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Abstract 

This paper describes how Tononi‟s information integration theory of consciousness was used 

to make detailed predictions about the distribution of phenomenal states in a spiking neural 

network. This network had approximately 18,000 neurons and 700,000 connections and it 

used models of emotion and imagination to control the eye movements of a virtual robot and 

avoid „negative‟ stimuli. The first stage in the analysis was the development of a formal 

definition of Tononi‟s theory of consciousness. The network was then analyzed for 

information integration and detailed predictions were made about the distribution of 

consciousness for each time step of recorded activity. This work demonstrates how an 

artificial system can be analyzed for consciousness using a particular theory and in the future 

this approach could be used to make predictions about the phenomenal states associated with 

biological systems. 

Keywords: Prediction; spiking neural network; robot; machine consciousness; synthetic 

phenomenology; neurophenomenology; information integration; consciousness. 

1. Introduction 

Scientific theories provide general explanations of phenomena that can be used to predict the 

current and future states of the world. When several theories are put forward to explain a 

phenomenon, the theory that makes the most accurate predictions is typically preserved (all 

other factors being equal), and theories that make incorrect predictions are discarded. 

According to Popper (2002), this ability to make falsifiable predictions is one of the key 

characteristics of scientific theories. 
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Although the scientific study of consciousness has made a great deal of progress in 

recent years, there is still an extensive debate about what is meant by „consciousness‟, and a 

large number of conflicting theories have been put forward. One source of these problems is 

that most consciousness research has been broadly inductive in character and there has been 

very little emphasis on falsifiable predictions that can be used to discriminate between 

different theories. As Crick and Koch (2000, p. 103) point out, if the science of consciousness 

is to move forward it needs to make predictions according to competing theories and use 

empirical measurements to eliminate theories that make bad predictions. 

One of the main reasons why there has been little work on detailed predictions about 

consciousness is that we have very poor access to neurons in the living brain. Using non-

invasive scanning technologies, such as fMRI, it is possible to achieve a temporal resolution 

of the order of 1 second and a spatial resolution of about 1mm
3
, which represents the average 

activity of approximately 50,000 neurons (Witelson et al., 1995). Electrodes give access at 

much finer temporal and spatial scales, but only a few hundred neurons can be monitored at a 

time and there are few circumstances in which this type of experiment can be carried out on 

human subjects. A second problem with making predictions about the brain‟s consciousness 

is that the computational cost of analysing large numbers of neurons can be extremely high. 

For example, it has been calculated that it could take up to 10
9000

 years to complete a full 

analysis of an 18,000 neuron network using Tononi‟s (2004) information integration theory 

(Gamez, 2008b), and whilst optimizations can be found, we are very unlikely be able to 

analyze the entire human brain according to this theory in the foreseeable future.  

Given the debate about consciousness in artificial systems and non-human animals 

(Baars, 2000; Crook, 1983), theories of consciousness can only really be tested on the human 

brain, which is generally acknowledged to be the gold standard of a conscious system. If we 

had better access to the human brain, we could use different theories to make detailed 
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predictions about its consciousness, and these could be confirmed or refuted by first person 

reports. Until access to the brain improves, artificial neural networks offer a way in which we 

can develop new ways of making predictions according to different theories of consciousness. 

Since artificial networks can be considerably smaller than biological brains, the computational 

cost of the analysis can be controlled, and artificial systems have the great advantage that it is 

possible to obtain full access their internal states. This type of work on artificial networks is 

part of what Seth (2009) calls weak artificial consciousness: artificial systems are being used 

to develop ways of making predictions about consciousness without any claims about the 

actual consciousness of the artificial system.  

As access to the brain improves and computing power increases it will become 

possible to test theories of consciousness by making detailed predictions about human 

consciousness. Once a theory of consciousness has been validated, it can be used to make 

predictions about the consciousness of artificial systems, as part of work on strong artificial 

consciousness (Seth, 2009). Whilst some theories of consciousness predict zero consciousness 

in artificial systems with non-biological hardware (Searle, 1992), other theories, such as 

Tononi (2004), make positive predictions about the phenomenal states of artificial systems. If 

future experiments demonstrated a strong link between information integration and 

consciousness, then we would have grounds for believing that the predicted phenomenal 

states described in Section 6 were actually present in the artificial neural network described in 

Section 4.  

To make predictions about a system‟s consciousness, the states of the system have to 

be recorded (typically the firing of neurons in a brain or network), and then a theory of 

consciousness is used to generate assertions about the phenomenal world associated with the 

physical system.
1
 Since many theories of consciousness are set out in a fairly abstract high 

                                                 
1 Whilst the brain‟s physical structures and functions are often described as causing consciousness, conceptual 

problems surrounding consciousness, such as the putative hard problem (Chalmers, 1995), and a number of 
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level language, it might be necessary to transform a high level description into a more precise 

definition that can be implemented in computer code. This formal definition may depend on 

other analyses of the system – perhaps for mutual information or information integration – 

that have to be carried out before the final predictions about phenomenal states can be made.  

To illustrate this process, this paper describes how Tononi‟s (2004) theory was used to 

make detailed predictions about the phenomenal states of a spiking neural network. The first 

part of this paper describes previous work in this area, and then Tononi‟s theory of 

consciousness is summarized and given a formal definition in Section 3. Section 4 covers the 

spiking neural network that was developed to demonstrate this approach, which uses 

biologically-inspired models of potential correlates of consciousness, such as imagination and 

emotion (Aleksander, 2005), to control the eye movements of a virtual robot. Section 5 then 

outlines how the network was analyzed for information integration to support the predictions 

about consciousness. The main results of the analysis are presented in Section 6 and the paper 

concludes with a discussion of the results and some suggestions for future work.  

The overall goal of this paper is to show how predictions can be made about the 

phenomenal states of a neural network using different theories of consciousness. To keep the 

paper to a reasonable length some of the details of the analysis have been omitted, and can be 

found in the Supplementary Material and Gamez (2008b). 

2. Previous Work 

A number of people working in neuroscience and experimental psychology have used fMRI 

data to make predictions about subjects‟ perceptions and thoughts – a process that is 

sometimes referred to as “brain reading”. A recent example of this type of work is Kay et al. 

                                                                                                                                                         
theoretical considerations (Gamez 2008b) make talk about correlation or association more theoretically and 

empirically tractable. The presence of particular physical, neural or functional states can be used to predict the 

co-occurrence of phenomenal states. 
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(2008), who used fMRI data to predict the images that subjects were viewing with over 70% 

accuracy. In the first stage of these experiments Kay et al. scanned the subjects‟ brains while 

they looked at different test images. The images were processed into a set of Gabor wavelets 

with different sizes, positions, orientations, spatial frequencies and phases and a correlation 

was established between the wavelets present in each image and the response of each fMRI 

voxel. Once their brains‟ responses had been mapped out, subjects were exposed to novel 

images and Kay et al. attempted to predict the image that subjects were viewing by 

transforming the novel images into the Gabor wavelet representation and selecting the image 

whose predicted brain activity most closely matched the actual brain activity. A similar 

approach was used by Mitchell et al. (2008) to predict the words subjects were reading and 

Haynes et al. (2007) used fMRI data to predict the task that people were intending to perform. 

Whilst this type of work is highly relevant to the attempt to make predictions about 

phenomenal states using different theories of consciousness, its main emphasis is on the 

identification of patterns in fMRI data that can be correlated with perceptions or intentions, 

and none of the authors claimed that these patterns were correlates of consciousness or 

attempted to make predictions according to a particular theory of consciousness.  

Within research on machine consciousness there has been some work on the analysis 

of artificial systems for consciousness, which forms part of the emerging discipline of 

synthetic phenomenology. One example of this type of research is Holland and Goodman 

(2003), who programmed a simulated Khepera with simple behaviours and used Linåker and 

Niklasson‟s (2000) Adaptive Resource-Allocating Vector Quantizer (ARAVQ) method to 

build up concepts that corresponded to a combination of sensory input and motor output. Each 

concept represented the environmental features that activated the Khepera‟s rangefinders and 

how the robot moved in response to this stimulus, and Holland and Goodman used these 

concepts to produce a graphical representation of the Khepera‟s internal model and examined 
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how the model was used to control the robot. A similar approach was used by Stening et al. 

(2005) to graphically represent the „imagination‟ of a Khepera robot. This type of work can be 

interpreted as a description of the robot‟s inner states based on a theory of consciousness, 

although neither set of authors claimed that the graphical representations were predictions 

about the systems‟ phenomenal states. Other related work in synthetic phenomenology was 

carried out by Chrisley and Parthemore (2007), who used a SEER-3 robot to specify the non-

conceptual content of a model of perception based on O‟Regan and Noë‟s (2001) 

sensorimotor contingencies. In Chrisley‟s and Parthemore‟s work the robot model was used to 

describe human phenomenal states that are difficult to articulate in natural language. 

Other analysis work based on information integration has been carried out by Lee et 

al. (2009), who made multi-channel EEG recordings from eight sites in conscious and 

unconscious subjects and constructed a covariance matrix of the recordings on each frequency 

band that was used to identify the complexes within the 8 node network using Tononi and 

Sporns‟ (2003) method. This experiment found that the information integration capacity of 

the network in the gamma band was significantly higher when subjects were conscious. 

Theoretical work on information integration has been carried out by Seth et al (2006), who 

identified a number of weaknesses in Tononi and Sporns‟ (2003) method and criticized the 

link between information integration and consciousness. 

A number of other measures of the information relationships between neurons have 

been put forward, including neural complexity (Tononi et al. 1994, 1998), transfer entropy 

(Schreiber, 2000) and causal density (Seth et. al., 2006). These measures have been used by a 

number of people to examine the anatomical, functional and effective connectivity of 

biological networks, either using scanning or electrode data, or large-scale models of the 

brain. For example, Honey et al. (2007) used transfer entropy to study the relationship 

between anatomical and functional connections on a large-scale model of the macaque cortex, 
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and demonstrated that the functional and anatomical connectivity of their model coincided on 

long time scales. Other examples of this type of work are Brovelli et al. (2004), who used 

Granger causality to identify the functional relationships between recordings made from 

different sites in two monkeys as they pressed a hand lever during the wait discrimination 

task, and Friston et al. (2003) modelled the interactions between different brain areas and 

made predictions about the coupling between them. Information-based analyses have also 

been used to guide and study the evolution of artificial neural networks connected to 

simulated robots (Seth and Edelman, 2004; Sporns and Lungarella, 2006). An overview of 

this type of research can be found in Sporns et. al. (2004) and Sporns (2007). 

The neural network in Section 4 was influenced by a number of other biologically-

inspired neural networks and neural models of the correlates of consciousness. For example, 

Aleksander (2005) and Aleksander and Morton (2007) used weightless neurons to build a 

number of brain-inspired neural networks that included all five of Aleksander‟s axioms, 

Shanahan (2006) developed a brain-inspired cognitive architecture based on global workspace 

theory that directed the movements of a virtual Khepera robot, and Cotterill (2003) hoped to 

identify signs of consciousness in a brain-inspired neural network that controlled a virtual 

child. There is also the work of Krichmar et. al (2005) and Krichmar and Edelman (2006), 

who carried out a number of experiments with robots controlled by neural networks closely 

based on the brain, and a large scale model of the mammalian thalamocortical system was 

built by Izhikevich and Edelman (2008). 

3. The Information Integration Theory of Consciousness 

The information integration theory of consciousness was put forward by Tononi (2004), who 

claims that the capacity of a system to integrate information is correlated with its amount of 

consciousness, and that the conscious part of the system is the part that integrates the most 
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information. Information integration is measured using the value Φ and Tononi and Sporns 

(2003) describe an algorithm that can be used calculate Φ on any system of connected 

elements. 

To measure the information integrated by a subset of elements, S, the subset is divided 

into two parts, A and B. A is then put into a state of maximum entropy (A
HMAX

) and the 

mutual information, MI, between A and B is measured to get the effective information (EI), as 

expressed in Equation 1: 

EI(A→B) = MI(A
HMAX

; B), (1) 

where MI(A; B) is given by Equation 2: 

MI(A; B) = H(A) + H(B) – H(AB), (2) 

where H(x) is the entropy of x. Since A has effectively been substituted by independent noise 

sources, there are no causal effects of B on A, and so the mutual information between A and 

B is due to the causal effects of A on B. EI(A→B) also measures all possible effects of A on 

B and EI(A→B) and EI(B→A) are in general not symmetrical. The value of EI(A→B) will be 

high if the connections between A and B are strong and specialized, so that different outputs 

from A produce different firing patterns in B. On the other hand, EI(A→B) will be low if 

different outputs from A produce scarce effects or if the effect is always the same.  

The next stage is the repetition of the procedure in the opposite direction by putting B 

into a state of maximum entropy and measuring its effect on A, giving EI(B→A). For a given 

bipartition of the subset S into A and B, the effective information between the two halves is 

given by Equation 3: 

EI(A↔B) = EI(A→B) + EI(B→A). (3) 
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The amount of information that can be integrated by a subset is limited by the bipartition in 

which EI(A↔B) reaches a minimum. To find this minimum information bipartition the 

analysis is run on every possible bipartition of the subset, with EI(A↔B) being normalised by 

maximum entropy of A or B when the effective information of each bipartition is compared. 

The information integration for subset S, or Φ(S), is the non-normalised value of EI(A↔B) 

for the minimum information bipartition, and this measures the amount of causally effective 

information that can be integrated across the informational weakest link of the subset. 

 A complex is defined by Tononi and Sporns (2003) as a part of the system that is not 

included in a larger part with higher Φ. To identify complexes it is necessary to consider 

every possible subset S of m elements out of the n elements of the system starting with m = 2 

and finishing with m = n. For each subset Φ is calculated and the subsets that are included in a 

larger subset with higher Φ are discarded, leaving a list of complexes. The main complex is 

the complex that has the maximum value of Φ, and Tononi (2004) claims that this main 

complex is the conscious part of the system. To substantiate his link between Φ and 

consciousness, Tononi (2004) compares different network architectures with structures in the 

brain and shows how the architectures with high Φ map onto circuits in the brain that are 

associated with consciousness. Full details about the calculation of information integration 

can be found in Tononi and Sporns (2003). 

Since Tononi‟s theory of consciousness was already algorithmic, relatively little work 

had to be done to convert it into a formal definition that could be used to automatically 

analyze an arbitrary system. In this analysis the main adjustment to Tononi‟s theory was to 

take account of situations in which two or more complexes share little information and have 

approximately the same value of Φ - a situation similar to a split brain patient (Gazzaniga, 

1970). In these cases it seems rather arbitrary to say that only one of the complexes is 

conscious just because its Φ value is, for example, 0.01% greater than the other. To 
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accommodate this possibility, a definition was developed that specifies the notion of an 

independent complex: 

None of the neurons in an independent complex, A, are part of another complex, 

B, that has higher Φ than A. 

(1) 

This definition of an independent complex was incorporated into the formal statement of 

Tononi‟s theory given in Definition 2, which introduces a 50% threshold to eliminate 

independent complexes whose Φ value is substantially less than the main complex of the 

system. 

A state of the system will be judged to be phenomenally conscious according to 

Tononi (2004) if it is part of the main complex or if it is part of an independent 

complex whose Φ is 50% or more of the Φ of the main complex. The amount of 

consciousness will be indicated by the Φ of the complex. 

(2) 

 More recently Balduzzi and Tononi (2008) put forward a new algorithm for analyzing 

the information integration of a system, which identifies complexes on the basis of the 

network‟s states. This new algorithm allows for the possibility that there could be several 

main complexes in a network and avoids the assumption of a steady state solution, but it 

retains the factorial dependencies of the algorithm in Tononi and Sporns (2003). I am 

currently developing software to analyze networks according to the new algorithm, which 

could be used to analyze the network described in this paper in future work. 



12 

4. Neural Network 

4.1 Overview 

This section describes a spiking neural network with 17,544 neurons and 698,625 connections 

that was developed to test the approach to prediction outlined in this paper. The network was 

modelled using the SpikeStream simulator and it directed the eye of the SIMNOS virtual 

robot (see Figure 1) towards „positive‟ red features of its environment and away from 

„negative‟ blue objects. To carry out this task it included an „emotion‟ layer that responded 

differently to red and blue stimuli, and neurons that learnt the association between motor 

actions and visual input. These neurons were used to „imagine‟ different eye movements and 

select the ones that were predicted to result in a positive visual stimulus. This network is a 

biologically inspired model of aspects of the brain‟s processing, not a biologically accurate 

copy, and so the names given to individual layers, such as “Emotion”, are only intended as 

guides indicating that layers‟ functions were inspired by particular brain areas. 

 

Figure 1. SIMNOS virtual robot. The thin lines are the virtual muscles; the outlines of spheres with arrows are 

the joints. The length of the virtual muscles and the angles of the joints were encoded into spikes and sent to the 

SpikeStream neural simulator. 
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Whilst a smaller network could have been used to demonstrate the analysis work in 

this paper, one of the key problems with Tononi‟s (2004) theory is that the required amount of 

computer processing power increases factorially with the number of elements in the system, 

and so an analysis of a system with a few hundred elements would not have addressed the 

scalability issues raised by Tononi‟s theory. A second motivation for the network‟s size was 

that the long term aim of this work is the development of analysis techniques that can make 

predictions about the consciousness of artificial systems that interact with the real world. One 

of the major constraints on this type of system is that the network has to be large enough to 

process visual data at an adequate resolution. In early experiments a larger network was tried 

with a visual resolution of 128x128 pixels, but this took too long to simulate, and so the 

current network was based on a visual resolution of 64x64 pixels. Whilst this is tiny compared 

to biological systems, it is of the same order of magnitude as many robotic systems controlled 

by neural networks. The application of this type of analysis technique to real systems can also 

help us to understand what is going on inside robots that learn from their experiences – a 

point that is discussed in detail in a recent paper (Gamez and Aleksander, 2009). 

4.2 Architecture 

An illustration of the network architecture is given in Figure 2. The parameters for the layers 

are provided in Table 1 and details about the connections between layers can be found in 

Table 2. The neuron model for these experiments was based on the Spike Response Model 

(Gerstner and Kistler, 2002; Marian, 2003), and learning in the network was carried out using 

Brader et al.‟s (2006) spike time dependent learning algorithm. Full details about the neuron 

model and training can be found in the Supplementary Material.  
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Figure 2. Neural network with SIMNOS eye. Arrows indicate connections within layers, between layers or 

between the neural network and SIMNOS. The connections marked with dotted crosses were disabled for the 

imagination test in Section 4.6.  

The simulation of the network was carried out using the SpikeStream neural simulator 

(Gamez, 2007). SpikeStream and SIMNOS communicated using spikes, which were sent 

from the network to set the pan and tilt of SIMNOS‟s eye, and spikes containing red and blue 

visual information were passed back from SIMNOS to SpikeStream and mapped to neurons 

whose position corresponded to the location of red or blue data in the visual field (see Figure 

3). 
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Figure 3. Experimental setup with the eye of SIMNOS in front of red and blue cubes. The eye could only view 

one cube at a time. 

To set up the three dimensional environment of SIMNOS, red and blue cubes were 

created in Blender
2
 and loaded into the SIMNOS environment using the Collada format.

3
 The 

head, arms and body of SIMNOS were locked up by putting them into kinematic mode, which 

enabled them to be placed in an absolute position and made them unresponsive to spikes from 

the network, and the eye was moved in front of the red and blue cubes so that it could only 

view one cube at a time (see Figure 4). 

 

Figure 4. Screenshot of SIMNOS in front of the red and blue cubes 

The next two sections highlight some of the key functions of the network and describe 

the design and functionality of the individual layers in more detail.  

                                                 
2 Blender 3D animation software: www.blender.org. 

3 COLLADA format: www.collada.org. 
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 Area Size Threshold Noise Device 

1 Vision Input 64 × 128 0.5 - SIMNOS vision
4
 

2 Red Sensorimotor 64 × 64 0.8 - - 

3 Blue Sensorimotor 64 × 64 0.8 - - 

4 Emotion 5 × 5 2 - - 

5 Inhibition 5 × 5 0.1 20% weight 1.0 - 

6 Motor Cortex 20 × 20 1.5 20% weight 0.6 - 

7 Motor Integration 5 × 5 0.65 - - 

8 Eye Pan 5 × 1 0.7 - - 

9 Eye Tilt 5 × 1 0.7 - - 

10 Motor Output 5 × 135 0.1 - SIMNOS muscles  

Table 1. Layer parameters 

                                                 
4 Spikes from SIMNOS changed the voltage of the corresponding neurons in Vision Input with a weight of 0.8. 
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Projection Arbor Connection 

Probability 

Weight Delay 

Vision Input→Red Sensorimotor D 1.0 1.0 0 

Vision Input→Blue Sensorimotor D 1.0 1.0 0 

Red Sensorimotor →Emotion U 0.5 0.5 0 

Blue Sensorimotor →Emotion U 0.5 -0.5 0-5 

Emotion→Emotion ECIS 5/ 10 0.5 / 0.5 0.8 ± 0.2 / -0.8 ± 0.2 0-5 

Emotion→Inhibition U 1.0 -1.0 0-5 

Inhibition→Inhibition ECIS 5/10 0.5/ 0.5 0.8 ± 0.2 / -0.8 ± 0.2 0-5 

Inhibition→Vision Input U 1.0 -1.0 0 

Inhibition→Motor Output U 1.0` -1.0 0 

Motor Cortex→Motor Cortex ECIS 1.7/ 30 0.99/ 0.99 0.8/ -0.8 2 

Motor Cortex→Motor Integration T 1.0 0.5 0 

Motor Integration→Red Sensorimotor U 1.0 0.5 11 

Motor Integration→Blue Sensorimotor U 1.0 0.5 11 

Motor Integration→Eye Pan T 1.0 1.0 0 

Motor Integration→Eye Tilt T 1.0 1.0 0 

Eye Pan→Motor Output D 1.0 1.0 0 

Eye Tilt→Motor Output D 1.0 1.0 0 

Table 2. Connection parameters. Unstructured connections (U) connect at random to the neurons in the other 

layer with the specified connection probability. Topographic connections (T) preserve the topology and use 

many to one or one to many connections when the layers are larger or smaller than each other. Excitatory centre 

inhibitory surround (ECIS) connections have excitatory connections to the neurons within the excitatory radius 

and inhibitory connections between the excitatory and the inhibitory radius - for example, ECIS 5/50 has 

excitatory connections to neurons within 5 units of each neuron and inhibitory connections to neurons from 5 to 

50 units away. A device connection (D) connects a layer to part of an input or output layer that is connected to an 

external device, such as a robot or camera. So, for example, Red Sensorimotor connects to the part of Vision 

Input that receives red visual input from SIMNOS. 
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4.3 Network Functions 

Input and output 

The spikes containing visual data from SIMNOS‟s eye were routed so that red and blue visual 

data was passed to different halves of Vision Input. The Motor Output layer is a complete 

map of all the „muscles‟ of SIMNOS and the activity in each of the five neuron rows was sent 

as spikes across the network to SIMNOS, where it set the length of the virtual muscles. In 

these experiments only two rows were active in Motor Output, which controlled eye pan and 

tilt. 

Self-sustaining activity 

Three of the layers – Motor Cortex, Emotion and Inhibition – had recurrent positive 

connections, which enabled them to sustain their activity in the absence of spikes from other 

layers. A random selection of 20% of the neurons in Inhibition and Motor Cortex were 

injected with noise at each time step by adding 1.0 or 0.6 to their voltage (see Table 1), and 

this enabled them to develop their self sustaining activity in the absence of spikes from other 

layers. The neurons in Emotion could only develop their self-sustaining activity when they 

received spikes from Red Sensorimotor. 

Selection of motor output 

The position of SIMNOS‟s eye was selected by the activity in Motor Cortex, which had long 

range inhibitory connections that limited its self-sustaining activity to a single small cluster of 

2-4 neurons. The activity in Motor Cortex was passed by topological connections to one or 

two neurons in Motor Integration, which was a complete map of all the possible combinations 

of eye pan and eye tilt. The activity in Motor Integration was topologically transmitted 

through Eye Pan and Eye Tilt to Motor Output and passed by SpikeStream over the Ethernet 

to SIMNOS, where it was used to set the lengths of the eye pan and eye tilt muscles. 
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Learning 

A delay along the connection between Motor Integration and Red Sensorimotor ensured that 

spikes from a motor pattern that pointed the eye at a red stimulus arrived at Red Sensorimotor 

at the same time as spikes containing red visual data. When these spikes arrived together, the 

STDP learning algorithm increased the weights of the connections between Motor Integration 

and the active neurons in Red Sensorimotor, and decreased the weights of the connections 

between Motor Integration and inactive neurons in Red Sensorimotor. The same applied to 

the connections between Motor Integration and Blue Sensorimotor, except that the association 

between motor patterns and blue visual data was learnt. Prior to the learning, repeated 

activation of Motor Integration neurons within a short period of time fired all of the neurons 

in Red/ Blue Sensorimotor. Once the training was complete, spikes from Motor Integration 

only fired the neurons in Red/ Blue Sensorimotor that corresponded to the pattern that was 

predicted to occur when the eye was moved to that position. 

Online and offline modes 

Inhibition had a large number of negative connections to Vision Input and Motor Output, 

which prevented the neurons in Vision Input and Motor Output from firing when Inhibition 

was active. This is called the „imagination‟ or offline mode because in this situation the 

network was isolated from its environment - no spikes from SIMNOS were processed by the 

network or sent by the network to SIMNOS - but the system was still generating motor 

patterns and predicting their sensory consequences. When the neurons in Inhibition were not 

firing, the neurons in Vision Input were stimulated by spikes from SIMNOS and the neurons 

in Motor Output sent spikes to SIMNOS to set the position of the eye. This is referred to as 

the online mode of the network. The switch between online and offline modes was controlled 

by Emotion, which was connected to Inhibition with negative weights: when Emotion was 

active, Inhibition was inactive, and vice versa. Emotion entered a state of self-sustaining 
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activity when it received spikes with positive weights from Red Sensorimotor, and its state of 

self-sustaining activity ceased when it received spikes with negative weights from Blue 

Sensorimotor. 

4.4 Overview of Individual Layers 

Motor Cortex 

This layer was designed to select a motor pattern at random and sustain it for a period of time. 

These motor patterns were used to set the lengths of the eye pan and eye tilt muscles in 

SIMNOS. Short range excitatory and long range inhibitory connections in Motor Cortex 

encouraged a small patch of neurons to fire at each point in time and this active cluster of 

firing neurons occasionally changed because a random selection of 20% of the neurons in 

Motor Cortex were injected with noise at each time step by adding 0.6 to their voltage. The 

topological connections between Motor Cortex and Motor Integration enabled the active 

cluster of neurons in Motor Cortex to send spikes to just one or two neurons in Motor 

Integration. 

Motor Integration 

Each neuron in this layer represented a different combination of eye pan and eye tilt. Activity 

in Motor Cortex stimulated one or two neurons in Motor Integration and this activity was 

transformed through Eye Pan and Eye Tilt into a pattern of motor activity that was sent to 

SIMNOS‟s eye. The activity in Motor Integration was also sent along delayed connections to 

Red Sensorimotor and Blue Sensorimotor, where it was used to learn the relationship between 

motor output and red and blue visual input. 
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Eye Pan 

This layer connected topologically to Motor Output, where it stimulated the row 

corresponding to eye pan in SIMNOS. Eye Pan received topological connections from Motor 

Integration. 

Eye Tilt 

This layer connected topologically to Motor Output, where it stimulated the row 

corresponding to eye tilt in SIMNOS. Eye Tilt received topological connections from Motor 

Integration. 

Motor Output 

This layer was a complete map of all the „muscles‟ of SIMNOS and the activity in each of the 

five neuron rows in this layer set the length of one of SIMNOS‟s virtual muscles using the 

encoding scheme described in Gamez et al. (2006). In these experiments, only eye pan and 

eye tilt were used and the rest of SIMNOS‟s muscles were locked up by setting them into 

kinematic mode. The neurons controlling the eye in Motor Output were topologically 

connected to Eye Pan and Eye Tilt, and strong inhibitory connections between Inhibition and 

Motor Output ensured that there was only activity in Motor Output (and motor output from 

the network) when Inhibition was inactive. 

Vision Input 

This layer was connected to SIMNOS‟s visual output so that each spike from SIMNOS 

stimulated the appropriate neuron in this layer with a weight of 0.8, with one half responding 

to red visual input from SIMNOS and the other half responding to blue visual input. When 

Inhibition was inactive the spikes from SIMNOS fired the neurons in Vision Input; when 
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Inhibition was active, a large negative potential was injected into the neurons in Vision Input, 

which prevented this layer from responding to visual information. 

Red Sensorimotor and Blue Sensorimotor 

Red Sensorimotor and Blue Sensorimotor were topologically connected to the red and blue 

sensitive parts of Vision Input. Positive connections between Red Sensorimotor and Emotion 

caused Emotion to develop self-sustaining activity when Red Sensorimotor was active. 

Negative connections between Blue Sensorimotor and Emotion inhibited the self-sustaining 

activity in Emotion. Red Sensorimotor and Blue Sensorimotor received delayed copies of the 

motor output from Motor Integration and the synapses on these connections used Brader et 

al.‟s (2006) STDP rule to learn the association between motor output and visual input. 

Emotion 

This layer played an analogous role to emotions in biological systems, although in a greatly 

simplified form. Recurrent positive connections within Emotion enabled it to sustain its 

activity once it had been stimulated. Spikes from Red Sensorimotor set Emotion into a self-

sustaining state; spikes from Blue Sensorimotor inhibited it. Emotion inhibited Inhibition, so 

that when Emotion was active, Inhibition was inactive, and vice versa.  

Whilst this layer has been called “Emotion”, it had a number of significant differences 

from real biological emotions. To begin with it did not receive information from the robot‟s 

body, and so it was more like the „as if‟ loop described by Damasio (1995). Secondly, activity 

in Emotion was very basic compared to biological emotions because it lacked the detail that 

we sense when our viscera and skeletal muscles are changed by an emotional state (Damasio 

1995, p. 138). A third limitation of Emotion was that its response did not change the way in 

which the neurons and synapses computed. However, Emotion did respond in a hardwired 

way to different characteristics of the world with a high impact low information signal that is 
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characteristic of the neuromodulatory aspect of emotion described by Arbib and Fellous 

(2004). Since this functional role of Emotion was what was critical in the network, Emotion 

has been described as a very primitive „emotion‟ in this paper – something that is functionally 

analogous to basic biological emotions. 

Inhibition  

The Inhibition layer was intended to loosely correspond to the neurons and connections that 

manage the transition between imagination and online perception in the human brain. When 

Inhibition was active it inhibited Motor Output and Vision Input and put the system into its 

offline „imagination‟ mode. When Inhibition was inactive Vision Input received visual data 

from SIMNOS and Motor Output controlled the position of SIMNOS‟s eye. 

 The neurons in Inhibition were injected with noise, so that in the absence of any 

external input this layer was active and automatically put the system into the offline 

„imagination‟ mode. Inhibition received negative connections from Emotion, which inhibited 

its activity, so that when Emotion was active the system was put into its online mode. 

4.5 Experimental Procedure 

The first part of the experiments was a training phase in which the network learnt the 

association between motor output and visual input. Since the offline mode interfered with this 

training, it was disabled by blocking the connections from Inhibition. During the training 

phase spontaneous activity in Motor Cortex changed the position of SIMNOS‟s eye, copies of 

the motor signals were sent from Motor Integration to Red/ Blue Sensorimotor, and the 

synapse classes on these connections used Brader et al.‟s (2006) rule to learn the association 

between motor output and red and blue visual input. By monitoring the changes in the weights 

over time it was empirically determined that a training period of 50,000 time steps (or 50 

seconds of simulated time at 1 ms time step resolution) enabled the network to learn the 
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association between motor output and visual input for most combinations of eye pan and eye 

tilt.  

Once the network had been trained, Inhibition was reconnected and the network was 

tested. For both training and testing a time step resolution of 1 ms was found to offer a good 

balance between the accuracy and speed of the simulation. 

4.6 Operation of the Network 

During the training phase the network spontaneously generated eye movements to different 

parts of its visual field and learnt the association between an eye movement and a visual 

stimulus. After training, the network was fully connected up and Motor Cortex moved 

SIMNOS‟s eye around at random until a blue object appeared in its visual field. This switched 

the network into its offline „imagination‟ mode, in which it generated motor patterns and 

„imagined‟ the red or blue visual input that was associated with these potential eye 

movements. This process continued until it „imagined‟ a red visual stimulus that positively 

stimulated Emotion. This removed the inhibition, and SIMNOS's eye was moved to look at 

the red stimulus.
5
 

A rough qualitative evaluation was carried out of the associations that the network had 

learnt between motor output and visual input. In this test Red Sensorimotor and Blue 

Sensorimotor were disconnected from Vision Input (the dotted crosses in Figure 2), so that 

they only received input from Motor Integration, and Vision Input continued to receive visual 

input from SIMNOS‟s eye, which remained under the control of Motor Cortex. If the system 

had learnt the association between motor output and visual input, then the activity in Red/ 

Blue Sensorimotor, caused by Motor Integration, would match the activity in Vision Input, 

which was driven by real visual input. 

                                                 
5 Videos of the network in operation are available at: http://www.davidgamez.eu/mc-thesis/pages/videos.html. 
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During the imagination test visual inspection of Vision Input, Red Sensorimotor and 

Blue Sensorimotor showed that the „imagined‟ visual inputs were reasonably close to the real 

visual inputs, but often a larger area of Red Sensorimotor or Blue Sensorimotor was activated 

than would have been caused by visual input alone. It also happened that several different 

patterns were activated simultaneously in Red Sensorimotor and Blue Sensorimotor, which 

was probably caused by oscillation in Motor Integration between two different positions 

during training. Furthermore, Red/ Blue Sensorimotor sometimes contained areas of active 

neurons when the real stimulus was just off screen, which was again probably due to multiple 

neurons in Motor Integration being simultaneously active during training. Examples of the 

contrast between imagined and real visual input are given in Figure 5. 

 

Figure 5. Examples of the contrast between real visual input (top row) and imagined visual input (bottom row) 

To test whether the network could avoid exposure to „negative‟ blue visual input the 

untrained network was run for 100,000 time steps (100 seconds of simulated time) with 

Emotion and Inhibition disabled, and the activity in the red and blue sensitive parts of Vision 

Input was recorded. Emotion and Inhibition were then enabled, the network was trained and 

the measurements were repeated. This procedure was carried out five times with SIMNOS‟s 

environment set up from scratch on each run to reduce potential biases towards the red or blue 

cubes that could have been introduced by the manual positioning of the robot‟s eye. 

The results of the behaviour test are presented in Figure 6 which shows that the 

activity in the blue visual area was substantially reduced when Emotion and Inhibition were 
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disabled. This suggests that if the „negative‟ blue stimulus was capable of damaging the 

system, then cognitive mechanisms, such as imagination and emotion, that have been linked 

by Aleksander (2005) to consciousness could play a useful role in the life of an organism.
6
 

 

Figure 6. The average number of neurons firing per time step in the red and blue sensitive parts of Vision Input. 

The left graph shows the results when Emotion and Inhibition were disabled; the right graph shows the results 

for the fully operational network. 
7
 

4.7 Analysis Data 

The predictions about the network‟s conscious states were based on two recordings of the 

neurons‟ activity. The first set of data - referred to as “Analysis Run” - was recorded as the 

network controlled SIMNOS‟s eye and used its „imagination‟ to avoid looking at the blue 

cube. To provide a graphical representation of the activity during Analysis Run, the average 

number of times that each neuron fired during Analysis Run was recorded, the results were 

normalized to the range 0-1 and the normalized results were used to illustrate the activity of 

the network in Figure 7. This shows that Inhibition was the most active part of the network, 

followed by Emotion, and traces of motor and visual activity can also be seen.
8
 

                                                 
6 It is worth noting that the imagination did not have to be particularly accurate to carry out this function. 

7 The error bars are +/- 2 standard deviations. 

8 A video of Analysis Run is available at: http://www.davidgamez.eu/mc-thesis/pages/videos.html. 
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Figure 7. Normalized average firing frequency of neurons during Analysis Run 

The data from Analysis Run can be used to predict the actual consciousness that was 

experienced by the network as it interacted with the world. However, in this recording only a 

small part of the network is active, and so it does not tell us about the consciousness that 

might be predicted to be associated with other parts of the network if neurons were active in 

these areas. To address this problem, a second recording was made in which the neuron 

groups were disconnected from each other and connections within each layer were cut, and 

5% noise was injected into each layer at each time step for 100 time steps. The normalized 

average firing frequency of each neuron is illustrated in Figure 8, which shows an even spread 

of activity across the layers. This noise recording is referred to as “Noise Run”. 
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Figure 8. Normalized average firing frequency of neurons during Noise Run 

Noise Run was recorded with the layers completely disconnected, and so the 

predictions about the consciousness of the network during Noise Run were made as if the 

noise patterns had been present when the network was fully connected. In other words, the 

noise data provides a useful way of understanding the potential for consciousness of different 

parts of the network: the consciousness that the network would have if it was fully connected 

and in that firing state. 

5. Analysis of the Network for Information Integration 

5.1 Introduction 

As explained in Section 3, Tononi‟s (2004) theory links the amount and distribution of 

consciousness in a network to its information integration. To make predictions about the 

consciousness of the network according to Tononi‟s theory, it was necessary to calculate the 

network‟s information integration using the algorithm set out in Tononi and Sporns (2003), 

with a number of adjustments to take account of the network‟s size: 
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 Entropy calculations on sub-matrices. Tononi and Sporns‟ information integration 

Matlab code
9
 calculates the entire covariance matrix and then extracts the A, B and 

AB sub matrices to work out the entropy. Since the complete connection matrix for the 

network had 17,544 rows and columns, it would have been impossible to use this 

approach with the available computer resources. To get around this problem, the 

connection matrix was generated for each bipartition and then the determinants of A, 

B and AB were extracted. This yielded nearly identical results to the Matlab code on 

the validation tests (Gamez, 2008b) and can be justified by assuming that the effect of 

A on B when A is in a state of maximum entropy is much greater than the effect of the 

rest of the system on B. 

 Normalization. Tononi and Sporns (2003) normalized the connection matrix by 

multiplying the weights so that the absolute value of the sum of the afferent synaptic 

weights per element was a constant value, w, which was set to 0.5 in their analysis. 

Whilst this normalization method was appropriate for Tononi and Sporns‟ task of 

comparing different architectures that had been artificially evolved, it substantially 

distorts the relationships between the weights and does not correctly measure the 

information integrated by the system. For example, two neurons connected with a 

weight of 0.00001 have very little effective information between them, but the 

constant value weight normalization changes the connection weight to 0.5 and 

substantially alters the information exchanged between the two neurons. To avoid 

these problems, the connection matrix was normalized by summing each neuron‟s 

afferent weights, finding the maximum value and calculating the factor that would 

reduce this maximum to less than 1.0. All of the weights in the network were then 

                                                 
9 Tononi and Sporns‟ Matlab code is available at: http://tononi.psychiatry.wisc.edu/informationintegration/ 

toolbox.html. 
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multiplied by this factor to ensure that the sum of each neuron‟s afferent weights was 

always less than 1.0 without distorting the relationships between them. 

 Optimization. The key problem with Tononi and Sporns‟ approach is that the analysis 

time increases factorially with the number of subsets and bipartitions, and it was 

estimated that it would have taken 10
9000

 years to exhaustively analyse a network with 

17,544 neurons (Gamez, 2008b). To complete the analysis in a reasonable time a 

number of optimization and approximation strategies were used. One of the main 

strategies was an algorithm that expanded the subset from a seed and progressively 

added neurons until the subset could not be expanded without reducing the Φ, which 

indicated that a complex had been found. This avoided the analysis of subsets with 

disconnected neurons and allowed small complexes to be identified without a large 

computational overhead. A second approximation strategy, suggested by Tononi and 

Sporns (2003), was to sub-sample the number of calculations on each subset 

bipartition. Even with these strategies in place the analysis took approximately a 

month to run on two 3.2 GHz Pentium IV computers. 

 Clusters. To fill in the gaps left by the seed-based analysis the Φ calculations were 

also run on combinations of neuron groups up to a maximum size of 700 neurons – a 

number that was found to be a reasonable compromise between the information gained 

about the network and the calculation time. These group analysis results are not 

complexes because it has not been shown that they are not included within a subset of 

higher Φ. To make this distinction clear they are referred to as clusters. 

Full details about the analysis methodology and the complete results are available in Gamez 

(2008b). 
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5.2 Information Integration Results 

According to Tononi and Sporns (2003), the complex with the highest Φ is the main complex 

of the network, and Tononi (2004) claims that this is the conscious part of system. In this 

analysis a main complex was identified that had 91 neurons, a Φ value of 103 and included all 

of Inhibition, most of Emotion and small numbers of neurons from Vision Input, Red 

Sensorimotor, Motor Output, Eye Tilt and Motor Integration (see Figure 9). A search was 

carried out for independent complexes using Definition 1, and the main complex was found to 

be the only independent complex, with all the other complexes and clusters having some 

overlap with the main complex and thus not being independent by this definition. 

 

Figure 9. The main complex of the network  

To understand the information integrated between different parts of the network, ten 

neurons were selected at random from each neuron group and the complex(es) with the 

highest Φ that each neuron was involved in were identified. Only the highest Φ complexes 
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were considered because a neuron‟s most significant information relationships are with the 

other neurons in its highest Φ complex. The analysis showed that most neurons were part of a 

complex with 22-435 neurons and a Φ value ranging from 57-103. The most important neuron 

group for information integration was Inhibition, which played a central role in many of the 

complexes with higher Φ.
10

 

6. Predictions about Phenomenal States 

6.1 Methodology 

To generate predictions about the phenomenal states associated with the network, the 

definition in Section 3 was combined with the results from the information integration 

analysis and applied to the Analysis Run and Noise Run data. To visualize the predictions 

about the distribution of consciousness, the amount of predicted consciousness per neuron 

was averaged over each run, normalized to the range 0-1 and used to highlight the network in 

Figure 10 and Figure 11. Detailed predictions about the phenomenal states at each time step 

were also output as XML files, which are included in the supporting data.  

6.2 Predictions about the Distribution of Consciousness in the Network According 

to Tononi’s Theory 

Tononi‟s (2004) link between information integration and consciousness is independent of the 

material that the system is made from, and so the simulated neural network described in this 

paper has the same potential for consciousness as a biological system. According to the 

interpretation of Tononi‟s theory in Definition 2, the predicted consciousness of the network 

at each point in time is the intersection of the neuron activity with the main complex. In this 

network the main complex had a Φ of 103 and included all of the neurons highlighted in 

Figure 9. In Noise Run there was fairly uniform activity across the network, and so the 

                                                 
10 The full information integration results are included in the supporting data. 
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predicted distribution of consciousness for Noise Run was an extract from the average activity 

shown in Figure 8 that was shaped like the main complex (see Figure 10). 

 

Figure 10. Predicted distribution of consciousness during Noise Run according to Tononi‟s theory 

The more specific neuron activity during Analysis Run did not include any of the main 

complex neurons outside of Emotion and Inhibition, and so the predicted distribution of 

consciousness in Figure 11 only includes neurons in Emotion and Inhibition, with the pattern 

closely matching the average firing frequencies shown in Figure 7.  



34 

 

Figure 11. Predicted distribution of consciousness during Analysis Run according to Tononi‟s theory 

7. Discussion and Future Work 

One outcome of these results is that they highlight a problem with Tononi‟s (2004) simplistic 

link between the main complex and consciousness. In this network there were a number of 

overlapping complexes with approximately the same value of Φ as the main complex, and it 

seemed somewhat arbitrary to interpret just one of these as the main complex, when it was 

also conceivable that several overlapping complexes could be part of the same consciousness. 

In such a consciousness, there would be strong integration between the neurons in Inhibition 

and Vision Input, but low integration between different neurons in Vision Input. This appears 

to reflect our own phenomenology since we appear to be most conscious of our intentional 

relationship with the world and much less conscious of the relationships that different parts of 

the world have to each other. One way in which overlapping complexes could be combined 

would be to look at the rate of change of Φ between adjacent overlapping complexes, and use 

a high rate of change of Φ to indicate a boundary between the conscious and unconscious 
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parts of the system. This method of combining overlapping complexes with high Φ could also 

be applied to Tononi‟s more recent work (Balduzzi and Tononi, 2008), which does allow for 

the possibility of multiple main complexes. 

One of the main limitations of this analysis was that it did not address the question 

about how much consciousness was present. Ideally the results would have stated that the 

network exhibited 5% of the consciousness of the average waking human brain, for example, 

but without calibration of the measurement scales it was impossible to say how much 

consciousness was associated with the network. Although Tononi (2004) claims that Φ is an 

absolute measure of the amount of consciousness, he has made no attempt, as far as I am 

aware, to estimate or measure the Φ of the main complex in an average waking human brain, 

and without this reference point, the Φ values are without absolute meaning.  

 To address this problem, more work is needed to measure or estimate the Φ of a 

waking human brain, so that predictions about consciousness can be compared with a system 

that can (at least to begin with) be taken as a reference standard. Without such a „platinum 

bar‟ it is impossible to measure the amount of consciousness in a system using numerical 

methods. A first step towards obtaining these figures would be to measure the Φ of more 

realistic simulations, such as the networks created by the Blue Brain project (Markram, 2006). 

This would give some idea about the Φ values that might be found in a real biological system 

and help us to understand what level of consciousness might be associated with the Φ value of 

103 that was found in the network described in this paper. Better ways of quantifying the 

amount of consciousness in a system will also go some way towards addressing the “small 

networks” argument put forward by Herzog et al. (2007), which suggests that many 

influential theories of consciousness can be implemented by very small networks of less than 

ten neurons that we would unwilling to attribute much consciousness to. 
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 Once predictions have been made about a system‟s consciousness it is possible to 

suggest ways in which this consciousness can be extended or enhanced. Before any thought 

can be given to extending the consciousness predicted by Tononi‟s theory, it is essential to 

improve the information integration analysis to take account of overlapping complexes in a 

more flexible way. When this has been done, it might be possible to increase the amount and 

distribution of consciousness by evolving connection patterns that extend the main complex 

and give it a higher value of Φ.  

The question about what a system is conscious of is a useful and important aspect of 

any prediction about phenomenal states. Relatively little work has been done on this in 

artificial systems and future work is likely to be based on the method pioneered by Hubel and 

Wiesel (1959), in which the responses of the internal parts of the system are recorded whilst it 

is exposed to different stimuli. In traditional phenomenology – for example, Husserl (1960) 

and Merleau-Ponty (1989) - the contents of the conscious states are described using human 

language, but Nagel (1974) and Chrisley (1995) have identified significant problems that arise 

when human language is used to describe the phenomenal states of artificial systems and non-

human animals. One response to this issue has been to use a markup language to describe the 

states (Gamez, 2006; Gamez, 2008b) and other promising solutions include semantic maps 

(Ascoli and Samsonovich, 2008) and the use of concrete systems to specify the conscious 

states (Chrisley and Parthemore, 2007). 

To compare the predicted distributions of consciousness with first „person‟ reports, 

more work needs to be done on how artificial systems can be given the ability to speak about 

their conscious states – possibly using the work of Steels (2001, 2003). Since many people 

would not consider the report of an artificial system to be evidence that it is conscious, 

formalized theories of consciousness could be used to make predictions about the 

consciousness of biological systems that can report their conscious states, and these 
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predictions could be tested through collaborations with people working in experimental 

psychology and neuroscience. The current lack of low level access to biological systems‟ 

states means that this work is not likely to progress very fast until scanning technologies 

experience breakthroughs in their temporal and spatial resolution. 

Other theories of consciousness could also be used to make predictions about the 

consciousness of the network described in this paper. In previous work I generated predictions 

about the phenomenal states of the network using Aleksander‟s (2005) and Metzinger‟s 

(2003) theories, which showed very different distributions from those in Figure 10 and Figure 

11. A key precondition for this type of work is a formal definition of each theory, which could 

be a mathematical equation, an algorithm or a piece of code – the only requirement is that it 

takes the states of an arbitrary system as input and generates predictions about its 

consciousness.  

8. Conclusions 

This paper has argued that a greater emphasis on prediction could help some of the current 

research on consciousness to become more scientific. An approach to making predictions 

about conscious states was put forward and used to make detailed predictions about the 

distribution of phenomenal states in a spiking neural network according to Tononi‟s (2004) 

information integration theory. To establish whether a theory of consciousness is actually 

correct, its predictions need be compared with first person reports from systems that are 

known to be conscious, and this will only become possible when low level access to the 

human brain has improved. For the moment, artificial systems provide a good platform for the 

development of prediction techniques, and the process of making predictions about artificial 

systems can help us to refine and improve our theories about consciousness. 
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Information Integration Based Predictions about the Conscious States of a 

Spiking Neural Network – Supplementary Material 

David Gamez 

1. Neuron and Synapse Model 

The neuron model for these experiments was based on the Spike Response Model (Gerstner 

and Kistler, 2002; Marian, 2003), which has three components: a leaky integrate and fire of 

the weights of incoming spikes, an absolute refractory period in which the neuron ignores 

incoming spikes, and a relative refractory period in which it is harder for incoming spikes to 

push the neuron beyond its threshold potential. The resting potential of the neuron is zero and 

when it exceeds the threshold the neuron is fired and the contributions from previous spikes 

are reset to zero. There is no external driving current and the voltage Vi at time t for a neuron i 

that last fired at t̂ is given by Equation 1: 
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where wij is the synaptic weight between i and j, m  is the membrane time constant, f is the 

last firing time of neuron j, m and n are parameters controlling the relative refractory period, 

and Hˈ is given by Equation 2:  
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for an absolute refractory period ρ. To facilitate the learning algorithm, the neuron model also 

contained a variable c that represented the calcium concentration at time t. Each time the 
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neuron fired, this calcium concentration was increased by 
SC  and it decayed over time 

according to Equation 3, where 
DC  is the calcium decay constant. 
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The thresholds were adjusted in each neuron group until the network produced the desired 

behaviour. The values for the other neuron parameters were based on Marian (2003) and 

Brader et al. (2006), and are given in Table 1. The synapse model was very basic, with each 

synapse class passing its weight to the neuron when it received a spike. 

Parameter Value 

SC  1 

DC  60 

 Ρ 1 ms 

m  1 

 M 0.8 

 N 3 

 Minimum postsynaptic potential -5 

Table 1. Parameters common to all neurons 

2. Learning  

Learning in the network was carried out using Brader et al.‟s (2006) spike time dependent 

learning algorithm. In Brader et al.‟s model the internal state of the synapse is represented by 

X(t) and the efficacy of the synapse is determined by whether X(t) is above a threshold. In the 

model used in this paper, the state of the synapse is represented by a weight variable, w, 

which is the amount by which the post-synaptic membrane potential is increased when the 
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neuron fires. When a spike is received at time tpre, this variable w is changed according to 

equations 4 and 5: 

h
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where a and b are jump sizes, V is a voltage threshold, c(t) is the calcium concentration at 

time t, and l

up , 
h

up , 
l

down and 
h

down  are thresholds on the calcium variable. In the absence of 

a pre-synaptic spike or if the two conditions in equations 4 and 5 are not satisfied, the weight 

changes at the rate given by equations 6 and 7: 

wwif
dt

dw
   (6) 

wwif
dt

dw
  , (7) 

where α and β are positive constants and w is a threshold. If w drops below 0 or exceeds 1, 

then it is held at these boundary values. The parameters that were used for training the 

network are given in Table 2. These parameters were initially set using Brader et al. „s (2006) 

values and fine tuned until the network successfully learnt the association between motor 

output and visual input. 
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Parameter Value 

l

up  4 

h

up  120 

l

down  
0 

h

down  
4 

V  0.4 

 a 0.01 

 b 0.01 

w  0.7 

 α 0.00001 

 β 0.00001 

Table 2. Synapse parameters used during training 
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