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Abstract

It is argued that if the relative configuration of Bohmian parti-

cles represents the measurement result, then the predictions of Bohm’s

theory may be inconsistent with the Born rule in some situations.

The measurement problem of quantum mechanics originates from the

incompatibility of the following three claims: (1). the wave function of a

physical system is a complete description of the system; (2). the wave func-

tion always evolves in accord with the Schrödinger equation; and (3). each
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measurement has a definite result (Maudlin, 1995). One approach to solv-

ing the measurement problem is to deny the claim (1) and add some hidden

variables and corresponding dynamics to explain definite measurement re-

sults. A well-known example is Bohm’s theory (Bohm, 1952). A key issue in

Bohm’s theory is what determines the measurement result. A popular view

is that the Bohmian particles themselves determine the measurement result,

and in particular, the relative configuration of Bohmian particles represents

the measurement result (Lewis, 2007). It has been argued that this view

leads to the problem of allowing superluminal signaling (Brown and Wal-

lace, 2005; Lewis, 2007). In this paper, I will argue that this view may lead

to a more serious problem of being inconsistent with the Born rule.

Consider a simple spin measurement. Suppose a measuring device or

an observer M measures the x-spin of a spin one-half system S that is in

a superposition of two different x-spins, α |up〉S + β |down〉S . According to

the Schrödinger equation, the wave function of the composite system after

the measurement will evolve into the superposition of M recording x-spin

up and S being x-spin up and M recording x-spin down and S being x-spin

down:

α |up〉S |up〉M + β |down〉S |down〉M . (1)

In Bohm’s theory, although the post-measurement wave function is a super-

position of two definite result branches, the configuration of the Bohmian

particles of the device is definite after the measurement, being in one of the

two branches with epistemic probability consistent with the Born rule. This

may be enough for solving the measurement problem if assuming relative

particle configurations indeed represent measurement results.1 The question

1Note that the absolute configuration of Bohmian particles in an inertial frame, which
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is: Can this assumption be true?

According to the Born rule, the modulus squared of the amplitude of each

result branch of a post-measurement superposition gives the probability of

obtaining the measurement result corresponding to the branch. For exam-

ple, the modulus squared of the amplitude of the branch |up〉S |up〉M in the

above superposition, |α|2, gives the probability of obtaining the x-spin up

result. This means that the Born rule requires that the quantities that repre-

sent the measurement results should be correlated with these result branches

of the superposition. Thus, if relative particle configurations represent mea-

surement results, then the relative configurations of the Bohmian particles

that reside in different result branches (in configuration space) should be

different. In other words, in order that the measurement result is repre-

sented by the relative configuration of Bohmian particles, there must exist a

one-to-one correspondence from the relative configurations of the Bohmian

particles to the result branches of the post-measurement superposition.

Let us see whether this requirement can always be satisfied. Suppose the

spatial part of |down〉S is ψ(x0, y0, z0, t), the spatial part of |up〉S is ψ(x0 −

a0, y0, z0, t), and the spatial part of |down〉M is φ(x1, y1, z1, ..., xN , yN , zN , t),

the spatial part of |up〉M is φ(x1−a1, y1, z1, ..., xN−aN , yN , zN , t), where a0,

a1,... and aN are large enough so that the two branches of the superposition

(1) are non-overlaping in configuration space and the superposition may be

a valid post-measurement state. When all ai (i=0, ... N) are different,

and the difference between two of them is larger than the spreading size

of the wave function ψ(x0, y0, z0, t)φ(x1, y1, z1, ..., xN , yN , zN , t) in configu-

ration space, then obviously there is a one-to-one correspondence from the

is not invariant in all inertial frames, cannot represent the measurement result, since the
representation of a measurement result should be independent of the selection of an inertial
frame.
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relative configurations of the Bohmian particles to the two branches of the

post-measurement superposition.

However, it can be seen that there are also situations in which the one-

to-one correspondence does not exist. Here is an example (Gao, 2017).

When a0 = a1 = ... = aN , one branch of the superposition (1) is a spatial

translation of the other branch. In this case, if a relative configuration of

the Bohmian particles appears in the region of one branch in configuration

space in some experiments, it may also appear in the region of the other

branch in configuration space in other experiments. Moreover, the epistemic

probability of the configuration appearing in both regions are the same.

This means that the relative configurations of the Bohmian particles that

reside in different branches of the superposition may be the same, and there

does not exist a one-to-one correspondence from the relative configurations

of the Bohmian particles to the result branches of the post-measurement

superposition.

Since the Born rule requires that there should exist such a correspon-

dence relation when assuming that the measurement result is represented by

the relative configuration of Bohmian particles, the non-existence of the cor-

respondence relation means that this assumption is wrong. This result can

be seen more clearly as follows. If assuming that the relative configuration of

Bohmian particles represents the measurement result, then no matter which

branch of the above post-measurement superposition the Bohmian particles

reside in, the measurement result will be the same. In other words, there will

be only one measurement result with probability one under the assumption.

This is obviously inconsistent with the Born rule.

One may object that it is misleading to describe the above superposition

as a post-measurement situation. Since anything that deserves to be called a
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measurement is a situation in which different results are encoded in different

relative configurations of things including the wave functions, the above

superposition, even if it is a valid post-measurement state, also corresponds

to one measurement result with probability one. Thus Bohm’s theory with

the above assumption is not inconsistent with the Born rule.

This is a significant objection. In my view, the objection is indeed

valid. However, one may avoid this objection by somewhat changing the

above superposition and also considering the properties of the Bohmian

particles. Consider situations in which one branch of the superposition is

formed by first spatially translating the other branch and then exchanging

the coordinates of two non-identical subsystems. For example, |down〉M

is φ(x1, y1, z1, x2, y2, z2, ..., xN , yN , zN , t), and |up〉M is φ(x2 − a, y2, z2, x1 −

a, y1, z1, ..., xN − a, yN , zN , t), where subsystems 1 and 2 are not identical.

In these situations, since the two branches of the superposition are non-

overlaping, and one branch of the superposition is not a spatial translation

of the other branch, the superposition may describe a post-measurement sit-

uation.2 Now, if Bohmian particles have no properties other than position

(as many Bohmian think), which means that exchanging the coordinates

of two Bohmian particles does not change their relative configuration, then

when the Bohmian particles reside in one branch of the above superposi-

tion, their relative configuration always has its translated counterpart in

the other branch. Thus, similar to the previous example of spatial transla-

tion, no matter in which branch of the superposition the Bohmian particles

reside, the measurement result will be the same. This is inconsistent with

the Born rule.

2Note that if one branch of the superposition is formed by spatially translating the other
branch and exchanging the coordinates of two identical subsystems, then the superposition
is not a valid post-measurement state with two possible results as before.

5



This result also means that if assuming the relative configuration of

Bohmian particles represents the measurement result, then one need to en-

dow the Bohmian particles with more properties than position. These ad-

ditional properties are intrinsic and can distinguish one Bohmian particle

from the other, and thus exchanging the coordinates of two Bohmian par-

ticles will change their relative configuration. In this way, the problem of

violating the Born rule may be solved in the above example. However, the

measurement result will be determined not only by the position property of

Bohmian particles, but also by these intrinsic properties of Bohmian parti-

cles which determine their identities.

Moreover, it can be further argued that the Bohmian particles of a quan-

tum system must have all intrinsic properties possessed by the system such

as mass, charge and spin in order to avoid the violation of the Born rule.

Assume this is not the case, e.g. the Bohmian particles of a quantum system

have all but one intrinsic property of the system such as spin. Consider a

post-measurement superposition similar to the above superposition, in which

one branch of the superposition is formed by first spatially translating the

other branch and then exchanging the coordinates of two subsystems which

have only different values of spin. Then, since the Bohmian particles of the

two subsystems have no spin property, they are identical and exchanging

their coordinates does not change their relative configuration. Then, similar

to the above analysis, no matter in which branch of the superposition the

Bohmian particles of the system reside, the measurement result, which is

represented by the relative configuration of Bohmian particles, will be the

same. Again, this is inconsistent with the Born rule.

However, it is well known that all observables other than position, in-

cluding spin, are contextual properties of Bohmian particles, which means

6



that they are not intrinsic properties of Bohmian particles which exist in-

dependently of the context of being measured. Thus it seems that we have

obtained an interesting result, namely that if relative particle configurations

represent measurement results in Bohm’s theory, then the predictions of the

theory may be inconsistent with the Born rule in some situations. This sug-

gests that relative particle configurations may be not eligible to represent

measurement results in Bohm’s theory.

Here one may also object that the above superposition is not a valid

post-measurement state. But the reason cannot be the same as before,

since the relative configurations of the wave functions are different in differ-

ent branches of the superposition. Moreover, it is worth pointing out that

if using Bohm’s result assumption, namely assuming that the branch of the

wave function occupied by the Bohmian particles represents the measure-

ment result, then the predictions of Bohm’s theory can still be consistent

with the Born rule in the above situations.3

Finally, I note that the above analysis also raises concern about the whole

strategy of hidden-variable theories to solve the measurement problem. Why

add hidden variables such as positions of Bohmian particles to quantum me-

chanics? It has been thought that adding these variables which have definite

values at all times is enough to ensure the definiteness of measurement re-

sults and further solve the measurement problem. Indeed, the existing no-go

theorems for hidden-variable theories, such as the Kochen-Specker theorem

(Kochen and Specker, 1967), consider only whether observables can be as-

signed sharp values or whether there exist such hidden variables. However,

if these hidden variables cannot determine the measurement results, then

even though they have definite values at all times, their existence does not

3Unfortunately, it has been argued that Bohm’s result assumption is problematic
(Stone, 1994; Brown and Wallace, 2005; Lewis, 2007).
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help solve the measurement problem.
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