On the Axiomatisation of the Natural Laws - A Compilation of Human Mistakes Intended to Be Understood Only By Robots

Johan Gamper

1 Subrosa KB

Funding: No specific funding was received for this work.
Potential competing interests: No potential competing interests to declare.

Abstract

This is an attempt to axiomatise the natural laws. Note especially axiom 4, which is expressed in third order predicate logic, and which permits a solution to the problem of causation in nature without stating that "everything has a cause". The undefined term "difference" constitutes the basic element and each difference is postulated to have an exact position and to have a discrete cause. The set of causes belonging to a natural set of dimensions is defined as a law. This means that a natural law is determined by the discrete causes tied to a natural set of dimensions. A law is defined as "defined" in a point if a difference there has a cause. Given that there is a point for which the law is not defined it is shown that a difference is caused that connects two points in two separate sets of dimensions.

[^0]
1. Undefined terms

1. ρ
2. σ
3. Difference
4. Dimension
5. Relation
6. Element
7. Cause
8. Point
9. Belongs to
10. Existence

2. Initial definitions

- a set = df A specific existence of elements (in this extraction defined by occurrence within brackets (\{\})).
- a complex of dimensions $=$ a field of dimensions $=d f$ A set of dimensions.
- $D=d f$ A specific and limited set of dimensions.
- $\pi=d f$ The cause of ρ on σ.
- $\theta=\{\sigma, \rho, \pi\}=d f$

1. A specific π that causes a specific ρ on a specific σ,
2. the specific ρ that is caused by the specific π in 1. and
3. the specific σ mentioned in 1.

- $D_{k m}=d f$ A specific and limited field of dimensions; $\left\{d, d_{k+1}, \ldots, d_{m}\right\}$, in which d is a separate dimension and $D_{k m}$ contains m-k+1 dimensions.
- form $=d f$ A specific set of relations.
- $=$ = df The form of θ.
- elements of relation $=d f$ Parts of a structure of relations necessary to define a form.
- Π, P and $\Sigma=d f$ The elements of relation of $=;$ where Π represents the relations of π, P the relations of ρ and Σ the relations of σ.

3. Axioms

Axiom 1: ρ is a difference

Axiom 2: σ is a difference

Axiom 3: ρ belongs to $D_{k m}$, a specific and limited field of dimensions

Axiom 4: In all points X belonging to an arbitrary D, \equiv is true.

4. The object Ω

- $\Omega=d f$

1. $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{i}\right\}$,
2. in which each and every $\rho_{x}(1 \leq x \leq i)$ constitutes a difference towards $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{x-1}\right\}$, and where
3. ρ_{x+1} constitutes a difference towards $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{x-1}, \rho_{\chi}\right\}$.

5. п: s relation to D

θ implicates an unique cause π to each and every ρ. For a specific and limited field of dimensions R_{m} therefore, a precise set of causes λ is tied to included ρ. This specific set causes the total set of ρ in $D_{k m}$. Each and every ρ in $D_{k m}$ therefore can be explained with the set λ. Why ρ_{x+1}, for instance, is answered with Π_{x}.

Definition of the law λ
$\lambda=d f\left\{\Pi_{0}, \Pi_{1}, \ldots, \Pi_{q}\right\}$, in which each and every Π_{x} causes a ρ_{x+1} belonging to the set $\left.\oint_{1}, \rho_{2}, \ldots, \rho_{q}, \rho_{q+1}\right\}$ which constitutes the total amount ρ in a specific and limited field of dimensions $\left(L_{k m}\right)$.

From the definition above follows theorem 5 and theorem 6.

Theorem 1: (Not part of this compilation.)

Theorem 2: (Not part of this compilation.)

Theorem 3: (Not part of this compilation.)

Theorem 4: (Not part of this compilation.)

Theorem 5: $\lambda_{k m}$ causes all ρ in $D_{k m}$.

Theorem 6: Every ρ caused by a certain law λ_{x} exists in a limited and specific complex of dimensions D_{x}.

6. Inter-relations of laws λ

Definition of D_{n}

- $D_{n}=d f$ The field of dimensions $\left\{d_{1}, d_{2}, \ldots, d_{f}, \ldots, d_{g}, \ldots, d_{n-1}, d_{n}\right\}, 1 \leq f \leq g \leq n$ that contains;

1. all ρ_{x} belonging to $D_{f g}$,
2. all ρ_{y} that can form Ω for ρ_{x} and
3. all ρ_{z} that ρ_{X} can constitute Ω for.

Definition of Λ of D_{n}

- $\Lambda=d f\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{P}\right\}$, where P is the total amount of laws applying in D_{n} and where $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{P}\right\}$ causes all ρ belonging to D_{n}.

Another definition concludes this section:

- initiating difference $=d f \sigma$

7. Definition of " λ defined in a point X_{0} "

With Λ and its part-laws λ each and every difference related to $\Omega(\rho)$ has a cause π belonging to Λ. Assume a point γ belonging to $D_{k m}$ belonging to D_{n}. What " $\lambda_{k m}$ is defined in X_{0} " means is defined below.

Definition of λ defined

- $\lambda_{k m}$ is defined in a point X_{0} belonging to $D_{k m}=d f \theta$ is true in X_{0}.
- Theorem 7: If $\lambda_{k m}$ is defined in X_{0}, Λ is defined in X_{0}
- Theorem 8: If \wedge is defined in $X_{0}, \lambda_{k m}$ is defined in X_{0}

A special case is at hand when for a point X_{0} holds $\{\neg \sigma, \neg \rho, \neg \pi\}$. Is in this case λ_{m} defined in X_{0} ? Since $\lambda_{k m}$ does not exist in $X_{0}\left(\neg \pi\right.$ is true and π is λ :s representative in $\left.X_{0}\right), \lambda_{k m}$ is neither defined nor not defined in X_{0}. Thus the next theorem applies:

Theorem 9: If for a point X_{0} holds $\{\neg \sigma, \neg \rho, \neg \pi\} \lambda_{k m}$ for the point is neither defined nor not defined.

Before going further some new concepts are introduced:

- effect $=d f \rho$
- a point of effect $=d f$ A point X in whichp is true.

From the two definitions above follows:

Theorem 10: In a point of effectӨ is true.

8. Beyond θ

Either the state of things is such that it is not possible that θ does not apply in each point where π apply, or it is not impossible. If the latter is the case something not of \wedge bound can emerge in a point. Arbitrariness though, in that case, is not imminent, nor chance, due to axiom 4: "In all points X belonging to an arbitrary D, \equiv is true" ($\overline{=}=d f$ The form of θ). This implies that if a law for a point is defined in that point 三 apply and if the law is not defined ミapply:

Theorem 11: $\overline{\text { is }}$ is true in all points X_{0} whether or not $\lambda\left(X_{0}\right)$ is defined.

三,"the form of θ ", does not include chance because the form implicates a cause to each difference. Therefore the following is valid:

Theorem 12: It is not true for any point that effect can occur by chance.

9. Derivation and definition of ρ^{\prime} and $\sim \rho$

Λ not defined in X_{0}

Assume Λ is not defined in a point X_{0}. This implicates according to the definition of " λ defined" that θ is not true in χ. For X_{0} then the following is true:
(1) $\neg \theta$
θ has three elements for which thus apply "not":
(2) $\neg\{\sigma, \rho, \pi\}$
(2) implicates that at least one element of θ is negated:

Theorem 13: $\neg \theta \Rightarrow$ i) $\{\neg \sigma, \rho, \Pi\} \bigvee$ ii) $\{\sigma, \neg \rho, \pi\} \bigvee$ iii) $\{\sigma, \rho, \neg \Pi\} \bigvee$ iv) $\{\neg \sigma, \neg \rho, \pi\} \bigvee$ v) $\{\neg \sigma, \rho, \neg \pi\} \bigvee v i)\{\sigma, \neg \rho, \neg \Pi\} \bigvee$ vii) $\{\neg \sigma, \neg \rho, \neg \Pi\}$

According to theorem 9Λ is neither defined nor not defined in a point X_{Q} where vii) is true, therefore vii) is not true in X_{0}. Again $\neg \Pi$ implicates a cause-less difference [iii) and v)] and also a cause-less negation of difference [vi)]. Furthermore $\neg \sigma$ implicates that a cause of a difference has emerged at random [i)] respectively a cause of a negated difference emerging at random [iv)]. When a cause-less difference or negation of difference is equal to chance i), iii)-vi) implicates chance. Since axiom 4, by theorem 12, does not permit chance i), iii)-vi) are not true in $X_{0} . \neg \rho$ finally implicates negation of difference [ii)].
$\neg \theta$ then implicates seven alternatives of which six are not possible. Then the seventh, ii) $\{\sigma, \neg \rho, \pi\}$, is true:

Theorem 14: If \wedge is not defined in a point $X_{0}\{\sigma, \neg \rho, \pi\}$ is true in that point.

10. Of P in X_{0} where Λ is not defined

Theorem 14, though, does not show how 三:s elements of relation are fulfilled when it is lacking a fulfilment of P. Axiom 4 implicates that P is fulfilled in X_{0}. Thus P is fulfilled in X_{0}.

Theorem 15: If \wedge is not defined in a point X_{0} then holds for $X_{0}:\{\sigma, \neg \rho, \pi\} \wedge P$ is fulfilled.
P is not fulfilled by the ρ that is negated (ρ), nor by the negation of it $(\neg \rho)$. That which fulfils P in X can be called ρ^{\prime}.

Definition of $\rho^{\prime}: \rho^{\prime}=d f$ That which fulfils P in a point X_{0} for which \wedge is not defined.

11. Dimensionality

In $X_{0} \neg \rho$ is true. Since $X_{0} \in D_{n} \rho^{\prime}$ can not belong to $D_{n,}$, nor is it possible that the point which ρ^{\prime} belongs to, belongs to D_{n}.

Theorem 16: The point that ρ ' belongs to, does not belong to D_{n}.

Definition of $X_{0}^{\prime}=d f$ The point that ρ ' belongs to.

Here a hypothesis will be introduced, in which it is assumed that ρ^{\prime} exists in the dimensions Q_{p} symbolises with the addition of some more, separating it from D_{n} :

Hypothesis 1: ρ^{\prime} exists in a complex of dimensions with the n dimensions of D_{1} plus ω numbers of dimensions, $\omega \in N, \omega>0$.

Definition of $D^{\prime}: D^{\prime}=d f$ The complex of dimensions thatp' belongs to.

Theorem 17: $D_{n} \in D^{\prime}$.

12. New laws

Λ does not apply in X_{0}. In spite of that ρ^{\prime} is caused for X_{0} (in $X^{\prime}{ }_{0}$). With this, one could say that Λ^{\prime} determines ρ^{\prime}. The specific law that applies in $X_{0}{ }^{\prime}$ can be called λ_{1}^{\prime}. Also π did not cause ρ^{\prime}. The cause of ρ^{\prime} can be called π^{\prime}.

Definition of $\pi^{\prime}: \Pi^{\prime}=d f$ The cause of ρ^{\prime}.

Definition of $\lambda_{1}: \lambda^{\prime}{ }_{1}=d f$ The law that the cause off' belongs to.

Definition of $\Lambda^{\prime}: \Lambda^{\prime}=d f$ The law-domain that contains $\lambda^{\prime}{ }_{1}$.

13. The cause of ρ^{\prime}

Since ρ^{\prime} does not belong to D_{n} it cannot exist in X_{0}. Therefore there are two points to be considered though they are connected. For the pair of points $X_{0}-X_{0}$ ' holds:

$$
\# 1\left\{\sigma, \neg \rho, \rho^{\prime}, \Pi\right\}
$$

σ and π on the other hand cannot belong to X_{0}^{\prime}, since they belong to D_{n}.

In X_{0}^{\prime} there is ρ^{\prime}. According to axiom 4 in X_{0}^{\prime} there also has to be more elements. Axiom 4 states that the cause and condition of effect have to be found in the point of effect. Therefore cause and condition of effect is part of \#1. Since only $\neg \rho$ is not occupied as an element of relation it has the quality of the two missing elements of $X_{0}{ }^{\prime}$. Thus $\neg \rho$ is part of $X_{0}{ }^{\prime}$. For not violating logical rules of dimensions, namely that what is part of D_{n} cannot be identical to that which is part of $D^{\prime} \neq D_{n}$, $\neg \rho$ in D_{n} is not identical to that of $D^{\prime} . \neg \rho$ in χ^{\prime} ' can be called $\sim \rho$ ("denied" ρ).

14. $\sim p$ as a set

Because π^{\prime} and $\sim \rho$ are elements, not for instance numbers, the relation between the two can be formulated as a relation between sets. Then the one is an element of the other. Since π ' definitely is one:

Definition of $\sim \rho: \sim \rho=d f$ The representation of $\neg \rho$ in X_{0}^{\prime}

Theorem 18: In $X_{0}^{\prime} \sim \rho$ is cause and condition of ρ^{\prime}.

Theorem 19: (Not part of this compilation).

Theorem 20: $\sigma^{\prime} \in \sim \rho$

Theorem 21: $п ' \in \sim$

Definition of $\sigma^{\prime}: \sigma^{\prime}=d f$ What fulfils the relations of Σ in X_{0}^{\prime}

Therefore:
$X_{0}:\{\sigma, \neg \rho, \Pi\}$
$X_{0}^{\prime}:\left\{\sigma^{\prime}, \rho^{\prime}, \Pi^{\prime}\right\}$

Theorem 22: (Not part of this compilation.)

Theorem 23: (Not part of this compilation.)

Theorem 24: (Not part of this compilation.)

Theorem 25: (Not part of this compilation.)

Theorem 26: (Not part of this compilation.)

Theorem 27: (Not part of this compilation.)

Finally a theorem that sums up some aspects of the theory so far:

Theorem 28: If \wedge is not defined in a point $X_{0}\left\{\sigma, \sim \rho, \rho^{\prime}, \Pi\right\}$ is true.

15. The concept Θ

If Λ is not defined in a point X_{0} belonging to D_{n}, P for X_{0} is shifted to D^{\prime}, a complex of dimensions separated from D_{n}. P in D^{\prime} is called ρ '. This implicates an existence of something with association to $\neg \rho, \sim \rho$. The cause of $\rho^{\prime}, \pi '$, in turn, belongs to ~ 0.

For $X_{0}-X^{\prime}{ }_{0}$ holds according to theorem 28: $\left\{\sigma, \sim \rho, \rho^{\prime}, \pi\right\}$. In a point X_{1}^{\prime}, separated from X_{0}^{\prime}, and belonging to D^{\prime}, the case is: $\{\sigma, \Pi, \rho\}$, that is, θ. Between D_{n} and $D^{\prime}\left\{\sigma, \sim \rho, \rho^{\prime}, \Pi\right\}$ is true, a state of facts below symbolised Θ.

Definition of $\Theta: \Theta=d f\left\{\sigma, \sim \rho, \rho^{\prime}, \Pi\right\}$.

That Θ can be true is the result of the present study.

Theorem 29: (Not part of this compilation.)

Theorem 30: (Not part of this compilation.)

Theorem 31: (Not part of this compilation.)

16. Axiom(s) of existence

Axiom of existence 1: There is at least one point for which Θ is true.

17. Conclusion

Given this extraction something exists in two separate sets of dimensions. Extrapolating this finding we have a new perspective on quantum entanglement (Bub 2020). If a set of quantum particles pair wise are joined by what has been labelled " $\Theta: s$ " they would be entangled. It would also be interesting to investigate "interfaces" between separate sets of things (Gamper 2017) using the concept of " Θ ".

References

- Bub, Jeffrey, "Quantum Entanglement and Information", The Stanford Encyclopedia of Philosophy (Summer 2020 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2020/entries/qt-entangle/
- Gamper, J. On a Loophole in Causal Closure.Philosophia 45, 631-636 (2017). https://doi.org/10.1007/s11406-016-9791-y

[^0]: Keywords: Natural laws, Axiomatisation, Causality, Objects.

