
ON THE IMPOSSIBILITY OF USING ANALOGUE MACHINES TO
CALCULATE NON-COMPUTABLE FUNCTIONS

R.O. GANDY†

SEPTEMBER 1993

Introduction

A number of examples have been given of physical systems (both classical and quantum
mechanical) which when provided with a (continuously variable) computable input will give
a non-computable output. It has been suggested that these systems might allow one to
design analogue machines which would calculate the values of some number-theoretic non-
computable function. Analysis of the examples show that the suggestion is wrong. In §4 I
claim that given a reasonable definition of analogue machine it will always be wrong. The
claim is to be read not so much as a dogmatic assertion, but rather as a challenge.

In §’s 1 and 2 I discuss analogue machines, and lay down some conditions which I be-
lieve they must satisfy. In §3 I discuss the particular forms which a paradigm undecidable
problem (or non-computable function) may take. In §’s 5 and 6 I justify any claim for two
particular examples lying within the range of classical physics, and in §7 I justify it for two
(closely connected) examples from quantum mechanics, and discuss, very briefly, other pos-
sible quantum mechanical situations. §8 contains various remarks and comments. In §9 I
consider the suggestion made by Penrose that a (future) theory of quantum gravity may pre-
dict non-locally-determined, and perhaps non-computable patterns of growth for microsopic
structures. My conclusion is that such a theory will have to have non-computability built
into it.

1. Analogue machines

By a continuously variable quantity (‘CVQ’) I mean a physical quantity which is repre-
sented mathematically by a point in a metric space - e.g., by a real number, or a point
of Hilbert space. This is not put forward as an exact definition, but as an indication of
how I use the term. For CVQ’s very natural definitions of ‘computable’ have been given in
Pour-El & Richards (1989); I shall to this book as CAP. Roughly speaking ‘x is computable’
means that x is the limit of a sequence of finitely presented approximations and a modulus
of convergence for the sequence can be computed.

In the theoretical treatment of a physical device the CVQ’s have exact values, and no
bound is place, a priori on their magnitude. But when such a device is to be used as an
analogue machine to perform some calculation then there will be an upper limit x on the
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size of a CVQ (an electric circuit will melt if the current is too large) and a lower limit ε
on the accuracy with which it can be controlled or measured. Numerical values for x and ε
depend, of course, on the choice of units for the particular CVQ considered, but the ratio
x/ε does not; so we define the precision ratio (PR for short) of the CVQ to be x/ε. In the
theory of the machines there may be different variables having the same physical dimension;
these are to be counted as distinct CVQ’s and may have different precision rations. The
‘independent’ variable time is also a CVQ and has a PR; when an analogue machine is to
be used some limit must be placed on its run-time.

We are concerned with matters of principle rather than of practice, so although a given
analogue machine will have definition precision ratios, we do not place any bound on the
PR’s that may be attained by some machine.

We are primarily - sometimes only - concerned with those CVQ’s which are inputs and
outputs of the machine. We shall be interested in cases where these may be continuously
controlled or continuously recorded functions; in such cases the relevant x and ε will be given
by some norm for the functions. Most usually the uniform norm will be appropriate, but
some machines one might want to say, the L2 norm.

Even discretely varying quantities such as natural numbers have precision ratios attached
to them; perfect accuracy (say ε < 1/2) may be attainable, but still there is a bound on the
size: one cannot place more than N balls in a given box nor record more than N events with
a given geiger counter. In particular if an analogue machine incorporates a battery of digital
computers then a PR (which depends both on the programme used and on the hardware)
can be assigned to each of them; note that it does not depend on the placing of the decimal
point.

In what follows we shall be concerned with the orders of magnitude of PR’s rather than
with precise values or upper bounds.

2. Specification of analogue machines

A specification for an analogue machine is a finite list of instructions which would, in
principle, enable a technician or engineer to construct it; descriptions of the apparatus
used in a (published) account of an experiment, do, although greatly abbreviated, have
this form. If the correct operation of the machines requires particular precision ratios for
certain quantities, then the instructions will specify tolerances for certain components1. For
example a machine might require a cam whose ideal shape ideal shape would be given by
r = f(θ) where f is some mathematical function. Then the instructions would indicate how
the function f could be computed (e.g., f(θ) = 2 + sin2 θ cms for 0 ≤ θ ≤ 360◦) and give a
permitted tolerance (e.g., ±10−3 cms). Tolerances can be given as precision ratios (3.103 in
the example). A specification will determine either explicitly or implicitly the PR’s in the
quantities (including outputs and inputs) occurring in the machine.

1When A.M. Turing was building his speech encoder (‘Delilah’) he found that if it was to work, some of
the components had to have a tighter than usual tolerance on their values; these were more expensive than
the standard components and - at least in the case of resistances - had a gold spot to indicate that they were
accurate to within (I think) 1%.
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3. Undecidable problems

In the examples known to me it is proposed that there might be an analogue machine
which with input j(∈ N) would output ‘Yes’ or ‘No’ to questions of the form ? j ∈ A?
where A is some standard recursively enumerable non-recursive set - for example the set
which represents the halting problem. I shall only consider proposed machines of this kind.
I describe two ways of representing the set A.

3.1. There is a total computable function a : N → N which enumerates A without repeti-
tions. (This is the notation used throughout CAP).

The waiting-time function ν is defined by

(3.1) ν(j) ' µn. a(n) = j.

This is a partial recursive function whose domain is A and which is not bounded by any
total computable function. For any particular analogue machine there is an upper bound J
on the inputs it can accept. I define

(3.2) β(J) = Max{ν(j) : j < J & j ∈ A}

(with Max ∅ = 0). This is a total function which is not computable; indeed it eventually
majorises every computable function.

3.2. There is a polynomial PA(y, ~x) such that

(3.3) j ∈ A↔ (∃~m) PA(j, ~m) = 0,

where the variables of ~m (= m1,m2, . . . ,mk) range over the natural numbers.
In this case we define

(3.4) ν(j) ' (µn)(∃~m < n) PA(j, ~m) = 0,

and

(3.5) β(J) = Max{ν(j) : j ∈ A & j < J}.

Then ν and β have the same properties as in 3.1. Observe that, if j ∈ A, then

(3.6) ∀~m < ν(j) PA(j, ~m) 6= 0.

Various explicit definitions of suitable polynomials have been given. For each of these, if
PA(j, ~m) = 0 then at least one of the mi encodes a particular sequence which lists the first
so many values of some recursive function. So, taking i = 1, we may suppose that

(3.7) PA(j, ~m) = 0 and PA(j,m′,m2, . . . ,mk) 6= 0

where |m′ −m| = 1.
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4. The Claim

Since a given machine cannot handle numbers greater than some bound we consider a
given J and the questions ?j ∈ A? for j < J . Now I make the following

CLAIM. Let J be given. Then one cannot design an analogue machine (whose behaviour
is governed by standard physical laws) which will give correct answers to all the questions
?j ∈ A? for j < J unless one knows a bound β for β(J).

I call this a claim rather than a conjecture because I do not think one could prove it unless
one placed severe restrictions on the notion of ‘analogue machine’, and this I do not wish to
do.2 But I believe that if someone proposes an analogue machine for settling ?j ∈ A? for
j < J then it can be shown that either they have (surreptiously?) made use of a bound for
β(j), or that not all the given answers will be correct. To illustrate the significance of the
wording of the claim, suppose (what is quite plausible) that someone proves that j 6∈ A for
all j < J = 10; then he can design a machine which always outputs ‘NO’ for j < J . But,
because of his proof he does in fact know that β(J) = 0.

Of course if one knows a B as above then one does not need an analogue machines to
settle ?j ∈ A? One simple computes a(n) (as in 3.1) on PA(j,m1, . . . ,mk) (as in 3.2) for all
n < B or for all m1, . . . ,mk < B.

5. First example (see CAP pp 51-53)

Let

(5.1) φ(x) =

{
e
− x2

1−x2 for |x| ≤ 1

0 for |x| ≥ 1.

φ is an infinitely differentiable function (∈ C∞) though it is not analytic. Let

(5.2) ψn(x) = 4−a(n)φ
(
2−(n+a(n)+2)

(
x− 2−a(n)

))
,

where a is as in §3.1. The graph of ψn(x) is a blip of height 4−a(n) centred on 2−a(n), and
having a width of 2−(n+a(n)+1). If m 6= n then the supports of ψm, ψn do not intersect. Set

(5.3) f ′(x) =
∞∑
n=0

ψn(x);

f ′ has a continuous but unbounded derivative, and f ′(x) = 0 for x > 5/4. Since

(5.4) f ′(2−j) =

{
4−j if j ∈ A,
0 if j 6∈ A,

2Pour-El in her (1974) gives a definition (based on differential analysers) of ‘General Purpose Analogue
Computers’ and characterizes the class of continuous functions which they can generate. She is not concerned
with questions of precision, but I believe that the methods used in §5 and §6 can be applied to justify my
claim for all machines of the type she considers.
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f ′ is not a computable function.
Let

(5.5) Φn(x) =

∫ x

0

ψn(x)dx.

The graph of Φn is a smoothed out step function with initial value 0 (at x = 0) and a final
value lying between 0 and 2−n.

Now take

f(x) =
∞∑
n=0

Φn(x).

f is a computable function and its derivative is indeed the f ′ given by (5.3). Note that ||f ||,
the uniform norm of f , is less than 2. To settle j ∈ A the idea is to feed f into an (analogue)
differentiator, and then to observe whether the output f ′(x) is zero or not at x = 2−j. For
definiteness let us suppose that we control the current i1 in a circuit C1 inductively to a
passive circuit C2 and observe whether the current i2 in C2 is zero or not at time 2−j. The
claim for this machine is justified on two counts.

5.1. Because of the narrowness of the blip ψn, the measurement of the time 2−j at which
i2 is observed must have, for j ∈ A, a precision ratio of order 2−ν(j) if the observed value of
i2 is to be different from zero.

5.2. For j ∈ A, let

fj(x) = f(x)− Φν(j)(x).

Then f ′j(2
−j) = 0. So if the machine is to give the answer YES for this j, then i1 must satisfy

|i1(t)− f(t)| < Φν(j)(t) ≤ 2−ν(j).

So unless the precision ratio for the uniform norm of i1 is better than 2β(J) the machine will
give wrong answers for some j < J .

5.3. Thus to design a machine which will give correct answers for all j < J we need to
know β(J).

6. Second Example

In their (1991) Doria & Costa showed how a function defined in Richardson (1968) could
theoretically be used in the construction (based solely on classical dynamics) of a device
which would settle questions of the form ?j ∈ A?. They write

‘Our example is intended to be seen as a Gedanken experiment, as we do not wish to
consider at the moment the certainly formidable question of its implementation.’

I shall show that its implementation by an analogue machine requires knowledge of a
bound for β(J).
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6.1. Let k ≥ 1 be given and let L be the class of all real-valued functions of k+ 1 or fewer
real variables which can be get by composition from the following initial functions:

(i) + and ×;
(ii) sin;
(iii) projection functions λ~x.xi;
(iv) constant functions λ~x.c, where c is either π or a rational number.

Let PA be the polynomial of §2 (3.3). Richardson shows how one can define a function
F (u, x1, . . . , xk) in L having the following properties.

(1) F is an even function of each of the xi.
(2) F (u, x1, . . . , xk) ≥ 0
(3) F (j, x1, . . . , xk) > 1 if j 6∈ A.
(4) If F (j, x1, . . . , xk) ≤ 1 then PA(j, 〈x21〉 , . . . , 〈x2k〉) = 0 and F (j, 〈x21〉 , . . . , 〈x2k〉) = 0

where 〈x2i 〉 denotes the natural number nearest to x2i . Hence in this case j ∈ A.
(5) To calculate F (j, x1, . . . , xk) it is necessary first to calculate PA(j, x21, . . . , x

2
k)

6.2. Let ρ either be the function φ of §5, or be given by

ρ(x) =
1

2
(|x− 1| − (x− 1)).

In either case ρ(x) = 0 for x ≥ 1 and ρ(0) = 1. If we extend L to L + by taking ρ as
a further initial function then either all the functions in L + belong to C∞ or they are all
continuous piecewise analytic functions.

Now set

(6.1) H(u, ~x) = ρ(F (u, ~x)) (~x = x1, . . . , xk),

and write Hj(~x) for H(j, ~x). Then by 6.1 (3), (4), we have

(6.2) Hj(~x) = 0 for all ~x if j 6∈ A,

(6.3) ∃~x Hj(~x) = 1 if j ∈ A.

But, by (3.6) and 6.1 (4) we see that, for j ∈ A,

(6.4) Hj(~x) = 0 if x21, . . . , x
2
k < ν(j)− 1.

Thus if an analogue machine is going to use Hj to settle ?j ∈ A? and if j ∈ A, then
the machine will have to calculate P (j, y1, . . . , yk) for some values y1, . . . , yk one at least of
which - say yi - is greater than ν(j) − 1. And by (3.7) the value of one of the y’s - yi, say
- must be accurate to within 1. Hence, for j ∈ A, the inputs y1, . . . , yk for the calculation
of Hj(y1, . . . , yk) need to have a precision ratio of at least ν(j)3. This is also true if Hj is
calculated by a digital computer. Thus the claim is proved for this example.

3Even if different PR’s were used for y1, . . . , yk I believe the claim would stand: for the m1 in (3.7) codes
a computation sequence, so its size will certainly increase with ν(j).
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6.3. Richardson, and following him, Da Costa and Doria make the problem look simpler
by coding the k-plot ~x by a single real number t. Richardson defines decoding functions
(t)1, . . . , (t)k (in L ) with the following property:

Given ε > 0 and x1, . . . , xk one can find t so that

(6.5) |xi − (t)i| < ε for 1 ≤ i ≤ k.

The functions he defines also satisfy

(6.6) (t)i ≤ t.

Now define a function Bj by

(6.7) Bj(t) = Hj ((t)1, . . . , (t)k) .

Then

(6.8) Bj(t) = 0 for all t, if j 6∈ A,
while if j ∈ A then for any z < 1

(6.9) ∃t (Bj(t) > z).

But, by (6.4) and (6.6) above we also have

(6.10) Bj(t) = 0 if t2 < ν(j)− 1.

Any attempt to distinguish between (6.8) and (6.9) will yield further justifications for my
claim. For example, Da Costa and Doria define

(6.11) K(j) =

∫ ∞
0

Bj(t)γ(t)dt

where γ(t) is a cut off factor inserted to ensure that the integral converges. (The exact nature
of Bj depends both on the distribution of the zeros of PA and on the particular decoding
functions; in any case Bj will be highly oscillatory, and, if PA has ‘rather few’ zeros I think

it likely that
∫∞
0
Bj(t)dt will be of order ν(j)−1).

To specify and analogue machines which, for j < J and j ∈ A will output a non zero
approximate value for K(j) one will have to specify a value B say, to replace∞ as the upper
limit of integration. But, by (6.9) above, one will then be able to compute a bound for
β(J) from B. And because of the cut off factor γ, (6.9) shows that K(j) will be small of
order ν(j)−1. Da Costa and Doria propose switching from one dynamical system to another,
according to whether K(j) = 0 or K(j) > 0. An analogue machine which will correctly
effect this switching will thus require, for the CVQ corresponding to K(j) a precision ratio
of order β(J). Thus, in all, there are three different factors in the specification of the proposed
machine which requires a knowledge of a bound for β(J).

7. Quantum Mechanical machines

7.1. Both my examples depend on specifying a self-adjoint operator T on, say, Hilbert
space (e.g. specifying the Hamiltonian for some quantum-mechanical system) and making
observations on its spectrum to settle ?j ∈ A?.

The first example is due to Pour-El and Richards (CAP pp. 190-191). They show that a
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certain T may be constructed as a computable limit of a sequence of computable operators
Tn with the following properties.

(1) Let λj (j ≥ 0) be a computable bounded sequence of real numbers. Then if j 6∈ A
the spectrum of T has λj as an eigenvalue (corresponding to a line in spectranalytic terms),
while if j ∈ A the spectrum has a continuous band of width 2.2−ν(j) centered on λj. The
factor 2−ν(j) ensures that the sequence Tn has a computable modulus of convergence. To
make observation easy one could take

λj = 5− 4.2−j,

and then there will be a gap between the bands (if present) around λj and λj+1 to separate
the lines or bands around λj and λj+1 one only needs a precision of the order 2j; but to
distinguish a line at λj and a band around λj; one needs a precision of order 2γ(j). Thus as
in the previous examples, to settle ?j ∈ A? correctly for j < J one needs to know a bound
on β(J) in order to ensure that the measyrements made will have the required precision.
Another justification for my claim in this example is best illustrated by another example,
which is a simplification of one given in Gandy (1991). Namely let the sequence {λn} be
defined by

λn = 2−a(n),

and let S be a compact operator with these values of λn as its eigenvalues. To decide ?j ∈ A?
it is only necessary to observe, with say, a precision 2j+1, whether or not there is a line at
2−j. (Of course, on physical spectroscopy what one observes is transitions from one λ to
another, but this does not affect the argument.) So the question becomes: could one design
a quantum mechanical device which would have, for some observable, an approximation S ′

to S whose eigenvalues for j < J would be close to S? IT will be recalled that a design
must allow one to compute approximate values for all relevant parameters and must specify
allowed tolerances. I do not know, except in particular cases like atomic and molecular
spectra, how one might construct a system which would approximate a given operator for a
given observable. But it is obvious, for both S and T , that one would need to know, at least
approximately, the entries in the first β(J) rows of their representing matrices (wrt some
chosen orthonormal basis). But this justifies the claim4.

7.2. The wave functions for a quantum mechanical system may result from the superposition
of infinitely many more easily defined wave functions and so correspond to the parallel
working of infinitely many separate machines. This suggests a possible method for designing
a quantum-mechanical device which would give correct answers to the questions ?j ∈ A?
However the quantum computer described by Deutsch (1985) cannot do this, although it
can use superposition greatly to reduce the run time for certain decidable problems.

7.3. Refinements in experimental technique allow one to build analogue machines whose
behaviour depends on a single quantum (e.g., a single photon). Experiments with such

4Both S and T are ‘effectively determined’ operators. The interest of this concept lies not in exam-
ples like those given above but in the fact that the authors can (with considerable labour) give a general
characterization, in terms of computability, for the spectra of such operators.
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devices confirm the often counter-intuitive predictions of standard quantum theory. Could
they provide a disproof of my claim? I do not know of any example for this.

8. Discussion

8.1. When one shows that a given number-theoretic function is computable, or that a given
number-theoretic problem is decidable, one does not place bounds on the run-time or the size
of the memory - unless, of course, one is concerned with problems of complexity. That is, one
is not concerned with precision ratios. So it may look as if I have placed unfair restrictions on
analogue machines. But suppose one has proved that a certain programme will give correct
answers to a problem ?j ∈ X?. Then, given J , one can compute bounds on the time and
space required to settle ?j ∈ X? correctly for all j < J . But this is exactly what I claim
cannot be done for analogue machines intended to settle non-decidable problems.

8.2. Cascades of events and chain reactions allow one (as in a photon multiplier) greatly to
amplify the scale of an event. This is, in effect, a reduction of precision ratios. Could this
be used to overcome the objections raised by my claim? The answer is ‘No’, because only
when one knows a bound for β(J) can one determine how much amplification is needed.

8.3. In CAP (and Pour-El & Richards (1979)) other examples are given of differential
equiations (in particular the wave equations) which will give a non-computable output for a
computable input. The claim can be justified for these using the ideas of §5.

8.4. Kreisel has discussed calculation by analogue machines in a number of place; see, in
particular, his (1974), (1982), and (199 ). Some of his comments and analysis are illuminat-
ing, and have helped me in getting my ideas stragith. But one of his points is that there
are more interesting, more sensible, and more relevant questions to ask than the (logical)
question with which I am concerned.

8.5. Penrose, in his (1989) and (1994), has argued that the human brain can be thought
of as an analogue machine which can, in principle, settle undecidable problems. Firstly, he
believes that mathematical results which can, at least in principle, be produced by human
intelligence, cannot, even in principle, be produced by artificial intelligence - that is by some
fixed programme P . Note that P need not be itself directly responsible for the mathematical
statements which the machine outputs. P may be like an operating system, for example it
may, by a process similar to natural selection, use mutations and tests of fitness to direct
the (continual) evolution of subprogrammes for doing mathematics. But this possibility
does not, straightforwardly, invalidate Penrose’s argument justifying his belief. A concise
version of Penrose’s argument is given in Gandy (1994). Secondly Penrose believes that the
sentences uttered or written by people are caused by physical and chemical events in their
brains.

To allow for non-algorithmic actions in the brain, Penrose postulates a - not yet completely
formulate - future theory which he calls CQG (for Correct Quantum Gravity). This will have
consequences both for cosmology (concerning the direction of time’s arrow) and for quantum
theory (accounting for the collapse of real (not subjective) wave functions). He suggests ways
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in which such a theory may allow for the growth of microscopic structures (such as quasi-
crystals, synapses and micro tubules in neurons) in ways which are not locally determined
nor computable. It seems worthwhile to consider (rather naively) such patterns of grwoth
from a mathematical point of view.

9. Patterns of growth

I consider a pattern of possible growth as being displayed on a tree. At each node P there
is a finite label which represents a particular structure SP at a particular stage of growth -
for example, a particular quasi-crystal. If this structure SP is capable of growth then there
will be a finite number of nodes P1, . . . , Pk immediately below P ; each of the structures
SP1 , . . . , SPk

arises from SP by a single step of growth (for example, by the addition of a
single molecule). Two distinct structures SP and SQ may, in one step, grow into the same
structure. Hence a node may have two different immediate predecessors; these trees are
not the same as those standardly used in recursion theory. A node P and the corresponding
structure SP are fertile if there is an infinite path through P . If P is not fertile then, however
SP may grow, after a finite number of steps it will become a structure which can grown no
more.

Now we suppose that the label representing any structure S is (coded by) a finite sequence
u of 0’s and 1’s. We may suppose that the significant features of S can be computed from
u. An infinite path gives an infinite sequence u1, u2, . . . , of binary sequences. We define the
growth function γ along the path by γ(un) = un+1. If the sequence is computable then so
is γ; in particular there is a Turing machine M which, when presented with un on its tape,
will eventually replace it by un+1. Now the action of M is certainly locally determined; it
will, for example, in general, inspect each of the digits in un. We shall say that γ (and the
infinite sequence) are potentially locally determined.

9.1. Suppose we are given a tree of structures and a growth function γ which satisfies the
following conditions:

(i) If u codes a fertile structure S, then γ(u) codes a fertile structure into which S can
grown in a single step.

(ii) The function γ is not potentially locally determined.

Then, starting from any fertile structure S and iterating γ will produce a non-computable
infinite sequence of structures.

If one could examine, say, the first J structures in this sequence one could compute the
first J values of some non-computable function. The precision ratio of observation has to be
sufficiently large to enable one to determine the codes u for these J structures; it might well
be a computable function of J .

9.2. Since quasi-crystals have been observed which contain a very large number of molecules,
Penrose suggests that their growth is not a matter of chance, but is governed by some - as yet
unformulated - laws of non-local actions. If, further, the theory involved actions which were
not even potentially locally determined, then it would allow analogue machines to produce
non-recursive functions. One would not expect the theory to be totally deterministic; indeed
it is plausible that there are at least two distinct infinite paths through any fertile point of
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the tree, and hence continuum many such. Although each path yields a non-computable
function, one cannot use it to settle a specified undecidable problem.

But for the growth of microstructures in the brain, which determine how neurons behave
and how they affect each other, one would expect that certain particular paths would be
selected on would be permitted.

9.3. The definition of ‘potentially locally determined’ can be made quite general by con-
sidering, in place of the Turing machine M , any mechanism which satisfies the principles
of Gandy (1980) - in particular, of course, the principle of ‘local causation’. And then one
has a converse to 9.2 - if the growth function along an infinite path is potentially locally
determined, then the sequence of structures along it is computable.

9.4. It is well-known that there are binary trees whose nodes form a recursive set, which
have infinite paths but no computable infinite paths; using this fact one can for example
describe a finite set of tiles which can tile the whole plane, but only in a non-computable
way (see Hanf (1974)). Using the notion of trial and error predicates (see Putnam (1965))
we can see how the lattermost infinite path, λ say, might be grown. A node is specified by a
finite binary sequence u which describes (with 0 for ‘Left’ and 1 for ‘Right’) the path from
the vertex leading to it, and we consider u also as the structure starting at u. The size of
this is just the length of u. Now we define a computable sequence un of nodes on the tree as
follows.

(i) u0 = () (the vertex of the tree).
(ii) If un is not terminal (has nodes of the tree below it) then

un+1 = un0

(iii) Suppose un is terminal and has the form v0 or v011 . . . 1 then

un+1 = v1

Since no node on λ is terminal, none of the un can lie on the right of λ. Below any node
v which lies to the left of λ (e.g.; 10 if λ(1) = 1 λ(2) = 1) there can only be finitely many
nodes of the tree (since v cannot be fertile). Hence for some n we must have a un lying to
the right of v. Thuse for any J there will be an nJ such that unJ

= λ(1), λ(2), . . . , λ(J − 1).

9.5. At first sight it might look as if this process of trial and error growth could be acco-
modated in some reasonable physical theory. But this is an illusion; for not only is nJ not
computable from J , but there can be no computable bound on the lenghts of the sequences
un with n < nJ which have to be explored before unJ

is arrived at. And so the process
considered is analogous to a trial and error process for deciding if j ∈ A (as in §3) - one
simple looks ahead to see if, for some n, a(n) = j.

9.6. Penrose suggests that in a theory of quantum gravity the process of growth would be
represented by a superposition of wave functions each corresponding to a particular pattern
of growth, and that the effect of gravity would be to collapse the wave function, so that
only constituents corresponding to patterns of growth capable of producing large structures
would survive. To picture this process on the binary tree let the potential size, π(v) of a
node v be the maximum length of all nodes u extending (or lying below) v. If v is fertile
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we set π(v) =∞. Then the proposed theory would ensure that any permitted vertex would
grow to some node of great size, though (in the simple form in which I stated it) it would
not guarantee growth along an infinite path. It would well be that for a given J there would
be a kJ such that any node of size greater than kJ would agree with λ at the first J places.
But this fact will not allow us to compute values of λ from observations on large structures
which have developed, unless we know some (necessarily non-computable) bounds for kJ . If
a theory of growth of the kind considered is to stand up against our claim it looks as if some
kind of non-computability must be built into the theory - for example into the way in which
gravity determines the collapse of wave functions.
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