch and ωψ

def=
ψ ∧ Ch = ch, such that ch(ϕ) = z · ch(ψ), for some z , 1. Then, IIP′ will be
incompatible with ICD. Without loss of generality, suppose that z > 1, so that
ch(ϕ) > ch(ψ). By ICD, for every C ∈ C, C(ωϕ) = z ·C(ωψ). So every committee
member gives a higher credence to ωϕ than they do to ωψ .

(5) ∀C ∈ C C(ωϕ) > C(ωψ)

Now, consider a permutation p which swaps ωϕ with ωψ , but maps every other
state description to itself. Since there’s some C ∈ C such that C(ωϕ) > C(ωψ)

16. For our purposes, we can take a partition to be a set of sentences such that no sentence in the set is
knowable a priori to be false, and such that it is knowable a priori that the set contains exactly one
truth.
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(by 5), IIP′ requires that there’s another C∗ ∈ C such that C∗(ωψ) = C∗(p(ωϕ)) =
C(ωϕ) and C∗(ωϕ) = C∗(p(ωψ)) = C(ωψ). So IIP′ requires that

(6) ∃C∗ ∈ C C∗(ωψ) > C
∗(ωϕ)

But (5) and (6) contradict each other.

B Infinite Indifference to Anti-Humean Chances

In this appendix, I will discuss whether the incompatibility between deference to
the chances, indifference, and anti-Humeanism extends to contexts in which there
are infinitely many state descriptions (or possible worlds). In §B.1, I introduce an
infinitary analogue of IP, IP∞. In §B.2, I introduce an infinitary analogue of CD,
CD∞. Then, in §B.3, I introduce an infinitary analogue of AH, AH∞, and I argue
that accepting IP∞, CD∞, and AH∞ leads to a contradiction.

B.1 Infinite Indifference

If there are countably many atomic sentences, then a state description will be an
infinitary conjunction, and there will be continuum-many state descriptions. If
there are uncountably many state descriptions, then any non-trivial indifference
principle will require us to impose additional structure on the setΩ. We find some
random variable, V , which maps every state descriptionω ∈Ω to some real num-
ber, V (ω) ∈ R. Then, we can assign to each value v in the range of the variable
V a credence density, ρV (v). This density function doesn’t say what your credence
that V = v is.17 If you abide by IP, your credence that V takes on any particu-
lar value, v, will have to be zero. Instead, ρV (v) says how dense your credence
is at V = v. Think about it like this: for any narrow interval [v,v + ϵ], the ratio
C(V ∈ [v,v + ϵ])/ϵ is the density of your credence over the interval [v,v + ϵ]. By
taking the limit of this ratio as ϵ goes to zero, we get the density of your credence
at the point V = v, ρV (v).

With a credence density function, ρV , we can determine your credence distri-
bution by integrating over ρV . For instance, your credence thatV is between a and
b will be given by

∫ b
a
ρV (v) dv. And, in general, for any measurable set of values

v, your credence that V is within v is given by
∫
vρV (v) dv.

18 Then, indifference

17. Notation: ‘V = v’ is the disjunction of state descriptions which V maps to v, V = v
def=∨

ω∈Ω :V (ω)=vω.
18. In general, we could characterise the possibilities in Ω with any finite number of real-valued vari-
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Figure 1: The uniform credence density over U . Your credence that U lies in the set
u = [1/4,1/2]∪ [3/4,1] is given by the integral

∫
uρU (u) du, which is the area under the

curve ρU (u) shown in grey.

may be implemented by saying that your credences should have a uniform density.
That is: every value of v should have exactly the same credence density.

Infinitary Indifference Principle (IP∞) Your credence density should be uniform.

For instance: consider a random variable, U , which tells us what percentage of
space is unoccupied. U can take on values between 0 and 1. Then, indifference
requires that the density of your credence should be uniform over these values.
This uniform credence density is shown in figure 1.

B.1.1. Familiar Objections to IP ∞. In this subsection, I’ll briefly review some
familiar objections to IP∞ which are orthogonal to my interests here. The uninter-
ested reader should skip ahead to §B.2.

IfΩ is infinite, then therewill inevitably bemore than oneway of parametrising
the state descriptions in Ω. For instance, consider the variable R, which gives the
ratio of unoccupied space to occupied space. LikeU ,Rmaps each state description
to some real number.19 However, unlike U , R raises two pressing issues for IP∞.
The first issue is that, unlikeU , the potential values of R are unbounded—R could
take on any value from 0 to∞. So, if we demand that the density of your credence
is uniform over R, then we will run into a conflict with normalisation. For the
uniform density over R will either be positive for each r or else it will be zero for
each r . If positive, ρR(r) = α > 0, then your credence in Ω will be

∫ ∞
0
α = ∞.

If zero, then your credence in Ω will be
∫ ∞
0

0 = 0. Either way, you will violate
normalisation. In response, defenders of IP∞ could allow that, even if a perfectly

ables, V1,V2, . . . ,VN . Then, instead of having a density function onR, we’d have a density function
on RN . However, we won’t require these additional complications here.

19. More carefully, it maps each possibility to an extended real number—if no space is occupied, then
we will stipulate that R =∞.
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Figure 2: A uniform credence density over U induces a non-uniform credence density
over R =U/(1−U ).

uniform credence density is impossible, the density of your credences should still
be sufficiently uniform.20

The second issue: once it has pronounced on your credence density over U ,
IP∞ has already pronounced on your credence density over R. For there is a log-
ical relationship between the values of U and R: necessarily, R = U/(1−U ). But
this means that a uniform credence density overU induces the following credence
density over R: for each r ⩾ 0, ρR(r) = (1 + r)−2 (if r < 0, then ρR(r) = 0). This
credence density is shown in figure 2. The second problem is just that this density
is far from uniform. With this density function, your credence that R is between 0
and n is given by n/(n+1). So, you will be 90% confident that R is between 0 and
9 and 99% confident that R is between 0 and 99.21

Either IP∞ should be applied to multiple parametrisations, or else there is one
privileged parametrisation to which it should be applied. In the first case, IP∞ is
outright inconsistent. In the second case, the principle is either language-dependent
or arbitrary. Arbitrariness and language-dependence are better than contradiction,
so I’ll suppose that defenders of IP∞ think that there is some privileged parametri-
sation,22 or that the requirements of rationality are language-dependent.23

B.2 Infinite Chances

Suppose you want your credences to be defined over uncountably many sentences
of the form Ch(P) = x—one for each of the uncountably many real numbers, x,
between 0 and 1. Then, so long as your credences are real valued, you’ll have to
assign a credence of zero to uncountably many of the sentences Ch(P) = x. If your

20. Cf. Williamson (2010).
21. Versions of this problem appear in Bertrand (1889). For more recent philosophical discussion, see

van Fraassen (1989).
22. This is the route taken by White (2009)—though White does not endorse IP∞ (see §5 above).
23. This is the route taken by Williamson (2010).
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credence in Ch(P) = x is zero, then the product rule will not impose any constraint
on the relationship between C(P | Ch(P) = x) and C(P ∧ Ch(P) = x). Lewis was
not concerned with this, because he allowed rational credences to take on infinites-
imal values.24 So he thought that, even when you’re spreading your credences over
uncountably many state descriptions, you needn’t give a credence of zero to any of
them. If we agree with him about this, then perhaps CD is already general enough.
But I’ve been persuaded that Lewis was wrong to rely upon infinitesimals.25 If, like
me, you want your credences to be real-valued, then you should be looking for a
natural generalisation of CD for the case where you have credences over uncount-
ably many chance sentences.

Even if your credence that the chance of P is x will be zero for any particular
choice of x, your credence that the chance of P lies within an interval of values
[x,x+ϵ] (with ϵ > 0) can be non-zero, no matter how small the interval [x,x+ϵ].
So a natural generalisation of CD says that a rational ur-prior credence in P , given
that the chance of P lies in some interval [x,x+ϵ], is within the interval [x,x+ϵ]:

Infinitary Chance Deference (CD∞) Your credence that P , given that the chance
of P is between x and x + ϵ, should be between x and x + ϵ (for any ϵ > 0).

x ⩽ C(P | Ch(P) ∈ [x,x + ϵ]) ⩽ x + ϵ

If your credence in P , given Ch(P) ∈ [x,x+ϵ], is in the interval [x,x+ϵ], then your
credence in ¬P , given Ch(P) ∈ [x,x + ϵ], is within the interval [1− x − ϵ,1− x]:

1− x − ϵ ⩽ C(¬P | Ch(P) ∈ [x,x + ϵ]) ⩽ 1− x

So long as C(Ch(P) ∈ [x,x + ϵ]) > 0, for any positive ϵ, no matter how small, it
then follows from the product rule that, for any ϵ > 0,

C(P ∧Ch(P) ∈ [x,x + ϵ]) ⩽ x + ϵ
1− x − ϵ

·C(¬P ∧Ch(P) ∈ [x,x + ϵ])

and C(P ∧Ch(P) ∈ [x,x + ϵ]) ⩾ x
1− x

·C(¬P ∧Ch(P) ∈ [x,x + ϵ])

Divide both sides of these inequalities by ϵ, and take the limit as ϵ goes to zero.
Thereby, we get that the density of your credence in the conjunction P ∧ Ch(P) =
x must be x/(1 − x) times the density of your credence in the conjunction ¬P ∧

24. See Lewis (1980, pp. 267–8).
25. See Williamson (2007), Easwaran (2014), and Hájek (ms, §7).
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Ch(P) = x,

ρ(P ∧Ch(P) = x) = x
1− x

· ρ(¬P ∧Ch(P) = x)(7)

Equation 7 follows from CD∞. It will be important in §B.3 below.

B.3 Incompatibility

To keep matters simple, let’s suppose that there is just a single atom, A. Then,
we may have, for each x ∈ [0,1], a chance hypothesis Ch = chx, where chx is a
probability function defined over the sentences we get by taking the set {A} and
closing it under negation and disjunction. Every such sentence will be equivalent
to one of the following four: 1) A∧¬A, 2) A∨¬A, 3) ¬A, and 4) A. Since chance
is a probability function, we must have chx(A ∧¬A) = 0, chx(A ∨¬A) = 1, and
chx(¬A) = 1− chx(A). So we may characterise each potential chance function chx
with a single parameter, x, which is the probability chx assigns to the atom A.

In this context, I will take ‘anti-Humeanism’ to be the following thesis:

Infinitary Anti-Humeanism (AH∞) For eachx ∈ [0,1], there are two correspond-
ing state descriptions: A∧Ch = chx and ¬A∧Ch = chx.

In that case, there are uncountably many state descriptions inΩ. To apply IP, then,
we must first parametrise these state descriptions by using an appropriate random
variable fromΩ toR. We can encode the information of which chance hypothesis
is true with a variable ChA, whichmaps a state descriptionω ∈Ω to x iff the chance
hypothesis Ch = chx is included in ω. But this variable on its own doesn’t tell
us everything. Besides the chance of A, we also need to know whether A is true
or false. I will encode this information with a variable 2A, which maps a state
description ω ∈ Ω to the value 2 iff A is included in ω, and maps ω to 0 if ¬A is
included in ω. We can then put these two pieces of information together with a
variable V = ChA +2A. V tells us everything there is to tell about both the chance
of A is and whether A is true or false. If V is between 0 and 1, then A is false and
the chance of A is the value of V . If V is between 2 and 3, then A is true and the
chance of A is V − 2.

What IP∞ says will depend upon how we parametrise the state descriptions.
(See the discussion from §B.1.1.) The parametrisation I’ve chosen here in terms of
V is meant to be as natural as possible. It cleanly gives us exactly the information
of whetherA is true and whatA’s chance is, and the uniform distribution over that
chance corresponds to the standard Lebesgue measure. Applying IP∞ to this very
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Figure 3: The uniform density over V = ChA + 2A

natural parametrisation, it tells you to have the uniform credence density shown in
figure 3.

But this is incompatible with CD∞. For CD∞ requires that, for any v between
0 and 1,

ρV (v +2) =
v

1− v
· ρV (v)(8)

(Equation 8 follows from from equation 7, which itself follows from CD∞, as we
saw in §B.2.) But the uniform credence density shown in figure 3 sets ρV (v +2) =
ρV (v) = 1/2 for every value of v between 0 and 1. So the uniform credence density
will violate equation 8 for every value of v other than v = 1/2. So the uniform
credence density violates CD∞.
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