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Abstract 

A number of people have suggested that there is a link between information integration and consciousness, and a 

number of algorithms for calculating information integration have been put forward. The most recent of these is 

Balduzzi and Tononi‟s state-based Φ algorithm, which has factorial dependencies that severely limit the number of 

neurons that can be analyzed. To address this issue an alternative state-based measure known as liveliness has been 

developed, which uses the causal relationships between neurons to identify the areas of maximum information 

integration. This paper outlines the state-based Φ and liveliness algorithms and sets out a number of test networks that 

were used to compare their accuracy and performance. The results show that liveliness is a reasonable approximation 

to state-based Φ for some network topologies, and it has a much more scalable performance than state-based Φ. 

Keywords: information integration; consciousness; causation; neural networks, effective connectivity; Φ; liveliness 

1. Introduction 

Information integration is a property of systems of connected elements that expresses the extent to which they are 

capable of entering a large number of states that result from causal interactions among their elements (Tononi and 

Sporns, 2003). For example, a digital camera sensor with a million photodiodes has low information integration 

because none of its large number of states result from causal interactions among the photodiodes. A system consisting 

of a million lights controlled by a single switch has a high level of integration between its elements, but a low level of 

information integration because it can only enter a small number of states (all lights on; all lights off). The mammalian 

brain is an example of a system with high information integration because it can enter a large number of different 

states, and each of these states results from causal interactions between the neurons. 

A number of people have suggested that there is a link between information integration and consciousness 

(Metzinger, 2003) or that information integration actually is consciousness (Tononi, 2004, 2008), and a number of 

algorithms for calculating information integration have been put forward. These include neural complexity (Tononi, 

Sporns and Edelman, 1994),
1
 stateless Φ

2
 (Tononi and Sporns, 2003), state-based Φ (Balduzzi and Tononi, 2008),

3
 

                                                           
1
 Neural complexity is not explicitly formulated as a measure of information integration – rather, it is claimed to be a measure of 

the balance between functional specialization at a small scale and global integration at a large scale. However, since its method 

and aims are very closely aligned with the later work of Tononi and Sporns (2003) and Balduzzi and Tononi (2008), it has been 

included as a measure of information integration in this paper. 
2
 Tononi and Sporns‟ (2003) use of the symbol Φ is distinct from the many other quantities that Φ has been used to represent. 

Tononi and Sporns intended the “I” in Φ to represent the information that is integrated within an entity that is represented by the 

“O” in Φ. 
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causal density (Seth et al., 2006) and liveliness (Aleksander and Gamez, 2011) – see Seth et al. (2006) for a review of 

earlier work and a comparison. There have been a limited number of experiments suggesting a link between 

information integration and consciousness (Lee et al., 2009; Massimini et al., 2009, 2010), and in the longer term it is 

hoped that one of the measures of information integration could form part of a scientific theory of consciousness that 

could be used to make accurate predictions about conscious states. 

The neural complexity and stateless Φ measures of information integration use equilibrium solutions to the 

network, which are insensitive to a network‟s changing weights and ignore alterations in the information integration 

over time. The causal density measure is based on Granger causality (Granger, 1969), which has the advantage that it 

works when the causal model of the system is unknown, but its measurement of the system across multiple points in 

time smears out the information integration and makes the algorithm insensitive to fluctuations within the sampling 

window. Causal density also has the disadvantage that it does not identify the regions of the system that have the 

highest „density‟ of information integration, since it only provides a single number for the information integration of 

the entire system.
4
 The state-based Φ algorithm put forward by Balduzzi and Tononi (2008) is the most temporally and 

spatially specific measure that has been put forward so far, since it can identify the regions of maximum information 

integration for each firing state of the system. Balduzzi and Tononi (2009) have also suggested how the structure of 

integrated information might be linked to the contents of consciousness, and a method for applying the state-based Φ 

algorithm to time series data has been put forward by Barrett and Seth (2011). The key limitation of Balduzzi and 

Tononi‟s (2008) algorithm is that its factorial dependencies severely limit the number of neurons that can be analyzed 

(see Section 5.7). To address this problem an alternative measure of information integration known as liveliness has 

been developed, based on earlier work by Aleksander (1973) and Aleksander and Atlas (1973). When the causal 

model of the system is known, both liveliness and state-based Φ can be used to measure changes in its information 

integration over time and make predictions about the moment to moment consciousness of the system.  

If information integration is correlated with or claimed to be consciousness, then it must be a real property of 

the physical system, and different methods for measuring information integration should produce similar results. The 

accuracy of information integration algorithms could be evaluated by making the (problematic) assumption that 

information integration is correlated with consciousness, and carrying out experiments – for example, using fMRI or 

                                                                                                                                                                                                                 
3
 The information integration measure put forward by Tononi and Sporns (2003) will be referred to as “stateless Φ” to distinguish 

it from the related state-based measure of Φ of Balduzzi and Tononi (2008). 
4
 This limitation could be addressed by applying a clustering algorithm to the weights identified by Granger causality, but we are 

not aware of any work that has done this so far. 
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EEG – that measure the correlation between the output of the information integration algorithms and reports of 

conscious states. If information integration is correlated with consciousness, then the algorithms that most accurately 

predict consciousness would be the most accurate measures of information integration. The main problem with this 

approach is that some or all of the algorithms might be measuring a property of the brain that is correlated with 

consciousness, but which has nothing to do with information integration. There is also the issue that our spatial and 

temporal access to the brain is severely limited, which makes it very difficult to measure information integration in 

humans. Another way of measuring the accuracy of information integration algorithms is to create simulated networks 

with well defined regions of high information integration. Different information integration algorithms could be run 

on these networks and their output compared with the areas of expected maximum information integration. This 

approach has the problem that our intuitions about the areas of maximum information integration might not be correct, 

but there does not appear to be a way of measuring the information integration of a network that does not depend on a 

particular algorithm.  

While the simulated networks approach is problematic, until access to the brain improves it is the only method 

that is available for the comparison of different measures of information integration, and this paper proposes a number 

of test networks that could be used to benchmark different information integration algorithms. The first part of the 

paper outlines the state-based Φ and liveliness algorithms, and then a number of test networks are described, which 

were used to evaluate the accuracy and performance of the two measures. The results of the analyses are presented in 

Section 5, and the paper concludes with a discussion and some suggestions for testing the link between information 

integration and consciousness on real neural data. 

2. Two State-based Measures of Information Integration 

2.1 State-based Φ 

Balduzzi and Tononi‟s (2008) state-based Φ algorithm uses relative entropy to measure the effective information that 

is generated by a subset of the network when it enters a particular state. The relative entropy, H[ p || q], between 

probability distributions p and q is given by Equation 1: 


i i

i
i

q

p
pqpH 2log]||[ . (1) 
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When a network or subset of the network enters a particular state, x1, at time t1 there is a certain probability that each 

possible state at t0 led to the current state at t1. The set of these probabilities is called the a posteriori repertoire or 

p(X0→x1). The entering of the network into state x1 generates information because it defines the a posteriori repertoire 

of probabilities of the possible states that could have existed at t0 and led to the current state. However, if the network 

is in a state of maximum entropy and its states are entirely random, then each state x1 could have been caused by any 

other state, and the fact that you are in x1 tells you nothing about the previous state of the network. In this case, the 

probability that each possible previous state of the network caused the current state is the same, and this set of 

probabilities is known as the a priori repertoire, or p
max

(X0). According to Balduzzi and Tononi (2008), the amount of 

information generated by a particular state can be measured using the relative entropy between the a posteriori 

repertoire associated with x1 and the a priori repertoire, as expressed in Equation 2: 

)](||)([)( 0

max

1010 XpxXpHxXei 
, 

(2) 

where ei(X0→x1) is the effective information generated by the state x1, p(X0→x1) is the a posteriori repertoire and 

p
max

(X0) is the a priori repertoire.  

 Equation 2 gives the effective information that is generated when the whole network or a subset enters a 

particular state, but it does not tell us whether this information was generated by causal interactions among the 

elements, or whether it is the sum of the information generated by the parts of the network acting independently. To 

answer this question Balduzzi and Tononi (2008) consider partitions of the network and calculate the relative entropy 

between the a posteriori repertoires of the parts considered independently and the a posteriori repertoire of the whole 

subset, as expressed in Equation 3: 









 

PM

kk

k

MpxXpHPxXei )()()/( 101010 

, 

(3) 

where ei(X0→x1 / P) is the effective information of a particular partition, P, of the system into two or more parts, M
k
 is 

a part of the system, and µ
k
 is a state of M

k
. To calculate ei(X0→x1 / P), each part is considered as a system in its own 

right and the inputs from the other parts are treated as noise.  

The minimum information partition is the subset or division of the subset across which the least information is 

integrated, and it is identified by comparing the normalized effective information values for each possible partition as 
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well as the normalized effective information for the subset as a whole (known as the total partition, whose effective 

information is calculated using Equation 2). Normalization is needed during this comparison process because the 

effective information across a partition between a single element and a number of elements is typically less than an 

equal bipartition, and the effective information across many partitions is typically higher than the effective 

information across few partitions.
5
 The un-normalized value of effective information for the minimum information 

partition is the Φ value of the subset, which is calculated for every possible subset of the system. 

 Balduzzi and Tononi (2008) define a complex as a subset that is not included in another subset with higher Φ. 

According to Balduzzi and Tononi, complexes are regions of the system where neurons integrate the most 

information, and the Φ value of each complex corresponds to the amount of information that is integrated. The main 

complexes of the system are the complexes whose subsets have strictly lower Φ, and Tononi (2004, 2008) claims that 

main complexes are the conscious parts of the system. A correlation-based interpretation of information integration 

would interpret the main complexes as the parts of the system that are most likely to be correlated with consciousness.  

The state-based Φ analysis is computationally expensive because the calculations have to be run on every 

bipartition of every possible subset of the network.
6
 The first part of the full analysis is the extraction of all the 

possible subsets of the network, with the number of ways of selecting m elements out of the n elements of the system 

being given by Equation 4: 

)!(!

!

mnm

n

 , 
(4) 

which has to be summed over all subset sizes from m = 2 to m = n. The next part is the calculation of effective 

information on every possible bipartition of each subset in order to find the minimum information partition. A 

bipartition is created by selecting k elements out of the m elements in the subset, where k ranges from 0 to m / 2. 

Putting the subset selections together with the bipartition selections gives Equation 5:  
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5
 Normalization can introduce instabilities in the Φ value of the subset – see Barrett and Seth (2011). 

6
 This paper only considers bipartitions of the system, but the analysis can also be applied to other divisions of the system, such as 

tripartitions. 
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where tanalysis is the full analysis time and f(m) is the time taken to calculate the effective information on a single 

bipartition of a subset of size m. Equation 5 omits the fact that when the number of neurons in each half of the 

bipartition is exactly the same, the number of possible bipartitions has to be divided by two, because the selection of 

all possible combinations in one half results in the selection of all possible combinations in the other half. 

Experimental measures of the performance of the state-based Φ algorithm are given in Section 5.7. 

2.2 Liveliness 

The concept of liveliness emerged out of earlier work of Aleksander (1973) and Aleksander and Atlas (1973) as part 

of a logic- and state-based approach to neural networks. This work developed the concept of lively connections, 

neurons and functions and created a way of estimating the distribution of lively physical loops and consequent state 

cycles in a system. The earlier work was based on a static analysis of the system and it has recently been reworked 

into the state-based approach that is presented in this paper. 

Liveliness or λ is a measure of the causal influence between two neurons for a particular state of the network. 

The causal influence measured by liveliness is different from anatomical connectivity because the connection weights 

between neurons do not tell you whether one neuron is influencing another at a particular point in time. For example, 

if neuron n1 connects to neuron n2 with a lively connection, then there is a high probability that a change in state of n1 

will result in a change in state of n2 independent of the inputs to the other connections. With a low liveliness 

connection, the state of n2 is largely independent of the state of n1. In the network shown in Figure 1A, the connection 

between n2 and n3 has high liveliness because a change in the state of n2 will be reflected in a change in the output of 

n3. On the other hand, the connection from n1 to n3 in Figure 1A has zero liveliness because a change in the state of n1 

will not affect the output of n2 in the next time step. The key hypothesis of the liveliness measure is that lively 

connections are responsible for the integration of the system and that the number of lively connections is linked to the 

system‟s capacity for differentiation. 



8 
 

 
 

 

Figure 1. Simple network to illustrate liveliness. n3 has a simple integrate and fire function with a threshold of 0.1; firing 

neurons are highlighted in yellow. A) In this state of the network the connection between n1 and n3 has zero liveliness 

because the next state of n3 will be controlled entirely by the firing of n2: a change in n1 would not make any difference to 

the next state of n3. B) Here the connection between n1 and n3 is lively because a change in n1 will affect the next state of 

n3.  

The state-based liveliness algorithm is based on a transition between the current state of the network, s0, and 

the next state of the network, s1. The algorithm starts by using the state of the network s0 to calculate the next state of 

the network, s1. Then the state of each pre-synaptic neuron at s0 is varied to determine whether it affects the state of 

the post-synaptic neurons at s1. If a change in the state of a pre-synaptic neuron affects the next state of a post-synaptic 

neuron, then the connection is assigned a liveliness of 1. Otherwise, it is assigned a liveliness of 0. While this paper 

focuses on networks in which the connection liveliness is 1 or 0, this could become a graded value if the system was 

non-deterministic, if pre-synaptic neurons had continuous instead of binary output, or if pre-synaptic neurons were 

varied in combination – see the discussion in Section 6. Once the liveliness of the connections has been calculated, the 

liveliness of each neuron is given by the sum of the incoming liveliness of its connections. The neurons‟ liveliness can 

be plotted as a heat map to give a highly intuitive picture of the information integration of the network.  

The final stage of the algorithm is the identification of clusters in the network. A cluster is defined as an area 

of the network that is informationally isolated because it does not have lively connections (i.e., it is not actively 

integrating information) with neurons in the rest of the network. Clusters can be identified by starting with a seed 

neuron and adding neurons with lively connections to this neuron until no more neurons can be added. The resulting 

group of neurons will be a cluster, and treating each neuron as a seed neuron enables all clusters to be identified. The 

cluster is a unit of information integration similar to Balduzzi and Tononi‟s (2008) complex and the total liveliness of 

a cluster is given by Equation 6:  









 

 2n

totn
totncluster




, 

(6) 

where λn-tot is the sum of the liveliness of the neurons in the cluster and n is the number of neurons in the cluster. In 

this equation, the maximum liveliness of the cluster is n
2
, so λn-tot/n

2
 is a measure of the density of lively connections 

within the cluster, which is similar to Seth‟s (2006) measure of causal density (with the difference that self 
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connections are taken into account). By itself, lively connection density is not an adequate measure of information 

integration because larger networks with low lively density could have many more lively connections (and therefore 

more differentiation) than a pair of neurons with a full set of lively connections. To address this issue the density of 

lively connections is used to scale the total amount of liveliness in the cluster, so that larger networks with greater total 

liveliness will have larger values of λcluster than smaller networks with the same density of lively connections.
7
 

 The main computational costs of the liveliness algorithm are the cost of calculating the connection liveliness 

and the cost of expanding each seed to identify clusters, as shown in Equation 7: 

 excanalysis CnCct
, 

(7) 

where c is the number of connections, n is the number of neurons, Cc is the cost of calculating the liveliness of a single 

connection, Cex is the cost of expanding a single connection from a seed neuron to identify a cluster, and α is the 

average cluster size. In biologically-inspired networks with 1,000 – 10,000 connections per neuron the first part of the 

equation will dominate the calculation cost, and the analysis time should vary approximately linearly with the number 

of connections. Experimental measures of the performance of the liveliness algorithm are given in Section 5.7. 

3. Test Networks 

3.1 Introduction 

This section outlines six networks that were designed to compare the areas of maximum information integration 

identified by the state-based Φ and liveliness algorithms, and a set of simpler test networks that were used to measure 

the performance. The architectures of these networks was selected to illustrate potential links between information 

integration in the brain and consciousness, and the discussion in the following sections makes some loose comparisons 

between each network‟s structure and structures in the brain. However, these comparisons must be taken with a great 

deal of caution because the small size of these networks makes any comparison between their structure and brain 

structures extremely preliminary. 

                                                           
7
 In practice, λn-tot will typically scale with the size of the network, so Equation 6 could potentially be written as λcluster= n(λn-tot/n

2
). 

However, this reformulation would not express our intuition that the differentiation of the network is linked to the total number of 

lively connections, and not to the total number of elements. 
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3.2 Neurons 

The state-based Φ and liveliness algorithms are applicable to any set of elements that have causal links between them, 

such as neurons based on logic functions, weightless neurons (Aleksander, 2005), and weighted neurons, such as 

Izhikevich (2003). In the analyses described in this paper the test networks were created using weightless neurons, 

which can be used to implement logic-based networks and to approximate weighted neural models. To understand 

how a weightless neuron can approximate a weighted neuron, consider the network shown in Figure 2. If n5 has a 

threshold of 0.5, then it will fire whenever one of the other neurons are firing, which corresponds to a weightless 

neuron with function f4 in Table 1. On the other hand, if n5 has a threshold of 2, then it will only fire when all of the 

other neurons are firing, which corresponds to a weightless neuron with function f1 in Table 1. Weightless functions 

can also be created to model networks in which each connection has a different weight. 

 

Figure 2. Four neurons connect to a fifth with connection weight 0.5. n5 has an integrate and fire function that can have 

different thresholds. There is a long time step and no delay, so only spikes received during the current time step influence 

whether n5 fires or not. 

The number of neurons in each test network was fixed to ensure that only the functions and topology of the 

network influenced the results. A size of 12 neurons was selected because it is roughly the maximum number that can 

be analyzed by the state-based Φ algorithm in a reasonable time (see Section 5.7). To study the effect of different 

function and weight combinations on information integration, five of the test networks were created in four different 

versions in which all of the neurons implemented one of the functions listed in Table 2. These versions of the 

networks with different functions will be referred to as 100f, 75f, 50f and 25f. The next few sections outline the 

connections and firing patterns of each test network in more detail. 
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n1 n2 n3 n4  f1 f2 f3 f4 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 0 1 

0 1 0 0 0 0 0 1 

1 0 0 0 0 0 0 1 

0 0 1 1 0 0 1 1 

0 1 0 1 0 0 1 1 

1 0 0 1 0 0 1 1 

0 1 1 0 0 0 1 1 

1 0 1 0 0 0 1 1 

1 1 0 0 0 0 1 1 

0 1 1 1 0 1 1 1 

1 0 1 1 0 1 1 1 

1 1 0 1 0 1 1 1 

1 1 1 0 0 1 1 1 

1 1 1 1 1 1 1 1 

Table 1. Examples of weightless functions that could be implemented by neuron n5 in Figure 2. f1 corresponds to a 

weighted neuron with a threshold of 2; f2 corresponds to a weighted neuron with a threshold of 1.5; f3 corresponds to a 

weighted neuron with a threshold of 1 and f4 corresponds to a weighted neuron with a threshold of 0.5. 

 Condition Output 

100f 100 % of inputs = 1 1 

75f 75% of inputs = 1 1 

50f 50% of inputs = 1 1 

25f 25% of inputs = 1 1 

Table 2. Neuron functions. Output is zero unless the condition is matched. The 100%, 75%, 50% and 25% functions 

correspond to f1, f2, f3 and f4 in Table 1.  

3.3 Uniform Test Network 

The uniform test network is similar to Balduzzi and Tononi (2008), Figure 12 and it was intended to loosely 

correspond to densely connected cortex. Each neuron receives six connections from randomly selected neurons 

without any self connections, as shown in Figure 3. This network was created in four different versions (100f, 75f, 

50f, 25f), in which all of the neurons implemented one of the functions in Table 2. The following firing patterns were 

used for the analysis of the network: 

 No neurons firing. 

 25% randomly selected neurons firing. 

 50% randomly selected neurons firing. 

 75% randomly selected neurons firing. 

 100% randomly selected neurons firing. 
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These firing patterns are shown in the first rows of figures 10 and 11. 

 

Figure 3. Uniform test network. The six connections to each neuron are not always visible in this diagram because of 

overlap between them. 

3.4 Partitioned Test Network 

A critical test of any algorithm for consciousness is the ability to identify two separate consciousness within the same 

system – for example, in split brain patients (Gazzaniga, 1970). The partitioned test network shown in Figure 4 

consists of two independent clusters, and each neuron receives three connections from randomly selected neurons in 

the same cluster. This network was created in four different versions (100f, 75f, 50f, 25f) in which all of the neurons 

implemented one of the functions in Table 2. The following firing patterns were used for the analysis of the network:  

 No neurons firing 

 25% neurons firing 

 50% neurons firing 

 75% neurons firing 

 100% neurons firing 

These firing patterns are shown in the first rows of figures 13 and 14. 

 

Figure 4. Partitioned test network  



13 
 

 
 

3.5 Modular Test Network 

The modular test network loosely models the division of the brain into highly integrated nuclei with low amounts of 

connectivity between them, and it is similar to Balduzzi and Tononi (2008), Figure 13. The network is divided into 

three fully connected „modules‟ with a single one way connection between each module, as shown in Figure 5. This 

network was created in four different versions (100f, 75f, 50f, 25f) in which all of the neurons implemented one of the 

functions in Table 2. The following firing patterns were used for the analysis of the network: 

 No neurons firing. 

 1 randomly selected neuron firing in each module. 

 2 randomly selected neurons firing in each module. 

 3 randomly selected neurons firing in each module. 

 4 randomly selected neurons firing in each module. 

These firing patterns are shown in the first rows of figures 16 and 17. 

 

Figure 5. Modular test network 

3.6 Sensory Test Network 

The sensory test network loosely corresponds to a highly integrated part of the brain that receives sensory information 

from the periphery – what Balduzzi and Tononi (2008) refer to as ports-in – and it is also similar to the right half of 

Balduzzi and Tononi (2008), Figure 5. In this network, six of the neurons are fully connected and they each receive a 

single connection from one of the other six neurons, as shown in Figure 6. This network was created in four different 
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versions (100f, 75f, 50f, 25f) in which all of the neurons implemented one of the functions described in Table 2. The 

following firing patterns were used for the analysis of the network: 

 No neurons firing. 

 50% of the centre neurons firing; peripheral neurons quiescent. 

 Centre neurons quiescent; 50% of the peripheral neurons firing. 

 All centre neurons firing; peripheral neurons quiescent. 

 All centre neurons quiescent; peripheral neurons firing. 

 50% of all neurons firing. 

These firing patterns are shown in the first rows of figures 19 and 20. 

 

Figure 6. Sensory test network 

3.7 Motor Test Network 

The motor test network loosely corresponds to a highly integrated part of the brain passing motor control information 

to the periphery – what Balduzzi and Tononi (2008) refer to as ports-out. It is similar to the left half of Balduzzi and 

Tononi (2008), Figure 5, and to Balduzzi and Tononi (2008), Figure 6. In this network, six of the neurons are fully 

connected and each of the central neurons is connected to one of the six neurons at the periphery, as shown in Figure 

7. This network was created in four different versions (100f, 75f, 50f, 25f) in which all of the neurons implemented 

one of the functions described in Table 2. The following firing patterns were used for the analysis of the network: 

 No neurons firing. 

 50% of the centre neurons firing; peripheral neurons quiescent. 



15 
 

 
 

 Centre neurons quiescent; 50% of the peripheral neurons firing. 

 All centre neurons firing; peripheral neurons quiescent. 

 All centre neurons quiescent; peripheral neurons firing. 

 50% of all neurons firing. 

These firing patterns are shown in the first rows of figures 22 and 23. 

 

Figure 7. Motor test network 

3.7 Sensory-motor Test Network 

The sensory-motor test network is intended to illustrate a system that receives information from the world, processes it 

internally and then produces an output that could correspond to a motor command. The three neurons at the bottom of 

Figure 8 are the network‟s input, the middle ring of neurons holds the network‟s internal states and the top three 

neurons are the output of the network. This network was created in a single version in which the neurons‟ truth tables 

were hand coded to implement the input→internal-processing→output behaviour. The following firing patterns were 

used for the analysis of the network: 

 No neurons firing. 

 Two input neurons firing. 

 Three „internal‟ neurons firing in response to the input signal. 

 Three „internal‟ neurons firing in response to the previous pattern. 

 Output neurons firing in response to the state of the „internal‟ neurons. 
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These firing patterns are shown in the first rows of figures 25 and 26. 

 

Figure 8. Sensory-motor test network 

4. Materials and Methods 

The test networks were created in the SpikeStream neural simulator and analyzed using state-based Φ and liveliness 

plugins written in C++ for SpikeStream.
8
 These plugins were unit tested and validated on some of the networks from 

Balduzzi and Tononi (2008). A screenshot of the liveliness plugin is shown in Figure 9.  

 

Figure 9. SpikeStream plugin for liveliness analysis. The colours in the network on the right correspond to the amount of 

liveliness that is associated with each neuron for a particular state. 

                                                           
8
 More information about SpikeStream can be obtained at: http://spikestream.sf.net. An open source release of SpikeStream with 

the liveliness and state-based Φ plugins is available to download. 
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The state-based Φ results were difficult to interpret because a large number of complexes were often found for 

each time step and there were often many overlapping complexes with the same value of Φ. To alleviate this difficulty 

only main complexes with the maximum value of Φ were included in the results and complexes with lower Φ were 

discarded. Complexes or clusters with Φ or liveliness less than 1 were also discarded.  

To provide a simple visual comparison between the two algorithms, the results were plotted as spectrograms 

showing the normalized maximum integration between each pair of neurons averaged over all time steps. These 

spectrograms were calculated by recording the highest Φ or liveliness of a complex or cluster that each pair of neurons 

was involved in. The results were then normalized between 0 and 1, averaged over all time steps, and plotted using the 

colour scale shown on the right of each spectrogram. The neuron IDs on the X and Y axes correspond to the neuron 

numbers in the network diagrams; the colour shows the average normalized integration between each pair of neurons 

according to the state-based Φ and liveliness algorithms. 

To measure the performance of the two algorithms, networks with different numbers of weightless neurons 

were created, with each neuron receiving connections from another five randomly selected neurons. These networks 

were trained on 5 different patterns and the time that each algorithm took per time step was averaged over 25 runs on a 

Pentium IV 3.2 GHz single core computer. The performance of the state-based Φ algorithm was measured for a full 

analysis and for an analysis in which the Φ of the entire network was calculated without examining subsets. 

5. Results 

5.1 Uniform Network Results 

The results for the liveliness and state-based Φ analyses of the uniform network are given in figures 10-12. Both 

algorithms predicted a reasonably uniform information integration distribution across the network, which matched 

expectations based on the connectivity. The deviations from complete uniformity were most likely due to randomness 

in the connections and firing patterns.  
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Figure 10. Liveliness results for the uniform network. The 

first row shows the firing pattern for each network at time 

steps t1-t5; subsequent rows show the clusters that were 

identified for each function and time step. An empty cell 

indicates that no clusters with λ>=1 were found. The 

numbers are the cluster liveliness calculated according to 

Equation 6 and rounded to 0 decimal places. The amount of 

liveliness of each neuron is indicated using the colour scale 

on the right of the figure. Neurons coloured black are not 

included in the cluster. 

Figure 11. State-based Φ results for the uniform network 

showing some of the main complex(es) for each time step 

and function. The first row shows the firing pattern for each 

network at time steps t1-t5; subsequent rows show the 

complexes that were identified for each function and time 

step. When more than one complex was discovered with the 

same Φ, only a typical example is shown. The Φ values 

were rounded to 0 decimal places after the main 

complex(es) had been identified. 

 

Figure 12. Integration spectrograms for the uniform network showing the normalized maximum integration between each 

pair of neurons for different functions averaged over all time steps 

5.2 Partitioned Network Results 

The results for the partitioned network are given in figures 13-15. Both algorithms correctly identified the partition in 

the network; the key difference between them was that the state-based Φ algorithm typically identified more 

integration in the right group of neurons with IDs 7-12, whereas the liveliness algorithm typically identified more 

integration in the left group of neurons with IDs 1-6. 



19 
 

 
 

  

Figure 13. Liveliness results for the partitioned network. 

The first row shows the firing pattern for each network at 

time steps t1-t5; subsequent rows show the clusters that were 

identified for each function and time step. An empty cell 

indicates that no clusters with λ>=1 were found. The 

numbers indicate the cluster liveliness calculated according 

to Equation 6 and rounded to 0 decimal places. The amount 

of liveliness of each neuron is indicated using the colour 

scale on the right of the figure. Neurons coloured black are 

not included in the cluster. 

Figure 14. State-based Φ results for the partitioned network 

showing some of the main complex(es) for each time step 

and function. The first row shows the firing pattern for each 

network at time steps t1-t5; subsequent rows show the 

complexes that were identified for each function and time 

step. When more than one complex was discovered with the 

same Φ, only a typical example is shown. The Φ values 

were rounded to 0 decimal places after the main 

complex(es) had been identified. 

 

Figure 15. Integration spectrograms for the partitioned network showing the normalized maximum integration between 

each pair of neurons for different functions averaged over all time steps  

5.3 Modular Network Results 

The liveliness and state-based Φ results for the modular network are shown in figures 16-18. These integration 

spectrograms are quite messy, but they do demonstrate that the state-based Φ and liveliness algorithms identified 

modularity in all of the networks. The state-based Φ results are a bit cleaner for the 75f, 50f and 25f networks, 

showing better defined areas of high integration between neurons 1-4, 5-8 and 9-12. 
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Figure 16. Liveliness results for the modular network. The 

first row shows the firing pattern for each network at time 

steps t1-t5; subsequent rows show the clusters that were 

identified for each function and time step. An empty cell 

indicates that no clusters with λ>=1 were found. The 

numbers indicate the cluster liveliness calculated according 

to Equation 6 and rounded to 0 decimal places. The amount 

of liveliness of each neuron is indicated using the colour 

scale on the right of the figure. Neurons coloured black are 

not included in the cluster. 

Figure 17. State-based Φ results for the modular network 

showing some of the main complex(es) for each time step 

and function. The first row shows the firing pattern for each 

network at time steps t1-t5; subsequent rows show the 

complexes that were identified for each function and time 

step. When more than one complex was discovered with the 

same Φ, only a typical example is shown. The Φ values 

were rounded to 0 decimal places after the main 

complex(es) had been identified. 

 

Figure 18. Integration spectrograms for the modular network showing the normalized maximum integration for different 

functions averaged over all time steps 

5.4 Sensory Network Results 

The results for the sensory network in figures 19-21 show that the state-based Φ algorithm was generally better at 

identifying the expected high integration between the central group of six neurons. However, neither algorithm 
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appears to have identified patterns of integration between the peripheral neurons and the centre, which would be 

expected to appear as diagonal lines starting at (1,7) and finishing at (6,12) and starting at (7,1) and finishing at (12,6). 

Traces of these diagonal lines can be seen in the state-based Φ spectrograms for the 100f and 75f motor networks. 

  

Figure 19. Liveliness results for the sensory network. The 

first row shows the firing pattern for each network at time 

steps t1-t6; subsequent rows show the clusters that were 

identified for each function and time step. An empty cell 

indicates that no clusters with λ>=1 were found. The 

numbers indicate the cluster liveliness calculated according 

to Equation 6 and rounded to 0 decimal places. The amount 

of liveliness of each neuron is indicated using the colour 

scale on the right of the figure. Neurons coloured black are 

not included in the cluster. 

Figure 20. State-based Φ results for the sensory network 

showing some of the main complex(es) for each time step 

and function. The first row shows the firing pattern for each 

network at time steps t1-t6; subsequent rows show the 

complexes that were identified for each function and time 

step. When more than one complex was discovered with the 

same Φ, only a typical example is shown. The Φ values 

were rounded to 0 decimal places after the main 

complex(es) had been identified. 

 

Figure 21. Integration spectrograms for the sensory network showing the normalized maximum integration for different 

functions averaged over all time steps 

5.5 Motor Network Results 

The motor network liveliness and state-based Φ results in figures 22-24 show generally poor results for the liveliness 

algorithm, which identified few clusters for most of the firing patterns in the 100f and 75f networks. The state-based Φ 



22 
 

 
 

results for the 100f and 75f networks were much closer to expectations, showing integration within the centre cluster 

of neurons 6-12 and integration between the central neurons and the peripheral neurons, which appears as diagonal 

lines starting at (1,7) and finishing at (6,12) and starting at (7,1) and finishing at (12,6). 

  

Figure 22. Liveliness results for the motor network. The 

first row shows the firing pattern for each network at time 

steps t1-t6; subsequent rows show the clusters that were 

identified for each function and time step. An empty cell 

indicates that no clusters with λ>=1 were found. The 

numbers indicate the cluster liveliness calculated according 

to Equation 6 and rounded to 0 decimal places. The amount 

of liveliness of each neuron is indicated using the colour 

scale on the right of the figure. Neurons coloured black are 

not included in the cluster. 

Figure 23. State-based Φ results for the motor network 

showing some of the main complex(es) for each time step 

and function. The first row shows the firing pattern for each 

network at time steps t1-t6; subsequent rows show the 

complexes that were identified for each function and time 

step. When more than one complex was discovered with the 

same Φ, only a typical example is shown. The Φ values 

were rounded to 0 decimal places after the main 

complex(es) had been identified. 

 

Figure 24. Integration spectrograms for the motor network showing the normalized maximum integration for different 

functions averaged over all time steps 

5.6 Sensory-motor Network Results 

The sensory-motor liveliness and state-based Φ results in figures 25-27 show broadly similar results for both 

algorithms with the expected high integration within the central cluster and reduced integration with peripheral 
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neurons. The liveliness algorithms indicates higher levels of information integration when information is being passed 

from the input to the centre neurons and during the processing of the centre neurons, whereas the state-based Φ 

algorithm indicates higher levels of information integration during processing of input information and when 

information is being passed to the output neurons. This timing difference is likely to be due to the fact that the 

liveliness algorithm is attempting to decide which parts of the current state of the network affect the next state of the 

network, whereas the state-based Φ algorithm is examining the extent to which previous states of the network are 

responsible for the network‟s current state. 

  

Figure 25. Liveliness results for the sensory motor network. 

The first row shows the firing pattern for each network at 

time steps t1-t5; the second row shows the clusters that were 

identified for each time step. An empty cell indicates that no 

clusters with λ>=1 were found. The numbers indicate the 

cluster liveliness calculated according to Equation 6 and 

rounded to 0 decimal places. The amount of liveliness of 

each neuron is indicated using the colour scale on the right 

of the figure. Neurons coloured black are not included in the 

cluster. 

Figure 26. State-based Φ results for the sensory motor 

network. The first row shows the firing pattern for each 

network at time steps t1-t6; the second row shows the 

complexes that were identified for each time step. When 

more than one complex was discovered with the same Φ, 

only a typical example is shown. The Φ values were 

rounded to 0 decimal places after the main complex(es) had 

been identified. 

 

Figure 27. Integration spectrogram for the sensory-motor network showing the normalized maximum integration averaged 

over all time steps 

5.7 Performance Results 

The measured and predicted performance of the state-based Φ algorithm is shown in Figure 28. The factorial 

dependencies caused the full analysis time of this algorithm to increase very rapidly, and the fitted exponential 
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function, shown as a red dotted line, suggest that it would take approximately 10
9
 years to analyze a network of 30 

neurons using a desktop computer. The analysis times without subsets also increased exponentially with the number of 

neurons due to the factorial dependency on the number of bipartitions of the network. Even with heavy optimization 

and supercomputing power, the performance of the state-based Φ algorithm is likely to remain a major limitation for 

the foreseeable future. 

The measured performance times for the liveliness algorithm in Figure 29 show a linear dependency on the 

number of neurons, which is also a linear dependency on the number of connections because there was a fixed number 

of five connections per neuron in all of the networks. It took around 13 seconds to analyze a 100 neuron network for 

liveliness.  

  

Figure 28. Measured and predicted analysis times for the 

state-based Φ algorithm showing results for full analyses 

and analyses without subsets. The full analysis times 

approximate the function y=e
1.62x-3

. Error bars of +/- 1 

standard deviation were plotted, but are not visible on the 

logarithmic scale. 

Figure 29. Measured analysis times for the liveliness 

algorithm, which approximate the function y=3x+21. Error 

bars are +/- 1 standard deviation. 

6. Discussion 

One of the main problems with the state-based Φ algorithm is that the analysis of networks with random connections 

and firing patterns can result in a large number of overlapping main complexes. If Tononi‟s (2004, 2008) claim that 

the main complexes are associated with consciousness is correct, then many of the test networks would be attributed 

up to 20 separate overlapping consciousnesses. If the number of main complexes increases with the size of the 

network, then it seems likely that the brain will contain an extremely large number of main complexes, which sits 

poorly with our intuition that the normal waking brain is associated with a single consciousness. One way of 
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addressing this issue would be to merge overlapping complexes with similar values of Φ, perhaps using the rate of 

change of Φ to identify boundaries. 

While the integration spectrograms produced by the state-based Φ algorithm approximately matched our 

expectations about the information integration of the network, the output from the liveliness algorithm was patchy, 

with no results being returned for some of the networks and firing patterns – a problem that was particularly apparent 

on the sensory and motor networks. One possible explanation of these results is that the liveliness algorithm did not 

take combinations of neurons into account. To understand why this might be taking place, consider a version of the 

network shown in Figure 2 in which the threshold of n5 is 1 and all of the neurons are quiescent. In this case a change 

in state of any two of the presynaptic neurons will cause the postsynaptic neuron to fire, but the current liveliness 

algorithm would assign a liveliness of 0 to all connections - ignoring the fact that neurons are lively in combination 

with each other. In future work this problem could be addressed by measuring the liveliness of different combinations 

of neurons and taking the average of each connection. It might also be possible to use the a posteriori repertoire to 

measure the extent to which combinations of neurons affect subsequent states. Whichever approach is chosen, care 

would have to be taken to avoid introducing factorial dependencies into the liveliness algorithm, which would make 

its performance similar to state-based Φ.  

A second limitation of the liveliness algorithm is that its simple clustering method is only capable of 

identifying completely isolated parts of the network. While the liveliness algorithm‟s ability to generate heat maps 

make this problem less serious, it could be addressed by applying more sophisticated clustering algorithms, such as 

Feldt et al. (2009), to the lively weights, or by looking for contour lines in the neuron heat maps using visual 

processing techniques. Clustering algorithms that could generate overlapping clusters should be avoided because this 

would lead to the problems with overlapping consciousnesses that were discussed earlier. Clusters contained inside 

clusters with higher liveliness could be discarded in a similar way to the processing of subsets described in Balduzzi 

and Tononi (2008). 

The detailed results show that maximum values of liveliness were typically present when all or none of the 

neurons were firing, whereas higher values of Φ were associated with intermediate levels of firing. Since an 

intermediate firing state can occur in more possible ways, it might be thought that the differentiation of the network 

would be higher in these intermediate firing states, which would make state-based Φ a more accurate measure of 

information integration. A second way of interpreting the differentiation criteria is that it should be higher for 

inhomogeneous architectures. In these experiments both state-based Φ and liveliness had their maximum values for 
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the uniform network, which had a substantial degree of randomness in its connectivity, but more systematic work 

would be required to establish whether there is a systematic link between the information integration measures and the 

degree of homogeneity of the network. State-based Φ and liveliness also had significant differences in the timing of 

their maximum values, which was particularly apparent in the sensory-motor network, where the cluster liveliness 

peaked two time steps before the maximum Φ. One way of explaining this temporal difference is that state-based Φ is 

identifying causal influences that previous states of the system exert on its current state, whereas liveliness is 

measuring the degree to which each element and connection influences the next state of the network.  

While some of the differences in the information integration that was identified by the state-based Φ and 

liveliness algorithms can be explained by limitations of the liveliness algorithm, the question about which algorithm is 

a correct measure of information integration is much more difficult to address. In this paper the accuracy of 

information integration algorithms was evaluated by benchmarking them on simulated networks whose areas of 

information integration were reasonably intuitively obvious. However, even with simple networks it rapidly becomes 

unclear what the „actual‟ information integration of the network should be once different functions and noisy 

connections and firing patterns are introduced. While there does not appear to be any easy way around this problem, 

further analyses of simulated and real biological networks might go some way towards addressing it. 

7. Measuring the Link between Information Integration and Consciousness on Real 

Neural Data 

At the present stage of research most of the work on information integration has been largely theoretical and based on 

simulated networks, with very few attempts to experimentally test the link between information integration and 

consciousness on humans or animals. One of the reasons is that Balduzzi and Tononi‟s (2008) measure depends on 

knowledge about the causal structure of the system and it was only defined for discrete systems – problems that have 

been addressed by Barrett and Seth‟s (2011) method for calculating information integration on time series data. A 

second key issue has been the factorial dependency of the state-based Φ algorithm, which severely limits the number 

of elements that can be analyzed and was one motivation for the development of the liveliness algorithm described in 

this paper.  

If it could be shown that different ways of measuring information integration produced the same results on 

simulated systems, then the current set of information integration algorithms could be viewed as a toolbox of methods, 
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whose use would depend on the type of data that is available from the system. The benchmarking work on simulated 

networks would provide grounds for believing that the algorithms in the toolbox are equivalent ways of measuring 

information integration – much as one would expect digital and mercury thermometers to produce similar values for 

the temperature of the system. 

 The specific characteristics of the liveliness algorithm suggest several ways in which it could be used to test 

the link between information integration and consciousness. Liveliness is a perturbational approach in which the 

liveliness of a connection is determined by changing the state of the source element to see if it alters the state of the 

destination element, and in animals this type of perturbation would be relatively easy to perform by distributing 

electrodes throughout the animal‟s brain and injecting noise into one electrode while measuring from the other 

electrodes. The degree of change in the other electrodes could be used as a measure of the liveliness of their 

connection with the source electrode – with the connection liveliness taking continuous, rather than discrete values. 

By carrying out this procedure when the animal was asleep and awake it would be possible to establish whether there 

was a link between liveliness and consciousness and identify areas of the system with maximum liveliness. In humans 

a perturbational approach could be employed by using a similar method to Massimini et al. (2009, 2010), who injected 

noise into the human brain using transcranial magnetic stimulation (TMS) and recorded the resulting pattern of 

activity using EEG when the subjects were conscious and unconscious. By systematically using TMS to inject noise at 

different points across the brain and measuring the change of activity it would be possible to measure the liveliness of 

connections between different parts of the brain. This experiment could be performed on conscious and unconscious 

subjects to establish whether there is a link between liveliness and consciousness. This approach could be extended in 

both animal and human models by asking subjects to carry out a particular task and repeating the measurements 

during the task. Similar experiments with greater spatial resolution could be carried out by combining fMRI with 

TMS. 

 A second way of testing the link between information integration and consciousness would be to construct a 

large scale neural model based on the brain and match the behaviour of this model to the behaviour of a subject‟s brain 

by using the model‟s local field potential to predict the subject‟s fMRI patterns. Such a calibrated model should be 

able to produce approximately the same fMRI patterns as the subject‟s brain under different conditions. This 

calibrated model could then be analyzed using the liveliness algorithm and used to make predictions about the regions 

of the subject‟s fMRI scan that were linked to consciousness. Separate „brain reading‟ techniques, such as Kay et al. 
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(2008), could be used to identify the contents of the predicted consciousness within the lively clusters, which could be 

compared with first person reports. 

8. Conclusions 

Information integration is a property of a network that expresses the extent to which it is capable of entering a large 

number of states that result from causal interactions among its elements. Tononi (2004, 2008) has made an interesting 

claim about the link between information integration and consciousness, but the poor performance of Balduzzi and 

Tononi‟s (2008) state-based Φ algorithm has made this very difficult to test. To address this problem this paper has set 

out a new algorithm for measuring information integration and compared the accuracy and performance of this 

algorithm with state-based Φ on a number of test networks. 

The results of these experiments demonstrated that the state-based Φ algorithm matched our expectations 

about the areas of maximum information integration better than the liveliness algorithm, particularly for the sensory 

and motor networks. However, the state-based Φ algorithm had very poor performance and produced results that were 

difficult to interpret with large numbers of overlapping main complexes. The liveliness algorithm has a much cleaner 

output and scales linearly with the number of neurons and connections - with further work it might be possible to 

improve it, so that it can be used to approximate the state-based Φ algorithm on larger networks.  

The question about which algorithm (if any) is a correct measure of information integration is a difficult topic 

that needs to be investigated in future work, and further experiments are needed on the link between information 

integration and consciousness. The development of efficient ways of measuring information integration will play a 

key role in the testing of information integration on more realistic systems and this paper has made some suggestions 

about how the liveliness algorithm could be applied to real neural data. 
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