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Abstract

It is shown that the heuristic “derivation” of the Schrödinger equation
in quantum mechanics textbooks can be turned into a real derivation by
resorting to spacetime translation invariance and relativistic invariance.

1 Introduction

Many quantum mechanics textbooks provide a heuristic “derivation” of the
Schrödinger equation (e.g. [1-4]). It begins with the assumption that the state
of a free microscopic particle has the form of a plane wave ei(kx−ωt). When
combining with the de Broglie relations for momentum and energy p = ~k and
E = ~ω, this state becomes ei(px−Et)/~. Then it uses the nonrelativistic energy-
momentum relation E = p2/2m to obtain the free particle Schrödinger equation.
Lastly, this equation is generalized to include an external potential, and the end
result is the Schrödinger equation.

In this paper, we will show that this heuristic “derivation” of the Schrödinger
equation can be turned into a real derivation by resorting to spacetime trans-
lation invariance and relativistic invariance. Spacetime translation gives the
definitions of momentum and energy, and spacetime translation invariance en-
tails that the state of a free microscopic particle with definite momentum and
energy assumes the plane wave form ei(px−Et)/~. Besides, the relativistic in-
variance of the free state further determines the relativistic energy-momentum
relation, which nonrelativistic approximation is E = p2/2m. This analysis may
be helpful for students to undertsand the physical origin of the Schrödinger
equation.
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2 Spacetime translation and its invariance

It is well known in quantum theory that the definitions of energy and momen-
tum originate from spacetime translation, and the momentum operator P and
energy opertaor H are defined as the generators of space translation and time
translation, respectively1. A space translation operator can be defined as

T (a)ψ(x, t) = ψ(x− a, t). (1)

It means translating (without distortion) the state of a system, ψ(x, t), by an
amount a in the positive x direction. The operator preserves the norm of the
state because

∫∞
−∞ ψ∗(x, t)ψ(x, t)dx =

∫∞
−∞ ψ∗(x−a, t)ψ(x−a, t)dx. This implies

that T (a) is unitary, satisfying T †(a)T (a) = I. As a unitary operator, T (a) can
be further expressed as

T (a) = e−iaP , (2)

where P is called the generator of space translation, and it is Hermitian and its
eigenvalues are real. By expanding ψ(x− a, t) in order of a, we can further get

P = −i ∂
∂x
. (3)

Similarly, a time translation operator can be defined as

U(t)ψ(x, 0) = ψ(x, t). (4)

Let the evolution equation of state be the following form:

i
∂ψ(x, t)

∂t
= Hψ(x, t). (5)

where H is a to-be-determined linear operator that depends on the properties
of the system2. Then the time translation operator U(t) can be expressed as
U(t) = e−itH , and H is the generator of time translation. Note that we cannot
determine whether U(t) is unitary and H is Hermitian here.

1There are in general two different pictures of translation: active transformation and pas-
sive transformation. The active transformation corresponds to displacing the studied system,
and the passive transformation corresponds to moving the environment (the coordinate sys-
tem etc). Physically, the equivalence of the active and passive pictures is due to the fact
that moving the particle one way is equivalent to moving the environment the other way by
an equal amount. In the following we will mainly analyze spacetime translations in terms of
active transformations.

2Note that the linearity of H is an important presupposition in our derivation of the
Schrödinger equation. It can be reasonably assumed that the linear evolution and nonlinear
evolution both exist, and moreover, they satisfy spacetime translation invariance respectively
because they cannot counteract each other in general. Then our derivation shows that the
linear evolution part, if exists, must assume the same form as the Schrödinger equation in
nonrelativistic domain. But spacetime translation invariance cannot determine the concrete
form of nonlinear evolution, if it exists. Certainly, our derivation cannot exclude the existence
of possible nonlinear evolution either.
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Let’s now see the implications of spacetime translation invariance. The evo-
lution law of an isolated system satisfies spacetime translation invariance due
to the homogeneity of space and time. The homogeneity of space ensures that
the same experiment performed at two different places gives the same result,
and the homogeneity in time ensures that the same experiment repeated at
two different times gives the same result. First, time translational invariance
requires that H have no time dependence, namely dH/dt = 03. This can be
demonstrated as follows (see also [5], p.295). Suppose an isolated system is in
state ψ0 at time t1 and evolves for an infinitesimal time δt. The state of the
system at time t1 + δt, to first order in δt, will be

ψ(x, t1 + δt) = [I − iδtH(t1)]ψ0 (6)

If the evolution is repeated at time t2, beginning with the same initial state, the
state at t2 + δt will be

ψ(x, t2 + δt) = [I − iδtH(t2)]ψ0 (7)

Time translational invariance requires the outcome state should be the same:

ψ(x, t2 + δt)− ψ(x, t1 + δt) = iδt[H(t1)−H(t2)]ψ0 = 0 (8)

Since the initial state ψ0 is arbitrary, it follows that H(t1) = H(t2). Moreover,
since t1 and t2 are also arbitrary, it follows that H is time-independent, namely
dH/dt = 0.

Secondly, space translational invariance requires [T (a), U(t)] = 0, which fur-
ther leads to [P,H] = 04. This can be demonstrated as follows (see also [5],
p.293). Suppose at t = 0 two observers A and B prepare identical isolated
systems at x = 0 and x = a, respectively. Let ψ(x, 0) be the state of the system
prepared by A. Then T (a)ψ(x, 0) is the state of the system prepared by B, which
is obtained by translating (without distortion) the state ψ(x, 0) by an amount a
to the right. The two systems look identical to the observers who prepared them.
After time t, the states evolve into U(t)ψ(x, 0) and U(t)T (a)ψ(x, 0). Since the
time evolution of each identical system at different places should appear the
same to the local observers, the above two systems, which differed only by a
spatial translation at t = 0, should differ only by the same spatial translation at
future times. Thus the state U(t)T (a)ψ(x, 0) should be the translated version of
A’s system at time t, namely we have U(t)T (a)ψ(x, 0) = T (a)U(t)ψ(x, 0). This
relation holds true for any initial state ψ(x, 0), and thus we have [T (a), U(t)] = 0,
which says that space translation operator and time translation operator are
commutative.

When dH/dt = 0, the solutions of the evolution equation Eq.(5) assume the
following form

ψ(x, t) = ϕE(x)e−iEt, (9)

3By Ehrenfest’s theorem this leads to the law of conservaiton of energy.
4By Ehrenfest’s theorem this leads to the law of conservaiton of momentum.
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where E is a constant, and ϕE(x) is the eigenstate of H and satisfies the time-
independent equation:

HϕE(x) = EϕE(x). (10)

The commutative relation [P,H] = 0 further implies that P andH have common
eigenstates. This means that ϕE(x) is also the eigenstate of P . Since the
eigenstate of P = −i ∂∂x is eipx, where p is the real eigenvalue, the solution of

the evolution equation Eq.(5) for an isolated system will be ei(px−Et), where
p and E are defined as the momentum and energy of the system, respectively.
In other words, the state ei(px−Et) describes an isolated system (e.g. a free
microscopic particle) with definite momentum p and energy E.

3 Relativistic invariance

The relation between momentum p and energy E can be determined by the
relativistic invariance of the free state ei(px−Et), and it turns out to be E2 =
p2c2 + m2c4, where m is the rest mass of the system, and c is the speed of
light5. In nonrelativistic domain, the energy-momentum relation reduces to
E = p2/2m.

Now we will derive the relation between momentum p and energy E in
relativistic domain. Consider two inertial frames S0 and S with coordinates
x0, t0 and x, t. S0 is moving with velocity v relative to S. Then x, t and x0, t0
satisfy the Lorentz transformations:

x0 =
x− vt√
1− v2/c2

(11)

t0 =
t− xv/c2√
1− v2/c2

(12)

Suppose the state of a free particle is ψ = ei(p0x0−E0t0), an eigenstate of P , in
S0, where p0, E0 is the momentum and energy of the particle in S0, respectively.
When described in S by coordinates x, t, the state is

ψ = e
i(p0

x−vt√
1−v2/c2

−E0
t−xv/c2√
1−v2/c2

)
= e

i(
p0+E0v/c

2
√

1−v2/c2
x− E0+p0v√

1−v2/c2
t)

(13)

5Most existing “derivations” of the energy-momentum relation are based on the some-
what complex analysis of an elastic collision process. Moreover, they resort to either some
Newtonian limit (e.g. p = mv) or some less fundamental relation (e.g. p = Eu/c2) or
even some mathematical intuition (e.g. four-vectors) [6-11]. As we think, the logic of these
“derivations” seems a little upside-down, and they are only heuristic demonstrations of the
energy-momentum relation.
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This means that in frame S the state is still the eigenstate of P , and the corre-
sponding momentum p and energy E is6

p =
p0 + E0v/c

2√
1− v2/c2

(14)

E =
E0 + p0v√
1− v2/c2

(15)

We further suppose that the particle is at rest in frame S0. Then the velocity
of the particle is v in frame S7. Considering that the velocity of a particle in the
momentum eigenstate ei(px−Et) or a wavepacket superposed by these eigenstates
is defined as the group velocity of the wavepacket, namely

u =
dE

dp
, (16)

we have

dE0/dp0 = 0 (17)

dE/dp = v (18)

Eq.(17) means that E0 and p0 are independent. Moreover, since the particle is
at rest in S, E0 and p0 do not depend on v. By differentiating both sides of
Eq.(14) and Eq.(15) relative to v we obtain

dp

dv
=

v

c2
p0 + E0v/c

2

(1− v2/c2)
3
2

+
E0/c

2

(1− v2/c2)
1
2

(19)

dE

dv
=

v

c2
E0 + p0v

(1− v2/c2)
3
2

+
p0

(1− v2/c2)
1
2

(20)

Dividing Eq.(20) by Eq.(19) and using Eq.(18) we obtain

p0√
1− v2/c2

= 0 (21)

This means that p0 = 0. Inputing this important result to Eq.(15) and Eq.(14),
we immediately have

E =
E0√

1− v2/c2
, (22)

p =
E0v/c

2√
1− v2/c2

, (23)

6Alternatively we can obtain the transformations of momentum and energy by directly
requiring the relativistic invariance of momentum eigenstate ei(px−Et), which leads to the
relation px− Et = p0x0 − E0t0.

7Note that we can also get this result from the definition Eq. (16) by using the above
transformations of momentum and energy Eq.(14) and Eq.(15).
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Then the energy-momentum relation is:

E2 = p2c2 + E2
0 (24)

where E0 is the energy of the particle at rest, called rest energy of the particle,
and p and E is the momemtum and energy of the particle with velocity v. By
defining m = E0/c

2 as the (rest) mass of the particle8, we can further obtain
the familar energy-momentum relation

E2 = p2c2 +m2c4 (25)

In nonrelativistic domain, this energy-momentum relation reduces to E = p2/2m.

4 Derivation of the Schrödinger equation

The relation between energy E and momentum p in nonrelativistic domain
implies that the operator relation is H = P 2/2m for an isolated system, where
H is usually called the free Hamiltonian of the system. Note that since the value
of E is real by Eq.(24), H is Hermitian and U(t) is unitary for free evolution. By
inputing this operator relation to the evolution equation Eq.(5), we can obtain
the free evolution equation, which assumes the same form as the free particle
Schrödinger equation:

i
∂ψ(x, t)

∂t
= − 1

2m

∂2ψ(x, t)

∂x2
(26)

It is worth noting that, unlike the free particle Schrödinger equation, the
reduced Planck constant ~ with dimension of action is missing in this equation.
However, this is in fact not a problem. The reason is that the dimension of ~
can be absorbed in the dimension of the mass m. For example, we can stipulate
the dimensional relations as p = 1/L, E = 1/T and m = T/L2, where L and
T represents the dimensions of space and time, respectively (see [16] for more
discussions). Moreover, the value of ~ can be set to the unit of number 1 in
principle. Thus the above equation is essentially the free particle Schrödinger
equation in quantum mechanics.

Next we will consider the equation of motion under an external potential
V (x, t). When V (x, t) = V0 is a constant potential, we still have the free state
ei(px−Et) with E = p2/2m+ V0. Thus the corresponding equation of motion is

i
∂ψ(x, t)

∂t
= − 1

2m

∂2ψ(x, t)

∂x2
+ V0ψ(x, t) (27)

For the general situation, the equation of motion also assumes the similar form

i
∂ψ(x, t)

∂t
= − 1

2m

∂2ψ(x, t)

∂x2
+ V (x, t)ψ(x, t) (28)

8Note that we can in principle avoid talking about mass in modern physics from a more
fundamental view (cf. [12-15]).
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This is exactly the Schrödinger equation in quantum mechanics. Note that the
potential here is classical and it has a definite (real) value in each position at
every instant. The concrete form of the potential will be determined by the
nonrelativistic approximation of the quantum interactions involved, which are
described by the relativistic quantum field theory. Besides, the Hamiltonian
H = P 2/2m+ V (x, t) is Hermitian because the potential V (x, t) is real-valued.
As a result, the time translation operator U(t) is unitary.

5 Further discussions

We have derived the Schrödinger equation in quantum mechanics, mainly based
on spacetime translation invariance and relativistic invariance. As we think,
the derivation may not only make the Schrödinger equation more logical and
understandable, but also shed some new light on the physical meaning of the
state function (or wave function) ψ(x, t).

The Schrödinger equation is usually “derived” in textbooks by analogy and
correspondence with classical physics. There are at least two mysteries in such
a heuristic “derivation”. First, even if the behavior of microscopic particles
likes wave and thus a wave function is needed to describe them, it is unclear
why the wave function must assume a complex form. Indeed, when Schrödinger
originally invented his equation, he was also very puzzled by the inevitable
appearance of the imaginary unit “i” in the equation. Next, one doesn’t know
why there are the de Broglie relations for momentum and energy and why the
nonrelativistic energy-momentum relation must be E = p2/2m. Usually one
can only resort to experience and classical physics to answer these questions.
This is unsatisfactory in logic as quantum mechanics is a more fundamental
theory, of which classical mechanics is only an approximation.

As shown above, the key to unveil these mysteries is to analyze the real origin
of momentum and energy. According to our modern understanding, spacetime
translation gives the definitions of momentum and energy. The momentum op-
erator P is defined as the generator of space translation, and it is Hermitian
and its eigenvalues are real. Moreover, the form of momentum operator can
be uniquely determined by its definition and it is P = −i ∂∂x , and its eigen-
state is eipx as a result, where p is the real eigenvalue. Similarly, the energy
operator H is defined as the generator of time translation. But its form is de-
termined by the concrete situation. Fortunately, for an isolated system (e.g.
a free microscopic particle) the form of energy operator, which determines the
evolution equation, can be fixed by the requirements of spacetime translation
invariance and relativitic invariance. Concretely speaking, time translational
invariance requires that dH/dt = 0, and the solution of the evolution equation

i∂ψ(x,t)∂t = Hψ(x, t) must assume the form ψ(x, t) = ϕE(x)e−iEt. Besides, space
translational invariance requires [P,H] = 0, and this further determines that
ϕE(x) is the eigenstate of P , namely ϕE(x) = eipx. Thus spacetime translation
invariance entails that the state of a free microscopic particle with definite mo-
mentum and energy assumes the plane wave form ei(px−Et). Furthermore, the
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relation between p and E or the energy-momentum relation can be determined
by the relativistic invariance of the free state ei(px−Et), and its nonrelativistic
approximation is just E = p2/2m. Then we can obtain the form of energy oper-
ator for a free particle, H = P 2/2m, and the free particle Schrödinger equation
Eq.(26). To sum up, this analysis can answer why the wave function must as-
sume a complex form in general and why there are the de Broglie relations and
why the nonrelativistic energy-momentum relation is what it is.

So far so good. But how does the thus-derived Schrödinger equation, in par-
ticular, the state function ψ(x, t) in the equation, relates to the actual physical
situation? Without answering this question the above analysis seems vacuous
in physics. This leads us to the problem of interpreting the state function. Ex-
actly what does the state function ψ(x, t) describe? According to the standard
probability interpretation, the state function is a probability amplitude, and the
square of its absolute value represents the probability density of finding a par-
ticle in certain locations. This can be understood from the continuity equation
derived from the Schrödinger equation. Multiplying the Schrödinger equation
Eq. (28) by ψ∗(x, t), its conjugate by ψ(x, t), and taking the difference, we get

i
∂[ψ∗(x, t)ψ(x, t)]

∂t
= − 1

2m
[ψ∗(x, t)

∂2ψ(x, t)

∂x2
− ψ(x, t)

∂2ψ∗(x, t)

∂x2
] (29)

Note that the real-valuedness of the potential V (x, t) is used here. This equation
can be further written as

∂[ψ∗(x, t)ψ(x, t)]

∂t
+

1

2mi

∂[ψ∗(x, t)∂ψ(x,t)∂x − ψ(x, t)∂ψ
∗(x,t)
∂x ]

∂x
= 0 (30)

By defining

ρ(x, t) ≡ |ψ(x, t)|2 (31)

and

j(x, t) ≡ 1

2mi
[ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x
], (32)

the above equation becomes the familiar form of continuity equation:

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0. (33)

According to the standard interpretation, the density ρ(x, t) ≡ |ψ(x, t)|2 in the
continuity equation represents the probability density of finding the particle
in certain locations, and the equation represents the conservation of detection
probability. We can also write the state function ψ(x, t) in terms of ρ(x, t) and
j(x, t):

ψ(x, t) =
√
ρ(x, t)e

im
∫ x
−∞

j(x′,t)
ρ(x′,t)dx

′
. (34)
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Accordingly there exists a one-to-one relation between ψ(x, t) and ρ(x, t), j(x, t)
when omitting an absolute phase. Moreover, it seems that the latter is more
physical than the former because they are real-valued and can be directly mea-
sured. For example, by measuring the position probability distribution ρ(x, t)
we can identify the wavelength of a standing wave composed of two momentum
eigentsates with opposite momenta and further measure the value of momentum.

Notwithstanding the success of the standard interpretation, our derivation of
the Schrödinger equation may have more implications on the physical meaning
of the state function ψ(x, t). First, it seems to suggest that the state function
ψ(x, t) is a description of the actual physical state of a particle, rather than the
probability amplitude relating only to measurement. In our derivation we never
refer to the measurement of the isolated system after all. Moreover, it seems
to further imply that the state function ψ(x, t) is a complete description of the
physical state. Which kind of physical state then? This is still a debatable issue.
But if the state function ψ(x, t) is indeed a (complete) description of the state of
motion for a single particle, then |ψ(x, t)|2dx will not only give the probability of
the particle being found in an infinitesimal space interval dx near position x at
instant t, but also give the objective probability of the particle being there. This
accords with the commonsense belief that the probability distribution of the
measurement outcomes of a property is the same as the actual distribution of the
property in the measured state. On this tentative interpretation, the objective
motion of a particle is essentially random and discontinuous, and the quantities
ρ(x, t) and j(x, t), as well as the state function ψ(x, t) being a mathematical
complex composed of them, provides a complete description of the state of such
motion. It has been argued that this suggested interpretation might provide a
natural realistic extension to the standard view [17-18]. Certainly, the transition
process from “being” to “being found”, which is closely related to the notorious
quantum measurement problem, needs to be further accounted for [19].

To sum up, we have shown that the heuristic “derivation” of the Schrödinger
equation in quantum mechanics textbooks can actually be turned into a real
derivation by resorting to spacetime translation invariance and relativistic in-
variance. The derivation may reveal the logic of the Schrödinger equation and
thus make this important equation more understandable for students. More-
over, it might also cast some new light on the physical meaning of the state
function in the equation.
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