Open Peer Review on Qeios

On the Axiomatisation of the Natural Laws — A Compilation of Human Mistakes Intended to Be Understood Only By Robots

Johan Gamper¹

1 Subrosa KB

Funding: No specific funding was received for this work.Potential competing interests: No potential competing interests to declare.

Abstract

This is an attempt to axiomatise the natural laws. Note especially axiom 4, which is expressed in third order predicate logic, and which permits a solution to the problem of causation in nature without stating that "everything has a cause". The undefined term "difference" constitutes the basic element and each difference is postulated to have an exact position and to have a discrete cause. The set of causes belonging to a natural set of dimensions is defined as a law. This means that a natural law is determined by the discrete causes tied to a natural set of dimensions. A law is defined as "defined" in a point if a difference there has a cause. Given that there is a point for which the law is not defined it is shown that a difference is caused that connects two points in two separate sets of dimensions.

Keywords: Natural laws, Axiomatisation, Causality, Objects.

1. Undefined terms

- 1. ρ 2. σ
- _. .
- 3. Difference
- 4. Dimension
- 5. Relation
- 6. Element
- 7. Cause
- 8. Point
- 9. Belongs to
- 10. Existence

2. Initial definitions

- a set = df A specific existence of elements (in this extraction defined by occurrence within brackets ({})).
- a complex of dimensions = a field of dimensions = df A set of dimensions.
- D = df A specific and limited set of dimensions.
- $\pi = df$ The cause of ρ on σ .
- $\circ \ \theta = \{\sigma, \, \rho, \, \pi\} = df$
 - 1. A specific π that causes a specific ρ on a specific σ ,
 - 2. the specific ρ that is caused by the specific π in 1. and
 - 3. the specific σ mentioned in 1.
- D_{km} = df A specific and limited field of dimensions; {q, d_{k+1},..., d_m}, in which d is a separate dimension and D_{km} contains m-k+1 dimensions.
- form = df A specific set of relations.
- $\Xi = df$ The form of θ .
- elements of relation = df Parts of a structure of relations necessary to define a form.
- Π , *P* and Σ = df The elements of relation of Ξ ; where Π represents the relations of π , *P* the relations of ρ and Σ the relations of σ .

3. Axioms

Axiom 1: p is a difference

Axiom 2: o is a difference

Axiom 3: ρ belongs to D_{km} , a specific and limited field of dimensions

Axiom 4: In all points X belonging to an arbitrary D, Ξ is true.

4. The object Ω

- $\Omega = df$
 - 1. $\{\rho_1, \rho_2, ..., \rho_i\},\$
 - 2. in which each and every ρ_x ($1 \le x \le i$) constitutes a difference towards { $\rho_1, \rho_2, ..., \rho_{x-1}$ }, and where
 - 3. ρ_{x+1} constitutes a difference towards $\{\rho_1, \rho_2, ..., \rho_{x-1}, \rho_x\}$.

5. π:s relation to D

 θ implicates an unique cause π to each and every ρ . For a specific and limited field of dimensions \mathbb{Q}_m therefore, a precise set of causes λ is tied to included ρ . This specific set causes the total set of ρ in D_{km} . Each and every ρ in D_{km} therefore can be explained with the set λ . Why ρ_{x+1} , for instance, is answered with π_x .

Definition of the law λ

 $\lambda = df \{\pi_0, \pi_1, ..., \pi_q\}$, in which each and every π_x causes a ρ_{x+1} belonging to the set $\{\rho_1, \rho_2, ..., \rho_q, \rho_{q+1}\}$ which constitutes the total amount ρ in a specific and limited field of dimensions (D_{km}).

From the definition above follows theorem 5 and theorem 6.

Theorem 1: (Not part of this compilation.)

Theorem 2: (Not part of this compilation.)

Theorem 3: (Not part of this compilation.)

Theorem 4: (Not part of this compilation.)

Theorem 5: λ_{km} causes all ρ in D_{km} .

Theorem 6: Every ρ caused by a certain law λ_x exists in a limited and specific complex of dimensions D_x .

Inter-relations of laws λ

Definition of D_n

- $D_n = df$ The field of dimensions $\{d_1, d_2, ..., d_f, ..., d_g, ..., d_{n-1}, d_n\}, 1 \le f \le g \le n$ that contains;
 - 1. all ρ_x belonging to D_{fg} ,
 - 2. all ρ_{γ} that can form Ω for ρ_{χ} and
 - 3. all ρ_z that ρ_x can constitute Ω for.

Definition of Λ of D_n

Λ = df {λ₁, λ₂,..., λ_P}, where P is the total amount of laws applying in D_n and where {λ₁, λ₂,..., λ_P} causes all p belonging to D_n.

Another definition concludes this section:

initiating difference = df σ

7. Definition of " λ defined in a point X₀"

With Λ and its part-laws λ each and every difference related to Ω (ρ) has a cause π belonging to Λ . Assume a point λ belonging to D_{km} belonging to D_n . What " λ_{km} is defined in X_0 " means is defined below.

Definition of λ defined

- λ_{km} is defined in a point X_0 belonging to $D_{km} = df \theta$ is true in X_0 .
- Theorem 7: If λ_{km} is defined in X_0 , Λ is defined in X_0
- Theorem 8: If Λ is defined in X₀, λ_{km} is defined in X₀

A special case is at hand when for a point X_0 holds { $\neg\sigma$, $\neg\rho$, $\neg\pi$ }. Is in this case λ_{km} defined in X_0 ? Since λ_{km} does not exist in X_0 ($\neg\pi$ is true and π is λ :s representative in X_0), λ_{km} is neither defined nor not defined in X_0 . Thus the next theorem applies:

Theorem 9: If for a point X_0 holds $\{\neg \sigma, \neg \rho, \neg \pi\}$ λ_{km} for the point is neither defined nor not defined.

Before going further some new concepts are introduced:

- $effect = df \rho$
- a point of effect = df A point X in whichp is true.

From the two definitions above follows:

Theorem 10: In a point of effect θ is true.

8. Beyond θ

Either the state of things is such that it is not possible that θ does not apply in each point where π apply, or it is not impossible. If the latter is the case something not of Λ bound can emerge in a point. Arbitrariness though, in that case, is not imminent, nor chance, due to axiom 4: "*In all points X belonging to an arbitrary D*, Ξ *is true*" ($\Xi = df$ *The form of* θ). This implies that if a law for a point is defined in that point Ξ apply and if the law is not defined Ξ apply:

Theorem 11: Ξ is true in all points X_0 whether or not $\lambda(X_0)$ is defined.

 Ξ ,"the form of θ ", does not include chance because the form implicates a cause to each difference. Therefore the following is valid:

Theorem 12: It is not true for any point that effect can occur by chance.

9. Derivation and definition of ρ' and $\sim \rho$

 Λ not defined in X_0

Assume Λ is not defined in a point X₀. This implicates according to the definition of " λ defined" that θ is not true in X. For X₀ then the following is true:

(1) ¬θ

 θ has three elements for which thus apply "not":

(2) ¬{σ, ρ, π}

(2) implicates that at least one element of θ is negated:

```
Theorem 13: \neg \theta \Rightarrow i) {\neg \sigma, \rho, \pi} ii) {\sigma, \neg \rho, \pi} iii) {\sigma, \neg \rho, \pi} iv) {\neg \sigma, \neg \rho, \pi} \lor v) {\neg \sigma, \rho, \neg \pi} \lor vi) {\sigma, \neg \rho, \neg \pi} \lor vii) {\sigma, \neg \rho, \neg \pi}
```

According to theorem 9 A is neither defined nor not defined in a point X where vii) is true, therefore vii) is not true in X₀.

Again $\neg \pi$ implicates a cause-less difference [iii) and v)] and also a cause-less negation of difference [vi)]. Furthermore $\neg \sigma$ implicates that a cause of a difference has emerged at random [i)] respectively a cause of a negated difference emerging at random [iv)]. When a cause-less difference or negation of difference is equal to chance i), iii)-vi) implicates chance. Since axiom 4, by theorem 12, does not permit chance i), iii)-vi) are not true in X₀. $\neg \rho$ finally implicates negation of difference [ii)].

 $\neg \theta$ then implicates seven alternatives of which six are not possible. Then the seventh, ii) { σ , $\neg \rho$, π }, is true:

Theorem 14: If Λ is not defined in a point $X_0 \{\sigma, \neg \rho, \pi\}$ is true in that point.

10. Of P in X_0 where Λ is not defined

Theorem 14, though, does not show how Ξ :s elements of relation are fulfilled when it is lacking a fulfilment of P. Axiom 4 implicates that P is fulfilled in X₀. Thus P is fulfilled in X₀.

Theorem 15: If Λ is not defined in a point X_0 then holds for X_0 : { σ , $\neg \rho$, π } $\land P$ is fulfilled.

P is not fulfilled by the ρ that is negated (ρ), nor by the negation of it ($\neg \rho$). That which fulfils P in \mathcal{X} can be called ρ' .

Definition of $\rho': \rho' = df$ That which fulfils P in a point X_0 for which Λ is not defined.

11. Dimensionality

In $X_0 \neg \rho$ is true. Since $X_0 \in D_n \rho'$ can not belong to $D_{n, \rho}$ nor is it possible that the point which ρ' belongs to, belongs to $D_{n, \rho}$.

Theorem 16: The point that p' belongs to, does not belong to D_{n} .

Definition of $X'_0 = df$ The point that ρ' belongs to.

Here a hypothesis will be introduced, in which it is assumed that ρ' exists in the dimensions P_n symbolises with the addition of some more, separating it from D_n :

Hypothesis 1: ρ' exists in a complex of dimensions with the n dimensions of D_n plus ω numbers of dimensions, $\omega \in N, \omega > 0.$

Definition of D': D' = df The complex of dimensions that p' belongs to.

Theorem 17: $D_n \in D'$.

12. New laws

Λ does not apply in X₀. In spite of that ρ' is caused for X₀ (in X'₀). With this, one could say that Λ' determines ρ'. The specific law that applies in X₀' can be called λ'_1 . Also π did not cause ρ'. The cause of ρ' can be called π'.

Definition of π' : $\pi' = df$ The cause of ρ' .

Definition of λ'_1 : $\lambda'_1 = df$ The law that the cause of p' belongs to.

Definition of $\Lambda': \Lambda' = df$ The law-domain that contains λ'_{1} .

13. The cause of p'

Since ρ' does not belong to D_n it cannot exist in X_0 . Therefore there are two points to be considered though they are connected. For the pair of points X_0-X_0' holds:

#1 { σ , $\neg \rho$, ρ' , π }

 σ and π on the other hand cannot belong to X'₀, since they belong to D_n.

In X'₀ there is ρ' . According to axiom 4 in X₀' there also has to be more elements. Axiom 4 states that the cause and condition of effect have to be found in the point of effect. Therefore cause and condition of effect is part of #1. Since only $\neg \rho$ is not occupied as an element of relation it has the quality of the two missing elements of X₀'. Thus $\neg \rho$ is part of X₀'. For not violating logical rules of dimensions, namely that what is part of D_n cannot be identical to that which is part of D' \neq D_n, $\neg \rho$ in D_n is not identical to that of D'. $\neg \rho$ in X₀' can be called $\sim \rho$ ("denied" ρ).

14. ~ρ as a set

Because π' and $\sim \rho$ are elements, not for instance numbers, the relation between the two can be formulated as a relation between sets. Then the one is an element of the other. Since π' definitely is one:

Definition of $\sim \rho$: $\sim \rho = df$ The representation of $\neg \rho$ in X'_0 Theorem 18: In $X'_0 \sim \rho$ is cause and condition of ρ' . Theorem 19: (Not part of this compilation). Theorem 20: $\sigma' \in \sim \rho$ Theorem 21: $\pi' \in \sim \rho$ Definition of σ' : $\sigma' = df$ What fulfils the relations of Σ in X'_0

Therefore:

 $X_0: \{\sigma, \neg \rho, \pi\}$

 $X'_0: \{\sigma', \rho', \pi'\}$

Theorem 22: (Not part of this compilation.)

Theorem 23: (Not part of this compilation.)

Theorem 24: (Not part of this compilation.)

Theorem 25: (Not part of this compilation.)

Theorem 26: (Not part of this compilation.)

Theorem 27: (Not part of this compilation.)

Finally a theorem that sums up some aspects of the theory so far:

Theorem 28: If Λ is not defined in a point $X_0 \{\sigma, \neg \rho, \rho', \pi\}$ is true.

15. The concept Θ

If Λ is not defined in a point X_0 belonging to D_n , P for X_0 is shifted to D', a complex of dimensions separated from D_n . P in D' is called p'. This implicates an existence of something with association to $\neg \rho$, $\sim \rho$. The cause of p', π ', in turn, belongs to $\sim \rho$.

For X_0 - X'_0 holds according to theorem 28: { σ , ~ ρ , ρ ', π }. In a point X'_1 , separated from X'_0 , and belonging to D', the case is: { σ , π , ρ }, that is, θ . Between D_n and D' { σ , ~ ρ , ρ ', π } is true, a state of facts below symbolised Θ .

Definition of Θ : $\Theta = df \{\sigma, \sim \rho, \rho', \pi\}$.

That Θ can be true is the result of the present study.

Theorem 29: (Not part of this compilation.)

Theorem 30: (Not part of this compilation.)

Theorem 31: (Not part of this compilation.)

16. Axiom(s) of existence

Axiom of existence 1: There is at least one point for which Θ is true.

17. Conclusion

Given this extraction something exists in two separate sets of dimensions. Extrapolating this finding we have a new perspective on quantum entanglement (Bub 2020). If a set of quantum particles pair wise are joined by what has been labelled " Θ :s" they would be entangled. It would also be interesting to investigate "interfaces" between separate sets of things (Gamper 2017) using the concept of " Θ ".

References

- Bub, Jeffrey, "Quantum Entanglement and Information", The Stanford Encyclopedia of Philosophy (Summer 2020 Edition), Edward N. Zalta (ed.), URL = <<u>https://plato.stanford.edu/archives/sum2020/entries/qt-entangle/</u>>
- Gamper, J. On a Loophole in Causal Closure. *Philosophia* **45**, 631–636 (2017). <u>https://doi.org/10.1007/s11406-016-9791-y</u>