Skip to main content
Log in

Quantum mechanics, strong emergence and ontological non-reducibility

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

We show that a new interpretation of quantum mechanics, in which the notion of event is defined without reference to measurement or observers, allows to construct a quantum general ontology based on systems, states and events. Unlike the Copenhagen interpretation, it does not resort to elements of a classical ontology. The quantum ontology in turn allows us to recognize that a typical behavior of quantum systems exhibits strong emergence and ontological non-reducibility. Such phenomena are not exceptional but natural, and are rooted in the basic mathematical structure of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This not only applies to the Montevideo interpretation but may apply to other realist interpretations like the modal ones, although this has yet to be studied.

References

  • Bedau, M.: Downward causation and autonomy in weak emergence. Principia 6, 5 (2003)

    Google Scholar 

  • Bedau, M., Humphreys, P., et al.: Emergence: Contemporary Readings in Philosophy and Science. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  • Bohr, N.: Discussions with Einstein on epistemological problems in atomic physics. In: Schilpp, P. (ed.) Albert Einstein: Philosopher Scientist. Cambridge University Press, Cambridge, UK (1949)

    Google Scholar 

  • Bohr, N.: The philosophical writings of Niels Bohr, vol. 3. In: Essays 1958–1962 on Atomic Physics and Human Knowledge. Ox Bow Press, Woodbridge (1995)

  • Butterfield, J.: Assessing the Montevideo interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. doi:10.1016/j.shpsb.2014.04.001. arXiv:1406.4351 (2014)

  • Chakravartty, A.: Causal realism: events and processes. Erkenntnis 63, 7–31 (2005)

  • Cohen-Tannoudji, C., Diu, B., Laloe, F.: Quantum Mechanics. Wiley, New York (1991)

    Google Scholar 

  • Frenkel, A.: A review of derivations of the space–time foam formulas. arXiv:1011.1833 (2010) and references therein

  • Gambini, R., García-Pintos, L., Pullin, J.: An axiomatic formulation of the Montevideo interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 42, 256–263 (2011)

    Article  Google Scholar 

  • Gambini, R., Porto, R., Pullin, J.: Fundamental decoherence from quantum gravity: a pedagogical review. Gen. Relativ. Gravit. 39, 1143–1156 (2007)

    Article  Google Scholar 

  • Gambini, R., Porto, R., Pullin, J., Torterolo, S.: Conditional probabilities with Dirac observables and the problem of time in quantum gravity. Phys. Rev. D79, 041501 (2009)

    Google Scholar 

  • Gambini, R., Pullin, J.: The Montevideo interpretation of quantum mechanics: a short review. arXiv:1502.03410 [quan-ph] (2015)

  • Heisenberg, W.: Physics and Philosophy: The Revolution in Modern Science. HarperCollins, New York (1958/2007)

  • Howard, D.: Emergence in the physical sciences: lessons from the particle physics and condensed matter debate. In: Murphy, N. and Stoeger, W. (eds.) Evolution and Emergence: Systems, Organisms, Persons, pp. 141–157. Oxford University Press (2007)

  • Huang, Z., Wang, H., Kais, S.: J. Mod. Opt. 53, 10 (2006)

    Article  Google Scholar 

  • Lewowicz, L., Lombardi, O.: Stuff versus individuals. Found. Chem. 15, 65–77 (2013)

  • Mermin, D.: Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today 38, 38–47 (1985)

    Article  Google Scholar 

  • Ng, Y., Van Dam, H.: Limits to space–time measurement. Mod. Phys. Lett. A 9, 335 (1994)

    Article  Google Scholar 

  • Scerri, E.: Top-down causation regarding the chemistry–physics interface: a sceptical view. Interface Focus. 2(1), 20–5 (2012)

  • Schlosshauer, M.: Decoherence: and the Quantum-To-Classical Transition (The Frontiers Collection). Springer, Berlin (2010)

    Google Scholar 

  • Schlosshauer, M., Kofler, J., Zeilinger, A.: A snapshot of foundational attitudes toward quantum mechanics. Stud. Hist. Phil. Mod. Phys. 44, 222–230 (2013)

    Article  Google Scholar 

  • Teller, P.: Relational holism and quantum mechanics. Brit. J. Phil. Sci. 37, 71 (1986)

    Google Scholar 

  • Whitehead, A.N.: Science and the Modern World. Free Press, New York (1925/1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Pullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambini, R., Lewowicz, L. & Pullin, J. Quantum mechanics, strong emergence and ontological non-reducibility. Found Chem 17, 117–127 (2015). https://doi.org/10.1007/s10698-015-9224-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-015-9224-1

Keywords

Navigation