A PBR-like argument for 1-ontology in terms of
protective measurements

Shan Gao
Institute for the History of Natural Sciences,
Chinese Academy of Sciences, Beijing 100190, China.
E-mail: gaoshan@ihns.ac.cn.

November 23, 2014

Abstract

The ontological status of the wave function in quantum mechanics has
been analyzed in the context of conventional projective measurements.
These analyses are usually based on some nontrivial assumptions, e.g.
a preparation independence assumption is needed to prove the PBR
theorem. In this paper, we give a PBR-like argument for -ontology in
terms of protective measurements, by which one can directly measure
the expectation values of observables on a single quantum system. The
proof does not resort to nontrivial assumptions such as preparation
independence assumption.

The physical meaning of the wave function has been a hot topic of de-
bate in the foundations of quantum mechanics. A long-standing question
is whether the wave function relates only to an ensemble of identically pre-
pared systems or directly to the state of a single system (Harrigan and
Spekkens 2010). Recently, Pusey, Barrett and Rudolph demonstrated that
under certain assumptions including a preparation independence assump-
tion, the wave function is a representation of the physical state of a single
quantum system (Pusey, Barrett and Rudolph 2012)|H This poses a further
interesting question, namely whether the reality of the wave function can be
argued without resorting to nontrivial assumptions (cf. Colbeck and Renner
2012; Lewis et al 2012; Leifer and Maroney 2013; Patra, Pironio and Massar
2013). In this paper, we will argue that protective measurements, by which
one can directly measure the expectation values of observables on a single
quantum system (Aharonov and Vaidman 1993; Aharonov, Anandan and
Vaidman 1993), may provide such an argument.

!For more discussions about the Pusey-Barrett-Rudolph theorem or PBR theorem, see
Schlosshauer and Fine (2012, 2013); Wallden (2013).
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The ontological status of the wave function in quantum mechanics is
usually analyzed in the context of projective measurements. Although the
wave function of a quantum system is in general extended over space, one
can only detect the system in a random position in space by a projective
measurement of position, and the probability of detecting the system in the
position is given by the modulus squared of the wave function there. Thus
it seems reasonable for a realist to assume that the wave function does not
refer directly to the physical state of the system but only relate to the state
of an ensemble of identically prepared systems. Although there are several
important theorems such as the PBR theorem which reject this epistemic
view of the wave function, these theorems depend on some nontrivial as-
sumptions. By denying these nontrivial assumptions, it seems that one can
still restore the epistemic view of the wave function. Moreover, it has been
demonstrated that additional assumptions are always necessary to rule out
the epistemic view of the wave function when considering only conventional
projective measurements (Lewis et al 2012).

Thanks to the important discoveries of Yakir Aharonov and Lev Vaidman
et al, it has been known that there exist other kinds of quantum measure-
ments such as weak measurements and protective measurements (Aharonov,
Albert and Vaidman 1988; Aharonov and Vaidman 1990; Aharonov and
Vaidman 1993; Aharonov, Anandan and Vaidman 1993). In particular, by
a series of protective measurements on a single quantum system, one may
detect the system in all regions where its wave function extends and further
measure the whole wave function of the system (Aharonov and Vaidman
1993; Aharonov, Anandan and Vaidman 1993). During a protective mea-
surement, the measured state is protected by an appropriate mechanism,
e.g. via the quantum Zeno effect or via natural protection from energy con-
servation for adiabatic measurements of non-degenerate energy eigenstates,
so that it neither changes nor becomes entangled with the state of the mea-
suring device appreciably. In this way, such protective measurements can
measure the expectation values of observables on a single quantum system,
even if the system is initially not in an eigenstate of the measured observable,
and the wave function of the system can also be measured as expectation
values of a sufficient number of observables.

By a conventional projective measurement on a single quantum system,
one obtains one of the eigenvalues of the measured observable, and the ex-
pectation value of the observable can only be obtained as the statistical av-
erage of eigenvalues for an ensemble of identically prepared systems. Thus
it seems surprising that a protective measurement can yield the expectation
value of the measured observable directly from a single quantum system. In
fact, the appearance of expectation values as measurement results is quite
natural when the measured state is not changed and the entanglement dur-
ing conventional measurements does not take place as for ideal protective
measurements (Aharonov, Anandan and Vaidman 1993). In this case, the



evolution of the combining state is

[(0)) [9(0)) — [(2)) [6(2)) £ > 0 (1)

where |1)) denotes the state of the measured system and |¢) the state of
the measuring device, and |¢(¢)) is the same as |¢(0)) up to a phase factor
during the measurement interval [0, 7]. The interaction Hamiltonian is given
as usual by Hy = g(t)PA, where P is the conjugate momentum of the pointer
variable X of the device, and the time-dependent coupling strength g(t) is a
smooth function normalized to [ dtg(t) = 1 during the measurement interval
7, and g(0) = g(7) = 0. Then by Ehrenfest’s theorem we have

%W(W(t)lX [Y(#)(t)) = g(t) (P (0)[A[4(0)) , (2)

which further leads to

(@(1)[X |(7)) = (#(0)|X [¢(0)) = (¥ (0)[A]4(0)) . (3)

This means that the shift of the center of the pointer of the device gives the
expectation value of the measured observable in the measured state.

That the wave function of a single prepared system can be measured
by protective measurements can also be illustrated with a specific example
(Aharonov and Vaidman 1993). Consider a quantum system in a discrete
nondegenerate energy eigenstate (). In this case, the measured system
itself supplies the protection of the state due to energy conservation and no
artificial protection is needed. We take the measured observable A, to be
(normalized) projection operators on small spatial regions V;, having volume
Up:

L .
A, = o et (4)
0, ifxdgV,.
An adiabatic measurement of A,, then yields
1 2
(An) = [ o) Pa, )
n JVy,

which is the average of the density p(x) = |¥(x)|? over the small region V,.

Similarly, we can adiabatically measure another observable B,, = b (A, V+

2msa
VA;). The measurement yields
By =+ [ v eveyaw = L [ @) (6)
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This is the average value of the flux density j(x) in the region V;,. Then when
v, — 0 and after performing measurements in sufficiently many regions
V, we can measure p(x) and j(z) everywhere in space. Since the wave



function ¢ (z,t) can be uniquely expressed by p(z,t) and j(x,t) (except for
an overall phase factor), the above protective measurements can obtain the
wave function of the measured system.

Since the wave function can be measured from a single quantum system
by a series of protective measurements, it seems natural to assume that the
wave function refers directly to the physical state of the system. Several
authors, including the discoverers of protective measurements, have given
similar arguments supporting this implication of protective measurements
for the ontological status of the wave function (Aharonov and Vaidman
1993; Aharonov, Anandan and Vaidman 1993; Anandan 1993; Dickson 1995;
Gao 2013, 2014; Hetzroni and Rohrlich 2014). However, these analyses
are also subject to some objections (Unruh 1994; Dass and Qureshi 1999;
Schlosshauer and Claringbold 2014)ﬂ It is still debatable whether protective
measurements imply the reality of the wave function. In the following, we
will give a new argument for ¥-ontology in terms of protective measurements
along the line of reasoning of PBR theorem.

The PBR theorem is based on three assumptions (Pusey, Barrett and
Rudolph 2012). The first one is that if a quantum system is prepared such
that quantum theory assigns a pure state, then after preparation the system
has a well defined set of physical properties, usually denoted by A. This as-
sumption is necessary for the analysis of the ontological status of the wave
function, since if such physical properties don’t exist, it is meaningless to
ask whether or not the wave function describes them. The second assump-
tion is called preparation independence assumption, which states that it is
possible to prepare multiple systems such that their physical properties are
uncorrelated. This assumption is nontrivial, and it has been replaced by
certain seemingly weaker assumption in other relevant theorems (Colbeck
and Renner 2012; Patra, Pironio and Massar 2013). The third assumption
is that when a measurement is performed, the behaviour of the measuring
device is only determined by the complete physical state of the system, along
with the physical properties of the measuring device (see also Harrigan and
Spekkens 2010). Our following arguments will be based on this generally
accepted assumption.

For an ideal projective measurement M, this assumption means that
the physical state or ontic state A of a system determines the probability
p(k|\, M) of different outcomes k for the measurement M on the system.
While for an ideal protective measurement, this assumption will mean that
the ontic state A of a system determines the definite result of the protective
measurement on the system. Based on this inference, we can give a simpler
PBR-like argument for i-ontology in terms of protective measurements.

For two different quantum states such as two nonorthogonal states, se-
lect an observable whose expectation values in these two states are different.

2See Gao (2014) for a brief review of and answers to these objections.



Although these two states need different protection procedures, the ideal
protective measurements of the observable on the two (protected) states
such as adiabatic measurements are the same, and the results of the mea-
surements will be different with certainty. If there exists a probability p > 0
that these two (protected) quantum states correspond to the same ontic
state A, then according to the above inference, the results of protective mea-
surements of the above observable on these two states will be the same with
probability p > 0. This leads to a contradiction. Therefore, the two (pro-
tected) quantum states correspond to different ontic states. This result is
not surprising, since two (protected) quantum states of a single system can
be distinguished with certainty by ideal protective measurements.

It can be further argued that a quantum state 1, whether it is protected
or not, corresponds to the same distribution of A, though the ontic state of
a single system may change when the system changes from an unprotected
situation to a protected situationﬂ The reason is that a protected state
and the original unprotected state yield the same probability of outcomes
for any projective measurement. Thus, the above result also shows that
two (unprotected) quantum states correspond to two ontic states. In other
words, the quantum state represents the physical state of a single quantum
system.

In fact, we can give a more direct argument for -ontology in terms of
protective measurements. As stated above, for an arbitrary (ideal) protec-
tive measurement, the ontic state A of a quantum system determines the
definite result of the protective measurement on the system, namely the ex-
pectation value of the measured observable in the measured quantum state.
Since the expectation values of a sufficient number of observables in a quan-
tum state can uniquely determine the quantum state, the ontic state A of
a system will uniquely determine the quantum state of the system. This
proves y-ontology.

One may object that we should consider realistic protective measure-
ments in the above arguments, while a realistic protective measurement can
never be performed on a single quantum system with absolute certainty. For
example, for a realistic protective measurement of an observable A on a non-
degenerate energy eigenstate whose measurement time 7' is finite, there is
always a tiny probability proportional to 1/T? to obtain a different outcome
(A) 1, where L refers to a normalized state in the subspace normal to the
measured state as picked out by the first order perturbation theory. In this
case, according to the above third assumption, the probability of different
outcomes should be also determined by the ontic state of the measuring de-
vice and the measuring time, as well as by the ontic state of the measured

3For the cases of the measured state being a nondegenerate energy eigenstate, no
artificial protection is needed, and there is no difference between an unprotected situation
and a protected situation. Thus this result is obvious.



Systemlﬂ

However, on the one hand, although a realistic protective measurement
with finite measurement time 7" can never be performed on a single quan-
tum system with certainty, the uncertainty can be made arbitrarily small
when the measurement time 7" approaches infinity. Concretely speaking, the
probability distribution of different outcomes will approach a §—function lo-
calized in the expectation value of the measured observable in the measured
state in the limit. On the other hand, when the measurement time 7' ap-
proaches infinity, the probability of different outcomes will be determined
only by the ontic state of the measured system. No matter what the ontic
state of the measuring device is, the probability distribution of different out-
comes will always approach a j—function depending only on the measured
state of the system. Based on this result, we can give a similar PBR-like
argument for -ontology as above.

For two different quantum states, select an observable whose expectation
values in these two states are different. Then the overlap of the probability
distributions of the results of protective measurements of the observable on
these two states can be arbitrarily close to zero (e.g. when the measurement
time T approaches infinity for adiabatic protective measurements). If there
exists a non-zero probability p that these two quantum states correspond
to the same ontic state A in reality, then since the same A yields the same
probability distribution of measurement results (when the measurement time
T approaches infinity) according to the above result, the overlap of the
probability distributions of the results of protective measurements of the
above observable on these two states will be not smaller than p. Since p > 0
is a determinate number, this leads to a contradiction.

Several comments are in order before concluding this paper. First of all,
the above arguments in terms of protective measurements only consider a
single quantum system, and thus avoid the preparation independence as-
sumption for multiple systems used by the PBR theorem. Next, our ar-
gument in terms of ideal protective measurements does not depend on the
origin of the Born probabilities. Unlike the PBR argument in terms of
projective measurements, it is not necessary for our argument to assume
that the probability of different outcomes of a projective measurement on
a quantum system is determined by the ontic state of the system at the
time of measurement (cf. Drezet 2014). Thirdly, it is worth noting that the
principle of protective measurement does not depend on the solution to the
measurement problem, and it only replies on the established parts of quan-
tum mechanics, namely the linear Schrodinger dynamics and the Born rule.
In fact, the above arguments only reply on the results of protective measure-

4Similarly, the probability of different outcomes of a realistic projective measurement
will be also determined by the ontic state of the measuring device and the measuring time,
as well as by the ontic state of the measured system. It will be interesting to see whether
the PBR theorem can also be proved for realistic projective measurements.



ments in the limit case such as when the measurement time 7' approaches
infinity. Thus the arguments do not depend on the precise Born rule, for
example, it will be enough if very small probability amplitude corresponds
to very small probability of a measurement outcome.

Finally, we note that there might also exist other components of the
underlying physical state, which are not measureable by protective mea-
surements and not described by the wave function, e.g. the positions of the
particles in the de Broglie-Bohm theory or Bohmian mechanics. In this case,
according to our arguments, the wave function still represents the underly-
ing physical state, though it is not a complete representation. Certainly, the
wave function also plays an epistemic role by giving the probability distribu-
tion of measurement results according to the Born rule. However, this role
will be secondary and determined by the complete quantum dynamics that
describes the measurement process, e.g. the collapse dynamics in dynamical
collapse theories.
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