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This paper studies a new model for Huanglongbing with seasonal fluctuations. Switching coefficients and switching control
schemes are considered in this model. The main purpose of this paper is to study the effects of switching control schemes on
dynamics of the model. Firstly, we theoretically investigate the basic reproductive number and its computation formulae for
general impulsive switching model with periodic environment. Secondly, the basic reproductive number and global dynamics of
the impulsive switching model for Huanglongbing are analyzed. Finally, numerical results indicate that spring and autumn are
the optimum seasons for killing psyllids, and winter is the optimum season for removing infected trees.

1. Introduction

Citrus Huanglongbing (HLB), also known as citrus green-
ing, is one of the most devastating diseases of citrus
worldwide [1]. The Asiatic citrus psyllid and Diaphorina citri
Kuwayama are the only two known vectors of the debilitating
citrus HLB [2]. Nearly 50 countries are affected by this dis-
ease especially in Asian, African, and American countries,
such as Brazil, USA, and China. It was estimated by the Uni-
versity of Florida in 2012 that, in Florida, HLB had resulted in
the loss of 6611 jobs from 2006 throughout 2011, 1.3 billion
in revenue to growers, and 3.63 billion in economic activity
[3]. In São Paulo, 64.1% of the commercial citrus blocks
and 6.9% of the citrus trees were affected by HLB in 2012
[4]. Till now, in China, the damaged area of citrus is more
than 80% of the total cultivated area [5]. Unfortunately, there
currently is no cure for HLB nor is there any naturally occur-
ring citrus cultivar that is resistant to HLB.

HLB is a vector-transmitted bacterial infection through
psyllids [6]. Since the pioneering work of MacDonald and
Barbour on schistosomiasis [7, 8], many mathematical
models have been proposed in analyzing the spread and

control of vector-borne diseases, such as malaria, dengue
fever, schistosomiasis, West Nile disease, HLB (see [9–14]
and references therein). In [8], Barbour formulated a mathe-
matical model of schistosomiasis as follows:

dIh t
dt

= aShIv − μ1Ih,

dIv t
dt

= bSvIh − μ2Iv,

dSh t
dt

= μ1 − aShIv − μ1Sh,

dSv t
dt

= μ2 − bSvIh − μ2Sv ,

1

where Sh (Ih) is the susceptible (infected) host population,
Sv (Iv) is the susceptible (infected) vector population, a
and b are infection rates, μ1 (μ2) is the natural mortality rate
of the host (vector) population.

As we know, young flush (initial infection of newly
developing cluster of young leaves) become infectious within
15 days after receiving an inoculum of bacteria [15], and
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symptoms of HLB do not appear on leaves for months to
years after initial infection. The survey results from [16, 17]
indicated that the incubation period from grafting to devel-
opment of HLB symptoms is 3 to 12 months under green-
house conditions. For large trees in a field situation, the
incubation period may be much longer, up to more than 5
years. This means that HLB has a long incubation period
during which the plant is asymptomatic but infectious [18].
Therefore, in this paper, we classify the citrus tree into four
compartments: susceptible Sh, infected and asymptomatic
but not yet infectious Eh, infectious and asymptomatic I1,
and infectious and symptomatic I2, and the psyllids vector
into two compartments: susceptible class Sv and infected
class Iv . Let Nh t and Nv t be the total numbers of citrus
trees and psyllids, respectively, at time t in a grove. That
is, Nh t = Sh t + Eh t + I1 t + I2 t and Nv t = Iv t +
Sv t . Assume that removed trees are immediately replaced
by susceptible trees, keeping the grove size constant [19].
Thus, Nh t is constant and denotes Nh. Inspired by the
idea of Barbour’s model (1), considering HLB transmission
between citrus trees and psyllids, we establish the follow-
ing HLB model.

dEh t
dt

= aShIv
Nh

− μ1Eh − αEh − dEh,

dI1 t
dt

= αEh − μ1I1 − θI1 − dI1,

dI2 t
dt

= θI1 − μ1I2 − dI2,

dIv t
dt

= cSvI1
Nh

+ bSvI2
Nh

− μ2Iv,

dSh t
dt

= μ1Nh − μ1Sh −
aShIv
Nh

+ dEh + dI1 + dI2,

dSv t
dt

=Λ −
cSvI1
Nh

−
bSvI2
Nh

− μ2Sv,

2

where α and θ are the conversion rates, μ1 (μ2) is the natural
mortality rate of the citrus tree (psyllids), a is the infection
rate from infected psyllids to susceptible trees, b is the infec-
tion rate from infectious and symptomatic trees to psyllids,
c = kb means the infection rate from infectious and asymp-
tomatic trees to psyllids, and k (0 < k ≤ 1) is the proportional
coefficient, d is the mortality rate of citrus trees due to illness,
and Λ is the constant recruitment rate of psyllids.

In general, spraying insecticides over entire groves as well
as eliminating infected symptomatic trees have always been
implemented in controlling the spread of HLB. In Thailand,
3–6 sprays per year was required during flush periods to
rehabilitate citrus production in a HLB-infected area [20].
However, the common assumption about the continuity of
control activities is contradictory from the reality that the
control behavior usually occurs in regular pulses [21]. Spray-
ing insecticides is generally applied at a fixed time, and the
effect of pesticide spraying depends on the time of initial
spraying and frequency. By considering impulsive control

strategies, system (2) can be described by impulsive differen-
tial equations as follows:

dEh t
dt

= aShIv
Nh

− μ1Eh − αEh − dEh,

dI1 t
dt

= αEh − μ1I1 − θI1 − dI1,

dI2 t
dt

= θI1 − μ1I2 − dI2 − γI2,

dIv t
dt

= cSvI1
Nh

+ bSvI2
Nh

− μ2Iv,

dSh t
dt

= μ1Nh − μ1Sh −
aShIv
Nh

+ dEh + dI1 + dI2 + γI2,

dSv t
dt

=Λ −
cSvI1
Nh

−
bSvI2
Nh

− μ2Sv

 t ∈ tk−1, tk ,
Iv t+ = 1 − p Iv t ,
Sv t+ = 1 − p Sv t ,

 t = tk
3

where γ is the removal rate of infected symptomatic trees and
p is the killing rate of psyllids by insecticide spraying.

Furthermore, in endemic areas, removing of citrus trees
is always based predominantly on the presence of visible
symptoms [22]. All of the trees showing HLB symptoms
should be removed 3 times in each year [20]. These imply
that the infection rates and the removal rate vary with season
fluctuations. Thus, it is necessary to consider that some coef-
ficients of model (3) are time-varying and switching in time.
Suppose that some parameters are modeled as switching
parameters and governed by a switching rule σ t : tk−1, tk
→ 1, 2,… ,m =P , k = 1, 2,… , where m is the number of
the subsystems and σ t is a piecewise continuous switching
rule such that σ t = ik ∈P for all t ∈ tk−1, tk . The switching
times tk satisfy tk+1 > tk > 0 and limk→∞tk =∞. Define the
set of all switching rules by I . Motivated by above fact, we
yield the switching HLB model with impulsive control:

dEh t
dt

= aσShIv
Nh

− μ1Eh − αEh − dEh,

dI1 t
dt

= αEh − μ1I1 − θI1 − dI1,

dI2 t
dt

= θI1 − μ1I2 − dI2 − γσI2,

dIv t
dt

= cσSvI1
Nh

+ bσSvI2
Nh

− μ2Iv,

dSh t
dt

= μ1Nh − μ1Sh −
aσShIv
Nh

+ dEh + dI1 + dI2 + γσI2,

dSv t
dt

=Λ −
cσSvI1
Nh

−
bσSvI2
Nh

− μ2Sv,
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 t ∈ tk−1, tk ,

Iv t+ = 1 − pσ Iv t ,

Sv t+ = 1 − pσ Sv t ,

 t = tk, 4

where pσ (0 ≤ pσ ≤ 1) are the killing rates of psyllids by insec-
ticide spraying at time tk (k = 1, 2,… ). The initial conditions
for system (4) satisfy Eh t+0 = Eh t0 ≥ 0, I1 t+0 = I1 t0 ≥ 0,
I2 t+0 = I2 t0 ≥ 0, Iv t+0 = Iv t0 ≥ 0, Sh t+0 = Sh t0 > 0,
and Sv t+0 = Sv t0 > 0. The model flow diagram is depicted
in Figure 1.

The spread of infectious diseases is influenced by many
factors, such as the behavior of the human population and
the environment in which it spread [23]. Consequently,
it is more realistic to consider the periodic switching rule.
Following the idea of [23], we assume that the switching rule
σ satisfies tk − tk−1 = ωk with ωk+m = ωk, and then ω =∑m

k=1ωk
is the period of switch σ. Assume that aik = ak, bik = bk,
cik = ck, mik

=mk, and pik = pk for t ∈ tk−1, tk , and ak+m =
ak, bk+m = bk, ck+m = ck, mk+m =mk, and pk+m = pk. Define
I p as the set of periodic switching rule.

Note that models (2) and (3) can be considered as spe-
cial cases of model (4). If the parameters of model (4) are
constant and not switching in time, that is, there is only
one independent subsystem (m = 1), then model (4) yields
to model (3). Further, if control strategies are not in use,
in the case where the killing rate of psyllids (p) and the
removal rate of infected symptomatic trees (γ) are zero,
then model (3) reduces to model (2). Our main purpose
is to explore the effects of switching control schemes on
the dynamics properties of model (4).

The rest of this paper is organized as follows: In Section 2,
some basic notations and useful results are given. In Section
3, the threshold condition and global asymptotic stability of
the disease-free periodic solution of system (4) are studied.
Furthermore, sufficient condition for persistence of the dis-
ease is derived. Numerical simulations are given in Section
4. Brief discussion and conclusion are presented in Section 5.

2. Some Useful Results

2.1. Some Useful Results for Linear Impulsive Switching
System. Before investigating system (4), we will present some
notations and state some results for linear impulsive switch-
ing system with periodic environment.

Define ℝ+ = x ∈ℝ ∣ x ≥ 0 ,ℝn
+ = x1,… , xn ∈ℝn ∣ xi

≥ 0, i = 1, 2,… , n . Let r B be the spectral radius of
matrix B.

Consider a linear impulsive switching differential system:

x t = Aσ t x t , t ∈ tk−1, tk ,
x t+k = Pσx tk , t = tk, k ∈ℕ,
x t+0 = x0, t0 ≥ 0,

5

where x = x1, x2,… , xn T , Aσ, Pσ ∈ℝn×n, σ ∈I .

Particularly, if σ ∈I p, system (5) can be rewritten as
follows:

x t = Ak t x t , t ∈ tk−1, tk ,
x t+k = Pkx tk , t = tk, k ∈ℕ,
x t+0 = x0, t0 ≥ 0,

6

where Ak+m t = Ak t , Pk+m = Pk, and tk − tk−1 = ωk with
ωk+m = ωk, and then ω =∑m

k=1ωk is the period of switch σ.
Let ΨAk

t, s t ≥ s be the evolution operator of the linear
ω-periodic system

x t = Ak t x t , x ∈ℝn 7

Denote

ΦAkPk
ω ≔ ∏

m

k=1
Pm−k+1ΨAk

tm−k+1, tm−k 8

Lemma 1. If η = 1/ω ln r ΦAkPk
ω , then there exists a pos-

itive ω-periodic vector function v t such that exp ηt v t is a
solution of system (6).

Since the proof is similar to that of Lemma 1 in [24], so one
omits it.

Lemma 2. If r ΦAkPk
ω < 1, then the trivial solution of sys-

tem (6) is asymptotically stable.
Using the similar method in [25], this result can be easily

proved (not shown in this paper).

2.2. R0 for General Impulsive Periodic System with Switching
Parameters. Consider a general impulsive switching system
with periodic environment:
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Figure 1: A schematic of model (4) showing transitions to different
categories for trees and psyllids. Black arrows show the transitions
between compartments. Orange dashed arrows show the necessary
interactions between trees and psyllids to obtain transmission.
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x t = f k x , t ∈ tk−1, tk ,

x t+ = ψk x t , t = tk, k ∈ℕ,
x t+0 = x0, t0 ≥ 0,

9

where f k ℝn
+ →ℝn, ψk ℝn

+ →ℝn
+, f

k+m = f k, and ψk+m =
ψk.

Following [26], we split the compartments by two
types with the first q compartments x1, x2,… , xq the
infected individuals and xq+1, xq+2,… , xn the uninfected
individuals. And denote X = x1, x2,… , xq , Y = xq+1, xq+2,
… , xn , ψk = hk, gk T

, hk = ψk
1, ψk

2,… , ψk
q , and gk = ψk

q+1,
… , ψk

n . Define

Xs = x ∈ℝn
+ ∣ xi = 0, i = 1,… , q 10

We can rewrite system (9) as:

x t = F k x t −V k x t , t ∈ tk−1, tk ,

X t+ = hk x t ,

Y t+ = gk x t ,
 t = tk, k ∈ℕ,

x t+ = x0, t0 ≥ 0,

11

where F k x are the newly infected rates, V k+ x are the
input rates of individuals by other means, and V k− x are
the rates of transfer of individuals out of compartments; then,
V k x =V k− x −V k+ x represent the set transfer rates out
of compartments. Thus, f k x = F k x −V k x . We assume
that system (11) satisfies F k+m = F k, V k+m =V k, hk+m = hk,
and gk+m = gk, and system (11) has a disease-free periodic
solution x∗ t .

We make the following assumptions, which share the
same biological meanings as those by Wang and Zhao [27]
and Yang and Xiao [28].

(H1) If xi ≥ 0, then the function F k
i x , V k+

i x , and
V k−

i x are nonnegative and continuous on ℝn
+

and continuously differential with respect to x for
i = 1,… , n.

(H2) If xi = 0, then V k−
i x = 0. Particularly, if x ∈ Xs,

then V k−
i x = 0 for i = 1,… , q.

(H3) F k
i x = 0 for q + 1,… , n.

(H4) If x ∈ Xs, then F k
i x =V k+

i x = 0 for i = 1,… , q.
(H5) The pulse on the infected compartments must be

uncoupled with the uninfected compartments; that
is, hk x tk is essentially hk X tk , and hk 0 = 0.

(H6) r ΦMkQk
ω < 1, where ΦMkQk

ω =∏m
k=1 Qm−k+1

ΨMk
tm−k+1, tm−k , and ΦMkQk

t is the fundamen-
tal solution matrix of the following system:

Z t =Mk t Z t , t ∈ tk−1, tk ,
Z t+k =QkZ tk , t = tk, k ∈ℕ,

12

where

Mk t = ∂f ki x∗ t
∂xj q+1≤i,j≤n

,

Qk =
∂ψk

i x∗ tk
∂xj q+1≤i,j≤n

13

From (H2)–(H4), the derivatives of F k x∗ t and
V k x∗ t can be parted as follows:

DF k x∗ t =
Fk t 0
0 0

,

DV k x∗ t =
Vk t 0
Jk −Mk t

,
14

where

Fk t = ∂F k
i x∗ t
∂xj 1≤i,j≤q

,

Vk t = ∂V k
i x∗ t
∂xj 1≤i,j≤q

15

Furthermore, it follows from (H5) that hk are the
functions of X tk . So the derivatives of ψk x∗ tk can be
separated as follows:

Dψk x∗ tk =
Pk 0
Γk Qk

, 16

where Pk ∈ℝq×q and Γk ∈ℝ n−q ×q defined by

Pk =
∂ψk

i x∗ tk
∂xj 1≤i,j≤q

,

Γk =
∂ψk

i x∗ tk
∂xj q+1≤i≤n,1≤j≤q

17

(H7) r Φ−Vk t Pk
ω < 1.

In addition, from Assumption (H7) and Lemma 2, we
can see that the trivial solution of the following linear switch-
ing system with impulses

y t = −Vky t , t ∈ tk−1, tk ,
y t+ = Pky t , t = tk, k ∈ℕ,

18
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is asymptotically stable. According to Remark 3.5 in Sect. III.
7 of [29], we have that there exist constants K > 0 and ρ > 0,
such that

∥Y t, s ∥≤K exp −ρ t − s , ∀t ≥ s, s ∈ℝ, 19

where Y t, s is the evolution operator of system (18).
Similar to the notation and definition of [24], we define

the so-called next infection operator L,

Lϕ t =
t

−∞
Y t, s F s ϕ s ds

=
∞

0
Y t, t − a F t − a ϕ t − a da, ∀t ∈ℝ+,

20

where ϕ s is a ω-periodic function from ℝ to ℝq
+ and

denotes the initial distribution of infections individuals, and
F t = Fk t when t ∈ tk−1, tk .

Now, we define the basic reproductive number R0 for
system (11) as follows:

R0 = r L 21

In order to calculate the implicit expression R0 by
numerical simulation, we consider the auxiliary ω-periodic
switching system with impulses:

U t = −Vk t + Fk t
λ

U t , t ∈ tk−1, tk ,

U t+ = PkU t , t = tk, k ∈ℕ,
22

where λ ∈ 0,∞ . Set U t, s, λ t ≥ s, s ∈ℝ to be the evolu-
tion operator of system (22), then U ω, 0, λ =Φ Fk/λ −Vk Pk

ω . Following the idea in [28], we have following results.

Lemma 3. Assuming that (H1)–(H7) hold, then the following
statements are valid:

(i) If r Φ Fk/λ −Vk Pk
ω = 1 has a positive solution λ0,

then λ0 is an eigenvalue of L, and so R0 > 0.
(ii) If R0 > 0, then λ =R0 is the unique solution of

r Φ Fk/λ −Vk Pk
ω = 1.

(iii) R0 = 0 if and only if r Φ Fk/λ −Vk Pk
ω < 1 for all

λ > 0.

By applying Lemma 3, one knows that R0 for impulsive
periodic switching system (11) is the solution of algebraic
equation r Φ Fk/λ −Vk Pk

ω = 1.

Lemma 4. Assuming that (H1)–(H7) hold, then the following
statements are valid for system (11):

(i) R0 = 1 if and only if r Φ Fk−Vk Pk
ω = 1.

(ii) R0 > 1 if and only if r Φ Fk−Vk Pk
ω > 1.

(iii) R0 < 1 if and only if r Φ Fk−Vk Pk
ω < 1.

It follows from Lemma 4 that the disease-free periodic
solution x∗ t of system (11) is asymptotically stable if R0 <
1 and unstable if R0 > 1.

3. Main Results

In this section, we are going to explore the threshold con-
dition which leads to the extinction and persistence of the
disease for impulsive switching model (4) for HLB with
seasonal fluctuations.

Lemma 5. All solutions of system (4) with nonnegative initial
conditions are nonnegative for all t > t0 and ultimately
bounded.

The proof of Lemma 5 is simple; we omit it.
Referring to [21], we can get that system (4) has a unique

disease-free periodic solution x∗ t = 0, 0, 0, 0, S∗h t , S∗v t ,
where S∗h t and S∗v t are the unique periodic solution of
the following systems, respectively:

dSh t
dt

= μ1Nh − μ1Sh t , 23

and

dSv t
dt

=Λ − μ2Sv t , t ≠ tk,

Sv t+ = 1 − pk Sv t , t = tk

24

We can easily obtain that Assumptions (H1)–(H5) hold
for system (4). Next, we will show that Assumptions (H6)
and (H7) hold. By (13), (15), and (17), we can calculate Mk,
Qk, Fk, Vk, and Pk of system (4), which are represented as
the following form:

Mk t =
−μ1 0
0 −μ2

,

Qk =
1 0
0 1 − pk

,

Fk t =

0 0 0 ak

0 0 0 0
0 0 0 0

0 ckS
∗
v t
Nh

bkS
∗
v t
Nh

0

,

Vk t =

μ1 + α + d 0 0 0
−α μ1 + θ + d 0 0
0 −θ μ1 + d + γk 0
0 0 0 μ2

,

5Complexity



Pk =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 − pk

25

By calculating, we get

ΦMkQk
ω =

exp −μ1ω 0

0 ∏
m

k=1
1 − pk exp −μ2ω

,

26

and

Φ−VkPk
ω =

J1 0 0 0
∗ J2 0 0
∗ ∗ J3 0
0 0 0 J4

, 27

where J1 = exp − μ1 + d + α ω , J2 = exp − μ1 + d + θ ω ,
J3 = exp ∑m

k=1 − μ1 + d + γk ωk , and J4 =∏m
k=1 1 − pk

exp −μ2ω . There is no need to calculate the exact forms
of ∗, as they are not required in the analysis that follows.
Obviously, r ΦMkQk

ω < 1 and r Φ−VkPk
ω < 1. Thus,

Assumptions (H6) and (H7) hold.

Theorem 1. If R0 < 1, then the disease-free periodic solution
x∗ t of system (4) is globally asymptotically stable, whereas
it is unstable if R0 > 1.

Proof 1. From Lemma 4, one has that the unique disease-free
periodic solution x∗ t is unstable if R0 > 1, and x∗ t is
locally stable if R0 < 1. Therefore, one only needs to show
the global attractivity of x∗ t for R0 < 1.

From Lemma 4, we get r Φ Fk−Vk Pk
ω < 1 sinceR0 < 1.

So we can choose a sufficiently small ε1 > 0 such that

r Φ Fk−Vk+Mε1k Pk
ω < 1,

 whereMε1k
=

0 0 0 0

0 0 0 0

0 0 0 0

0 ckε1
Nh

bkε1
Nh

0

28

From system (4), we have that

dSv t
dt

≤Λ − μ2Sv t , t ≠ tk,

Sv t+ = 1 − pk Sv t , t = tk

29

By comparison theorem in impulsive differential equa-
tions, for the abovementioned ε1, we have that there exists
a T1 > 0 such that

Sv t ≤ S∗v t + ε1, for t > T1 30

According to system (4) and inequality (30), we can get
that for t > T1,

dEh t
dt

≤ akIv − μ1Eh − αEh − dEh,

dI1 t
dt

= αEh − μ1I1 − θI1 − dI1,

dI2 t
dt

= θI1 − μ1I2 − dI2 − γkI2,

dIv t
dt

≤
ck S∗v t + ε1 I1

Nh
+ bk S∗v t + ε1 I2

Nh
− μ2Iv,

 t ∈ tk−1, tk ,
Eh t+ = Eh t ,
I1 t+ = I1 t ,
I2 t+ = I2 t ,
Iv t+ = 1 − pk Iv t ,
 t = tk

31

Consider the following comparison system:

dJ t
dt

= Fk t −Vk t +Mε1k
J t , t ≠ tk,

J t+ = PkJ t , t = tk,
32

where J t = Eh t , I1 t , I2 t , Iv t T .
In view of Lemma 1, there exists a positive ω-periodic

vector function υ1 t such that J t = υ1 t exp ςt is a solu-
tion of system (32), where ς = ln r Φ Fk−Vk+Mε1k Pk

ω < 0. So
J t → 0, as t→∞. It follows (28) that limt→∞Eh t = 0,
limt→∞I1 t = 0, limt→∞I2 t = 0, and limt→∞Iv t = 0. By
the comparison theorem in impulsive differential equations,
we have limt→∞Eh t = 0, limt→∞I1 t = 0, limt→∞I2 t = 0,
and limt→∞Iv t = 0. By the theory of asymptotic semiflows,
we can get

lim
t→∞

Sh t = S∗h t ,

lim
t→∞

Sv t = S∗v t
33

Hence, the disease-free periodic solution x∗ t is globally
asymptotically stable.

Theorem 2. IfR0 > 1, then the disease is uniformly persistent
for system (4); that is, there is a positive constant ϵ > 0, such
that lim inf t→∞Eh t > ϵ, lim inf t→∞I1 t > ϵ, lim inf t→∞I2
t > ϵ, and lim inf t→∞Iv t > ϵ.
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Proof 2. Denote K = Eh, I1, I2, Iv, Sh, Sv ∈ℝ6
+ , K0 = Eh,

I1, I2, Iv , Sh, Sv ∈ K Eh > 0, I1 > 0, I2 > 0, Iv > 0, Sh ≥ 0, Sv ≥
0 , and ∂K0 = K \ K0. Let u t, t0, x0 be the unique solution
of system (4) with the initial value x0 = E0

h, I01, I02, I0v , S0h, S0v
at time t0.

Define Poincaré map P K → K associated with system
(4) as follows:

P x0 = u t0 + ω+, x0 , ∀x0 ∈ K , ∀t0 ∈ℝ+ 34

Set

M∂ = E0
h, I01, I02, I0v , S0h, S0v
∈ ∂K0 ∣ P

m E0
h, I01, I02, I0v , S0h, S0v

∈ ∂K0, ∀m ∈ℤ+

35

One claims that

M∂ = 0, 0, 0, 0, Sh, Sv ∣ Sh ≥ 0, Sv ≥ 0 36

Obviously, 0, 0, 0, 0, Sh, Sv ∣ Sh ≥ 0, Sv ≥ 0 ⊆M∂. Next,
one wants to show

M∂ \ 0, 0, 0, 0, Sh, Sv ∣ Sh ≥ 0, Sv ≥ 0 =∅ 37

If (37) does not hold, then there exists a point E0
h, I01, I02,

I0v , S0h, S0v ∈M∂\ 0, 0, 0, 0, Sh, Sv ∣ Sh ≥ 0, Sv ≥ 0 . Next, for
four initial values E0

h, I01, I02, and I0v , three cases should be
discussed.

Case (i). One initial value equals zero, and the others
are larger than zero. Without loss of general-
ity, one chooses E0

h = 0, I01 > 0, I02 > 0, and I0v
> 0. It is obvious that Sh t > 0 and Iv t > 0
for any t ≥ t0. Then, from the first equation
of system (4), one gets dEh t /dt ∣ t=t0 =
a1Sh t0 Iv t0 /Nh > 0. Thus, Eh, I1, I2, Iv,
Sh, Sv ∉ ∂K0 for 0 < t − t0 ≪ 1. This is a con-
tradiction. Other cases are similarly proved.

Case (ii). Two initial values equal zero, and the others
are larger than zero. One lets E0

h = I01 = 0, I02 >
0, and I0v > 0. It is obvious that Sh t > 0 and
Iv t > 0 for any t ≥ t0. Using the same method
as aforementioned, one can prove Eh, I1,
I2, Iv , Sh, Sv ∉ ∂K0 for 0 < t − t0 ≪ 1. This is
a contradiction. Other cases can be proved
similarly.

Case (iii). Three initial values equal zero, and the other is
larger than zero. Set E0

h = I02 = I0v = 0 and I01 > 0.
It is obvious that Sv t > 0 and I1 t > 0 for any
t ≥ t0. Then, from the fourth equation of sys-
tem (4), one gets dIv t /dt ∣ t=t0 = b1Sv t0 I1
t0 /Nh > 0. Thus, Eh, I1, I2, Iv, Sh, Sv ∉ ∂K0
for 0 < t − t0 ≪ 1. This is a contradiction. Sim-
ilarly, one can prove the other cases.

Thus,

M∂ = 0, 0, 0, 0, Sh, Sv ∣ Sh ≥ 0, Sv ≥ 0 38
In the following, one proceeds by contradiction to prove

that there exists ξ > 0 such that

limsup
t→∞

d Pm E0
h, I01, I02, I0v , S0h, S0v , P0 ≥ ξ, ∀x0 ∈ K ,m ∈ℤ+

39
where P0 = 0, 0, 0, 0, S∗h t0 , S∗v t0 .

By Lemma 4, one has r Φ Fk−Vk Pk
ω > 1 if R0 > 1. So

one can choose ε2 > 0 sufficiently small such that

r Φ Fk−Vk−Mε2k Pk
ω > 1,

 where Mε2k
=

0 0 0 akε2
Nh

0 0 0 0

0 0 0 0

0 ckε2
Nh

bkε2
Nh

0

40

If (39) does not hold, then for any ξ > 0, one obtains

limsup
t→∞

d Pm E0
h, I01, I02, I0v , S0h, S0v , P0 < ξ,

 for some E0
h, I01, I02, I0v , S0h, S0v ∈ K

41

Without loss of generality, one supposes that

d Pm E0
h, I01, I02, I0v , S0h, S0v , P0 < ξ, ∀ξ > 0,m ∈ℤ+ 42

By the continuity of the solution with respect to initial

values, one has that there exists sufficiently small ξ such that

∥u t, Pm E0
h, I01, I02, I0v , S0h, S0v − u t, P0 ∥≤ε2,

 ∀t ∈ t0, t0 + ω , ∀m ∈ℤ+
43

For any t ≥ t0, there exists an integer l ∈ℤ+ such that
t = lω + t̂, where t̂ ∈ t0, t0 + ω . Then one has

u t, Pm E0
h, I01, I02, I0v , S0h, S0v − u t, P0

= u t̂, Pm E0
h, I01, I02, I0v , S0h, S0v − u t̂, P0 ≤ ε2

44

Therefore, one has

Sh t ≥ S∗h t − ε2,
Sv t ≥ S∗v t − ε2,

 for all t ≥ t0

45

From system (4) and inequality (45), one gets
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dEh t
dt

≥
ak S∗h t − ε2 Iv

Nh
− μ1Eh − αEh − dEh,

dI1 t
dt

= αEh − μ1I1 − θI1 − dI1,

dI2 t
dt

= θI1 − μ1I2 − dI2 − γkI2,

dIv t
dt

≥
ck S∗v t − ε2 I1

Nh
+ bk S∗v t − ε2 I2

Nh
− μ2Iv ,

 t ∈ tk−1, tk ,
Eh t+ = Eh t ,
I1 t+ = I1 t ,
I2 t+ = I2 t ,
Iv t+ = 1 − pk Iv t ,
 t = tk, k ∈ℕ

46

Consider the comparison system for system (46):

dZ t
dt

= Fk t −Vk t −Mε2k
Z t , t ≠ tk

Z t+ = PkZ t , t = tk

47

where Z t = Eh t , I1 t , I2 t , Iv t T .
By Lemma 1, one knows that there exists a positive

ω-periodic vector function υ2 t such that Z t = υ2 t
exp ζt is a solution of system (47), where ζ = ln r
Φ Fk−Vk−Mε2k Pk

ω . From (40), one can get that Z t

→∞ as t→∞, and Eh t →∞, I1 t →∞, I2 t →∞,
and Iv t →∞ as t→∞. By the comparison theorem
in impulsive differential equations, one has Eh t →∞,
I1 t →∞, I2 t →∞, and Iv t →∞ as t→∞. This
contradicts with the boundedness of the solutions. Thus,
one has proved that (39) holds and P is weakly uniformly
persistent with respect to K0, ∂K0 .

Obviously, the Poincaré map P has a global attractor P0.
P0 is an isolated invariant set in K and Ws P0 ∩ K0 =∅
and it is acyclic in M∂. Every solution in M∂ converges to
P0. According to Zhao [30], one derives that P is uniformly
persistent with respect to K0, ∂K0 . This implies that the
solution of system (4) is uniformly persistent with respect
to K0, ∂K0 . This completes the proof.

4. Numerical Simulations

In this section, we first provide results from numerical simu-
lations of model (4) that demonstrate and support our theo-
retical results. For these simulations, part of parameters
values for model (4) are outlined in Table 1.

In [20], Zhao revealed that 1-2 sprays should be done in
the period after picking and before spring sprout, in spring,
summer growth, and in autumn growth. So we assume that
the system is composed of four subsystems, and the switching
law is periodic and satisfies

σ t =

1, if t ∈ k, k + 0 25 , winter,
2, if t ∈ k + 0 25, k + 0 5 , spring,
3, if t ∈ k + 0 5, k + 0 75 , summer,
4, if t ∈ k + 0 75, k + 1 , autumn,

 k = 0, 1, 2,…

48

Consider dynamical behavior of system (4) with initial
conditions E0

h = 100, I01 = 40, I02 = 60, I0v = 330, S0h = 1800,
and S0v = 10028. The switched parameter values are used as
follows: a1 = 0 002, a2 = 0 078, a3 = 0 05, a4 = 0 078, b1 =
0 006, b2 = 0 156, b3 = 0 106, and b4 = 0 156. For the control
switched parameter values, we set γ1 = 0 2, γ2 = 0 8, γ3 =
0 2, γ4 = 0 8, p1 = 0, p2 = 0 8, p3 = 0 8, and p4 = 0 8. Accord-
ing to Lemma 3, we can get R0 = 0 903702 < 1 by numerical
calculation, which shows that the disease dies out (see
Figure 2). Set γ1 = 0 2, γ2 = 0 4, γ3 = 0 2, γ4 = 0 35, p1 = 0,
p2 = 0 2, p3 = 0 15, and p4 = 0 5. We get R0 = 1 801682 > 1;
the disease is uniformly persistent by Theorem 2, which is
showed from Figure 3.

Table 1: Parameter values for system (4).

Parameter Value Unit Reference

Λ 6,028,433 year−1 [31]

Nh 2000 — [31]

μ1 0.04 year−1 [32]

μ2 3.2 year−1 [33]

d 0.025 year−1 [21]

α 24.33 year−1 [15]

θ 1.8 year−1 [16, 17]

ω 1 year —

k 0.6 — Estimation
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0

50

100
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E
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 I 1 +
 I 2

0 10 20 30 40 50
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1000

2000

3000
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I v

Figure 2: Time series plots of the total of infected trees and infected
psyllids. The disease dies out with R0 = 0 903702 < 1.
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Switching parameters have an effect on the peak size of
infected individuals for switching epidemic models. Next,
we consider the effect of varying switching removal rates γσ
and insecticide spraying rates pσ to evaluate the effectiveness
of various control measures, while holding the other switched
parameters constant. In Table 2, we give two different control
projects to compare with the baseline scenario, which is
denoted by Strategy I and Strategy II.

Figures 4 and 5 show the numerical simulations of the
baseline scenario, Strategy I, and Strategy II. If we compare
the baseline scenario and Strategy I (see rows 1 and 2), the
evaluation implies that the baseline scenario is worse than

Strategy I (larger final and peak sizes andR0). If we compare
the baseline scenario and Strategy II (see rows 1 and 3), the
evaluation suggests that the baseline scenario is better than
Strategy II (lower final and peak sizes and R0). This illus-
trates that Strategy I is the best control project, and the most
effective control strategy is spraying in spring and autumn
and removing in winter.

By calculating, R0 = 5 023193 in the absence of control
strategies. We can observe from Figure 6 that the disease
breaks out rapidly. This illustrates that removing infected
trees and spraying pesticides play an important role in con-
trolling the spread of HLB.

5. Conclusions

By introducing switching parameters into a general impul-
sive HLB model, a novel impulsive switching model for
HLB with seasonal fluctuations has been constructed and a
threshold valueR0 with switching effect has been established
to measure whether the disease is uniformly persistent. The
modeling and analytic methods presented in this paper
improve the classical results for the systems with impulsive

0 5 10 15 20
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500

1000

1500

t

E
h
 +

 I 1 +
 I 2

0 5 10 15 20
0

1

2

3

4 × 104

t

I v

Figure 3: Time series plots of the total of infected trees and infected
psyllids. The disease is persistent with R0 = 1 801682 > 1.
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t
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Figure 4: Time series plot of the total of infected trees for the
baseline scenario and Strategy I.

Table 2: The effect of parameters pσ and γσ on the disease control.

p1 p2 p3 p4 γ1 γ2 γ3 γ4 R0

Baseline scenario 0.3 0.8 0.3 0.8 0.2 0.8 0.2 0.8 0.878143

Strategy I 0.3 0.8 0.3 0.8 0.8 0.2 0.8 0.2 0.868525

Strategy II 0.8 0.3 0.8 0.3 0.2 0.8 0.2 0.8 0.994301

0 2 4 6 8 10
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80

100

120

140

160

t
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Figure 5: Time series plot of the total infected trees for the baseline
scenario and Strategy II.
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Figure 6: Time series plot of the total infected trees for the baseline
scenario and without control strategies.
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interventions. Numerical examples have been given to dem-
onstrate the effectiveness of the results obtained.

Our numerical investigations demonstrate that the most
effective season of spraying insecticide is in spring and
autumn and the most effective season of removing infected
trees is winter. The result strongly suggests and supports
the previous observations [19, 34]. This can serve as an inte-
grating measure to design an appropriate strategy to control
HLB spread.
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