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Abstract

It is shown that Uffink’s attempt to protect the interpretation of the
wave function against protective measurements fails due to several errors
in his arguments.

This comment is motivated by a recent review of my manuscript “Protec-
tive Measurement and the Meaning of the Wave Function” (Gao 2011a). The
reviewer said, “the manuscript fails to deal with the most important of such
objections, i.e. J. Uffink in Phys. Rev. A 60: 3474-3481 (1999), a paper
that argues against AAV that the concept of protective measurements has no
implication for the interpretation of the wave function.” A critical analysis of
Uffink’s objection may be indeed necessary, as no answers have been given by
the proponents of protective measurementsﬂ Vaidman (2009) regarded this ob-
jection as a misunderstanding, but he gave no concrete rebuttal. Maybe it is
just this objection that made most (?) people blind to the important implica-
tions of protective measurements for the interpretation of the wave function. In
this comment, I will analyze Uffink’s objection to protective measurements in
detail.

The main claim of Uffink’s paper is that only observables that commute with
the system’s Hamiltonian can be protectively measured (Uffink 1999). Based
on this claim, he argued that protective measurements have no implications
for the interpretation of the wave function, and the coherence of alternative
interpretations of quantum mechanics can be saved. Uffink gave a strict proof
of this claim in Section IV of his paper. However, there is a deadly error in
the proof concerning the two equations between Eq. (23) and Eq. (24) (in the
eprint between Eq. (24) and Eq. (25)):

(G| THSTPO) o= THs+P0) 1o Y s B, 6,0, (1)

*Unit for HPS and Centre for Time, University of Sydney, NSW 2006, Australia. E-mail:
sgao7319Quni.sydney.edu.au.

1 The earlier objections to the validity and meaning of protective measurements have been
answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999).


mailto:sgao7319@uni.sydney.edu.au

e (En=En) (¢ 1670 Hge=0 |6,) — by, @)

In the derivation from the first equation to the second, it is implicitly assumed
that the two operators O (the observable) and Hg (the system Hamiltonian)
are commutative. The exponential function satisfies the equality eXtY = eXeV
only if the two operators X and Y commuteﬂ But the aim of the proof is to
prove the commutativity of O and Hg. Thus Uffink’s proof fails.

In fact, the validity of the first order perturbation theory, which has been
widely used and confirmed in quantum mechanics, already implies that Uffink’s
proof is doomed to failure. For according to the theory, Eq. (1) can be satisfied
when the two operators O and Hg are noncommutative. Since the derivation
of the result of a protective measurement is only based on the first order per-
turbation theory, it should have no problem.

Another claim of Uffink’s paper is that protective measurement does not
measure an arbitrary observable O that may not commute with the system
Hamiltonian, but rather a related observable O that commutes with the system
Hamiltonian:

O=> P,0P, (3)

where P, = |¢,) (¢,|. This claim is partly based on the above failed proof. Note
that the measurement of this related observable O on a system in an eigenstate
|¢n) of Hg yields the expectation value (O),.

However, this claim is also problematic. First of all, the measurement of
the observable O, which commutes with the system Hamiltonian, results in
neither entanglement between the measured system and the measuring device
nor collapse of the measured state. By contrast, for a protective measurement
of O, the entanglement and collapse can never be completely avoided (as the
measuring time cannot be made infinitely long), though their effects can be
made arbitrarily small. Next, the measurement of O requires a full a priori
knowledge of the system Hamiltonian, while a protective measurement of O can
be made without this knowledge. For instance, it may only require to know
the measured state is a non-degenerate eigenstate of an unknown Hamiltoniarﬂ
Last but not least, the observable O already contains the information about the
measurement result (O),:
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Thus it is not a measurement of the expectation value (O),, at all. By con-
trast, the protective measurement of an arbitrary observable O does measure

its expectation value, which is unknown before the measurement.
In his paper, Uffink also used an example, which has been discussed by
Aharonov, Anandan and Vaidman (1993), to illustrate his conclusions. Unfor-
tunately, his analysis of the example is also problematic. In the example, a

2In the noncommutative case, we can use the Baker-Campbell-Hausdorff formula to calcu-
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3This important point has been repeatedly stressed by the proponents of protective mea-
surement and other authors (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999).



charged particle is in a superposition of two states localized in distant boxes L
and R:
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where |¢r) and |pr) are the ground states of the box potentials. The question

is whether a protective measurement can demonstrate that the particle is in this
delocalized state. Since this state degenerates with
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a protective procedure is needed to lift the degeneracy. For example, by arrang-
ing that in the region between the two boxes the potential has a large but finite

constant value V' as Uffink suggested, one can achieve that these two states are
no longer degenerate. Then a protective measurement of the observable:
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on this state will yield its expectation value (O); = 0. This measurement can
be done by sending a charged test particle straight through the middle between
the boxes, perpendicular to the line joining the two boxes. Since the trajectory
of the test particle is only sensitive to (O) under the condition of protective
measurement, it will continue through the boxes without deviation.

In order to demonstrate a negative answer to the above question, Uffink
further considered the case where the measurement is carried out on a charged
particle prepared in a localized state |¢r). Since this state is not protected
under the above experimental setup, one obtains the evolution:
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where |x) is the initial state of the test particle, |x+) and |x_) are its final states
in the cases when the measured particle was initially in the states |¢4) and |¢_).
Since (O); = (O)_ = 0, the test particle travels a straight trajectory in the
state |x4+) as well as in |xy—). Then the test particle will travel on a straight
path for the measured state |¢r). This means that for both delocalized state
|¢+) and localized state |¢r), the test particle always travels on a straight path.
Based on this result, Uffink concluded that a protective measurement provides
no evidence for the spatial delocalization of the measured particle.

At first sight this argument seems reasonable. However, it is not difficult
to find its problem by a careful analysis. The key is to realize that in order
to measure the state of a measured system, e.g. whether the system is in a
delocalized state or not, the state must be protected before the measurement.
This is a basic requirement of protective measurement. It is obvious that in
the above example the measured state |¢r) is not protected during the mea-
surement, which was also admitted by Uffink. Accordingly, the result of this
measurement can neither tell us the state |¢,) is localized nor tell us the state
|or) is delocalized, and thus it cannot be used to support Uffink’s conclusion.
In other words, only when the result of the protective measurement of |¢r,) is
the same as the result of the protective measurement of |¢, ), can Uffink’s ar-
gument hold true. But these two results are obviously different; for the former
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the trajectory of the test particle deviates, while for the latter the trajectory is
a straight path. Here it is also worth noting that under the same experimental
setup (e.g. in the above example) no measurement consistent with quantum
mechanics can measure whether the measured particle is in the state |¢L) or
|o1), as this requires the distinguishability of two non-orthogonal states, which
is prohibited by quantum mechanics.

A possible reason leading Uffink to the wrong conclusion is that the above
example is very special; that the result of the non-protective (adiabatic) mea-
surement of |¢r,) is always the same as the result of the protective measurement
of |¢4) is only a coincidence. Although a non-protective measurement results in
wavefunction collapse, whose effect cannot be made arbitrarily small, the effect
of the wavefunction collapse is very tiny for the non-protective measurement of
|¢r) in the above special example. In order to see the effect more clearly, we
had better consider the protective measurement of a general state:

|94+) = aldL) +bldr), (9)
where |a| # |b], and |a|? + |b]? = 1. Since this state degenerates with
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a similar protective procedure is also needed to lift the degeneracy. For this
general case, the results of the protective measurements of |¢) and |¢p_) will
be obviously different: (O); = |b]? — |a|?, (O)_ = |a]?> — |b|>. Therefore, the
non-protective measurement of |¢r) = a*|¢4) + b|p_) will lead to remark-
able wavefunction collapse; its result will be either the result of the protective
measurement of |¢) with probability |a|? or the result of the protective mea-
surement of |¢_) with probability |b|?, and correspondingly the measured state
|¢r) will collapse to one of these two states with the same probabilities. This
analysis also confirms that the result of a non-protective measurement cannot
reflect the measured state and indicate whether the measured particle is in a
localized state or not due to the resulting wavefunction collapse.

To sum up, I have shown that Uffink’s attempt to protect the interpretation
of the wave function against protective measurements fails due to several errors
in his arguments. However, I am still puzzled by his attitude towards the
possible implications of protective measurements for the interpretation of the
wave function, which may be shared by many people. It seems that the errors
in Uffink’s arguments were made at least partly due to his biased philosophical
opinions. Why protect the interpretation of the wave function against protective
measurements? Why make the different views on the meaning of the wave
function peacefully coexist? Is it not very exciting and satisfying if we can
decide the issue of the interpretation of the wave function someday? Is it not one
of the ultimate objectives of our explorations in quantum foundations? In my
opinion, a recent important work by Pusey, Barrett and Rudolph (2011) further
strengthens our confidence in fathoming the meaning of the wave function, and
protective measurement is probably the golden key to open the door to the real
quantum world (Gao 2011a, 2011b, 2011c).
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