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The possible holographic origin of dark energy is investigated. The main existing explanations, namely the UV/IR 

connection argument of Cohen et al, Thomas’ bulk holography argument, and Ng’s spacetime foam argument, are 

shown to be not wholly satisfactory. A new explanation is then proposed based on the ideas of Thomas and Ng. It is 
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universe. Several potential problems of the explanation are also discussed.  

Keywords: dark energy, holographic principle, holographic dark energy, UV/IR connection, bulk holography, spacetime 

foam, quantum fluctuations of spacetime 

 

PACS: 95.36.+x., 04.20.-q, 98.80.-kx 

 

1. Introduction 

Understanding the origin of dark energy is one of the most important quests in modern cosmology and 

fundamental physics. Although a variety of models of dark energy have been proposed to explain the 

cosmic acceleration, the physical nature of dark energy remains a deep mystery. At present, the 

holographic dark energy (HDE) model [1-4], which has been studied both theoretically and observationally, 

seems to be a promising alternative to the standard cosmological constant model. The HDE model can be 

regarded as an application of some heuristic principles of quantum gravity such as the holographic 

principle to the dark energy problem. According to the model, the dark energy density is 
2223 −= LMd PDEρ    (1) 

where d is a numerical factor which is taken to be of the order of unity, PM  is the reduced Planck mass 

GM P π8/12 = , L  is the event horizon of the universe. It has been shown that the HDE model can be in 

agreement with the latest observational data including the sample of Type Ia supernovae (SNIa), the shift 

parameter of the cosmic microwave background (CMB), the baryon acoustic oscillation (BAO) 

measurement, and the Planck date etc (see, e.g. Refs. [5-6])1. However, a plausible physical explanation of 

the HDE model is still lacking [9-11]. For example, a recent analysis shows that the well-accepted 

                                                        
1 Note that the conclusions of Refs. [5-6] depend on the set of data used to constrain the HDE model. Moreover, in some 
HDE models where L is not the event horizon of the universe (e.g. interacting HDE model [7]), the parameter d may slowly 



 

explanation of Eq. (1), which is based on the UV/IR connection argument of Cohen et al [1], has serious 

drawbacks when applying the model to different eras of the universe [10-11]2. In this paper, we will mainly 

investigate the physical basis of the HDE model.  

The plan of this paper is as follows. In Section 2, we will first examine Cohen et al’s argument based 

on energy bound [1]. If the energy bound is saturated, then the density of quantum zero-point energy 

assumes the same form as HDE in an effective quantum field theory (QFT) with the UV/IR connection 

required by the bound. However, it will be shown that the theory cannot consistently describe all epochs of 

the universe and further explain the observed dark energy. As a result, Cohen et al’s argument is probably 

not the right physical explanation of the HDE model. In Section 3, we will analyze Thomas’ bulk 

holography argument based on entropy bound [2]. If the entropy bound is saturated, his method can also 

give the right form of the density of HDE. However, a concrete calculation will show that the method will 

give more vacuum energy than the observed dark energy. Therefore, it seems that the bulk holography 

argument cannot provide a plausible explanation of the HDE model either. These negative results suggest 

that the dark energy of the universe may not originate from the quantum zero-point energy in spacetime. In 

Section 4, we will further examine the spacetime foam argument notably suggested by Ng, according to 

which the dark energy comes from the quantum fluctuations of spacetime [12-14]. It will be shown that the 

argument also has several drawbacks. In particular, like Thomas’ argument, it also predicts more energy 

than the observed dark energy. In Section 5, we will propose a new interpretation of the HDE model in 

terms of certain quantum fluctuations of spacetime. It will be shown that the interpretation may not only 

give the right form of the density of HDE, but also be consistent with the observed dark energy. Moreover, 

the causality problem and the circularity problem of the HDE model will be briefly discussed. 

Conclusions are given in the last section. 

2. The UV/IR connection argument of Cohen et al 

The well-accepted interpretation of the HDE model is that HDE comes from the quantum zero-point 

energy predicted by an effective QFT with a proper UV/IR connection. The argument was first given by 

Cohen et al to solve the fine-tuning problem of the cosmological constant [1], and it was then developed to 

explain the dark energy by Hsu and Li [3-4]. In the following, we will examine the argument in order to see 

whether it is the physical basis of the HDE model represented by Eq. (1).  

The argument of Cohen et al can be formulated as follows. For an effective QFT in a box of size L  

with UV cutoff Λ , the entropy S  scales extensively, 33~ ΛLS . According to the holographic principle 

[15-17], the entropy S  should be limited by the Bekenstein-Hawking entropy bound, namely  
2233 ~ PBH MLSL ≤Λ    (2) 

where BHS  is the Bekenstein-Hawking entropy bound. Therefore, the length L , which acts as an IR 

                                                                                                                                                                             
vary with expansion in general [8].  
2 One conclusion of Ref. [11] is that “the basic framework underlying all HDE models seems too ad hoc to have any real 
explanatory value, which still keeps us in need of firmer theoretical background.” 



 

cutoff, cannot be chosen independently of the UV cutoff and scales as 3−Λ . However, there is evidence 

that the above entropy bound is still loose, and in particular, a local QFT cannot be used as an effective low 

energy description of any system containing a black hole (e.g. particle states which size is smaller than 

their corresponding Schwarzschild radius) [16-17]. Therefore, there should exist a stronger constraint on 

the IR cutoff L , which excludes all states that lie within their Schwarzschild radius:  
243
PLML ≤Λ    (3) 

where 4Λ  is the maximum energy density in the effective theory. Here the IR cutoff scales like 2−Λ . 

When Eq. (3) is near saturation, the entropy is 4/3
max BHSS ≈ . Cohen et al suggested that an effective local 

QFT will be a good approximate description of physics when Eq. (3) is satisfied, because those states that 

cannot be described by it has been excluded. In other words, when the UV cutoff and the IR cutoff are 

properly connected, an effective local QFT will be still viable.  

It is worth noting that Eq. (3) can also be derived by invoking the Bekenstein bound [10,18]. For a 

weakly gravitating system in which self-gravitation effects can be omitted, the Bekenstein bound is given 

by a product of the energy and the linear size of the system, EL . In the context of the effective QFT as 

described above, it is proportional to 44ΛL . Then according to the holographic principle, we have 
2244 ~ PBH MLSL ≤Λ , and we can also obtain Eq. (3). Note that this requirement automatically prevents 

the formations of black holes, as the Bekenstein bound does not involve the Newton gravitational constant. 

Thus, the above two derivations are equivalent.  

Now we analyze the validity of Eq. (3) for explaining the dark energy. Cohen et al argued that when 

choosing an IR cutoff comparable to the current horizon size of the universe, the corresponding UV cutoff 

obtained from Eq. (3) is about ev5.210− , and the resulting quantum energy density requires no 

cancellation and is consistent with current observations. Therefore, Eq. (3) can solve the fine-tuning 

problem of the cosmological constant. However, as first pointed out by Horvat et al [10-11], there may 

exist a loophole in Cohen et al’s derivation of the UV cutoff. According to the above UV/IR connection 

argument, an effective local QFT should be able to describe the standard models particles ( Gevm 100≥ ) 

when Eq. (3) is satisfied. But when m<Λ  the energy density is not 4Λ  but 3Λm , and thus we have 
4103 10~ evm −Λ  and ev710~ −Λ . Consequently, the present-day UV cutoff is actually much smaller 

than ev5.210−  according to Eq. (3). As a result, the theory cannot describe the cosmic microwave 

background (CMB) radiation because the current temperature of the universe is evT 4
0 10~ −  [11]. This 

inconsistency shows that the UV/IR connection argument based on Eq. (3) may have serious drawbacks 

when being used to explain the dark energy of the universe, and the dark energy may not originate from the 

quantum zero-point energy predicted by an effective QFT.  

This conclusion has more support when applying Eq. (3) to other epochs of the universe. It has been 

argued that, when assuming most dark energy comes from the quantum zero-point energy satisfying Eq. (3), 

the matter-dominated epoch of the universe cannot be consistently described [10]. In order to solve this 



 

problem, some nonsaturated HDE models have been proposed. In these models, Eq. (3) is not saturated 

during the epochs that are not dominated by the dark energy. However, it is found that even such 

nonsaturated HDE models cannot account for the radiation-dominated epoch of the universe either [11]. 

The results are generic in that they do not depend on the choice of the IR cutoff. In conclusion, an effective 

QFT, whose UV and IR cutoffs are connected by Eq. (3), cannot consistently describe all epochs of the 

universe, and thus it cannot explain the dark energy of the universe [11].  

The above conclusion is also understandable by another analysis. When considering the success of 

the local QFT for describing the high-energy particles with a UV cutoff Λ  much larger than ev5.210− , 

the theory will be unable to consistently describe a very large system such as the whole universe, as the IR 

cutoff L  is much smaller than the size of the universe according to Eq. (3). Therefore, an inverse 

application of Eq. (3), namely using L  to limit Λ  as Cohen et al did, is probably improper when 

explaining the dark energy of the universe. In addition, there is another worry, namely that it may be 

problematic to take the left side of Eq. (3) as the quantum zero-point energy. There are some arguments 

against this direct equivalence. First, the energy is only predicted by an effective local QFT which 

eliminates those states that cannot be described by it. But such a theory is surely an incomplete description 

of actual situations. Moreover, the states that cannot be described by the theory do exist and may also have 

corresponding quantum zero-point energy. Obviously this part of energy is not included in Eq. (3). Next, 

the density of quantum zero-point energy in Eq. (3) is still local and extensive, which seems inconsistent 

with the holographic principle, although the total energy satisfies a restriction. Besides, it is not obvious 

how to calculate the energy density in an effective QFT when the total energy is restricted. The left side of 

Eq. (3) implicitly assumes that the energy density integral is continuous from the IR cutoff to the UV cutoff. 

However, since the holographic principle requires that the number of degrees of freedom of any system is 

finite, it seems more natural that the integral is discrete and sparse in some sense, but still from the IR 

cutoff to the UV cutoff such as Planck’s mass PM . Lastly, the revision of the convention QFT must be 

radical due to the limitation of the holographic principle, and thus it is very likely that we should 

re-understand the quantum zero-point energy predicted by the conventional QFT. They may not exist in a 

fundamental theory (see, e.g. Refs. [19-20]).  

To sum up, it seems that the dark energy of the universe cannot be accounted for by the quantum 

zero-point energy predicted by an effective QFT satisfying the UV/IR connection denoted by Eq. (3). 

Therefore, the popular interpretation of the HDE model, i.e. that HDE comes from the quantum zero-point 

energy predicted by an effective QFT, is probably wrong.  

3. Thomas’ bulk holography argument 

Another interpretation of the HDE model is Thomas’ bulk holography argument based on entropy 

bound [2] (see also [4,14]). The argument can be formulated as follows. In order to calculate a global 

quantum effect on the background geometry of the universe, it is natural to postulate that uniformly volume 

distributed bulk holographic degrees of freedom are delocalized on the scale of the background radius of 



 

curvature, denoted by L, since this is the relevant holographic length scale. The Heisenberg quantum 

energy of each delocalized holographic degree of freedom is LE /1~ . According to the holographic 

principle, the total number of the holographic degrees of freedom is 22
PMLN ≤ . Then the quantum 

contribution to the global vacuum energy density, 3/~ LNEVρ , is:  

22 −≤ LM PVρ    (4) 

Such quantum contributions to the vacuum energy also satisfy the energy bound LMNE P
2≤ . Therefore, 

holography allows only finite quantum corrections, and it provides a natural solution to the cosmological 

constant problem. This follows first from the holographic reduction in the number of independent degrees 

of freedom, and second from the holographic energy per degree of freedom. 

It seems that Thomas’ argument can also provide a plausible interpretation of the HDE model when 

the holographic entropy bound is saturated. Let’s analyze this claim in more detail. When the holographic 

entropy bound is saturated, the total number of the holographic degrees of freedom is 
222 /4/ PP LLLAN π=≡ , where L is the horizon size of the universe, A  is the area of horizon, and PL  

is the Planck length. For the convenience of later analysis, we write down all parameters and constants 

explicitly. According to Thomas’ argument, the Heisenberg quantum energy of each degree of freedom is 

L
cc

L
E hh

=≈ , where c is the speed of light. Then the quantum contribution to the global vacuum energy 

density is: 

2

4

3 4
3

3/4 GL
c

L
NE

V =≈
π

ρ    (5) 

If taking L as the apparent horizon of the universe or the Hubble scale (i.e. cHL 1−= ) as Thomas did [2], 

then the resulting energy density is obviously larger than the dark energy density. In fact, it is also larger 

than the critical energy density GcHc πρ 8/3 22= . On the other hand, taking L as the particle horizon 

cannot account for the accelerated expansion of the current universe (see, e.g. [4]). The promising 

alternative is taking L as the event horizon of the universe. By using the definition of event horizon 
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, we can solve the Friedmann equation for a spatially flat universe. The evolution 

equation of VΩ  is:  
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where cVV ρρ /≡Ω . Then the equation of state up to the first order is:  
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By inputting the current value 72.0≈ΩV , we obtain 56.0)
2
21(

3
1

0 −≈Ω+−≈ Vw
π

. This result 

contradicts the latest observations of dark energy that requires 79.00 −<w  (see, e.g. [21-22]).  

We can also obtain the above negative result by directly invoking the observational restriction of the 

parameter d in Eq. (1). Eq. (5) indicates 5.22 ≈= πd . This value is too large to be able to explain the 

observed dark energy. For example, the best-fit result of Ref. [5] is 113.0
097.0818.0 +

−=d  for 68.3% confidence 

level, and when combining with the Planck date, the best-fit result of d is smaller and around 0.5 [6]. When 

considering the Heisenberg uncertainty principle, one may reduce the Heisenberg quantum energy to 

L
cc

L
E

2
2/ hh

=≈ . Then the quantum contribution to the global vacuum energy density is: 

2

4

3 8
3

3/4 GL
c

L
NE

V =≈
π

ρ    (8) 

This leads to 77.1≈= πd , which is still more than the double of the current best-fit value. Therefore, 

the saturated form of Eq. (4) cannot be consistent with the observational data of dark energy. Note that a 

holographic number of modes with the lowest frequency of quantum zero-point energy also gives more 

vacuum energy than the observed dark energy, as the quantum zero-point energy of the lowest frequency, 

L
hcE
81 = , is still larger than the above Heisenberg quantum energy. 

To sum up, the saturated form of Eq. (4) will lead to large dark energy density that is inconsistent 

with observations3. On the other hand, if the holographic entropy bound is not saturated, then Eq. (4), 

which is an inequality, cannot determine the concrete form of vacuum energy density alone, in particular, it 

will be unable to explain the 2−L  dependence of the HDE density. In conclusion, it seems that Thomas’ 

bulk holography argument cannot provide a plausible interpretation of the HDE model either. But it might 

give a clue to the right explanation, as there is only a numerical factor ~1/4 missed in the vacuum energy 

density formula Eq. (8). 

4. Ng’s spacetime foam argument 

The failure of the arguments of Cohen et al and Thomas might reveal something positive about the 

nature of dark energy. It is that the dark energy of the universe may not originate from the quantum 

zero-point energy. On the other hand, it has been widely argued that spacetime as a dynamical entity should 

have quantum fluctuations (see, e.g. [12-13, 23-24]). Therefore, the quantum fluctuations of spacetime will 

contribute to the vacuum energy, and it may be the origin of dark energy. In short, dark energy might come 

                                                        
3 Note that this conclusion may also hold true for the models including interactions between dark energy and the matter 

sector. The reason is that when the universe is dominated by the dark energy, the energy density given by the saturated form 

of Eq. (4) is still larger than the critical energy density.  



 

from quantum fluctuations of spacetime, not from quantum fluctuations in spacetime.  

According to Ng [12-13], spacetime, like all matter and energy, undergoes quantum fluctuations, and 

these quantum fluctuations make spacetime foamy on small spacetime scales. In order to know how foamy 

spacetime is, one needs to measure spacetime. By analyzing a Gedanken experiment to measure distance 

between two points, which was first suggested by Wigner [25-26], Ng concluded that the uncertainty Lδ  

in the measurement of the distance L  cannot be smaller than the cube root of 2
PLL , namely 

3/13/2 LLL P≥δ . Quantum mechanics requires 
mc

LL h
≥2δ , and general relativity requires 2c

GmL ≥δ , 

where m  is the mass of the clock used in the distance measurement. The product of these two inequalities 

then yields the above result. Similarly, the uncertainty Tδ  in the measurement of a time interval T  

cannot be smaller than the cube root of 2
PTT , namely 3/13/2 TTT P≥δ , where PT  is the Planck time. 

These results were also obtained by Károlyházy et al from somewhat different arguments [27-28].  

The above spacetime uncertainty relation is consistent with the holographic entropy bound 
2233 LMSLS PBH =≤Λ=Λ  when the relation between the UV cutoff and distance uncertainty is 

Lδ
1~Λ 4  [14]. By assuming each minimum detectable space cube LLL P

23 ~)(δ  has typical 

Heisenberg energy of a delocalized state LE /1~ , the energy density of the quantum fluctuations of 

spacetime is 22
3 ~

)(
−= LM

L
E

PV δ
ρ , and it assumes the same form as the HDE density denoted by Eq. (1) 

[14]. A similar result is also obtained by Maziashvili in terms of time uncertainty [29], and it leads to the 

agegraphic dark energy model where the age of the universe determines L  [30]. 

The spacetime foam argument seems to provide a plausible explanation of HDE. However, it also has 

some potential problems. First of all, it is still in debate whether the quantum fluctuations of spacetime 

assume the very form 3/13/2~ LLL Pδ . Some authors have argued that the derivation of Ng is problematic, 

and distance can be measured much more accurately than Ng’s measuring method [31-32]. Moreover, 

different forms of spacetime fluctuations such as 2/12/1~ LLL Pδ  have also been suggested [33-34]. Next, 

even if Ng’s derivation of the minimum distance uncertainty in a Gedanken measurement is valid, it does 

not necessarily entail that spacetime itself does have the similar uncertainty or fluctuations. Maybe it is 

only that the physical principles lead to an intrinsic limitation to spacetime measurements. Thirdly, it is in 

want of a reasonable physical explanation why each minimum detectable space cube has typical 

Heisenberg energy of a delocalized state. Lastly, if the quantum fluctuations of spacetime indeed assume 

the very form suggested by Ng, then the holographic energy density will have the same form as Eq. (8), 

namely 2

4

8
3
GL
c

V ≈ρ , as the calculation is the same as that in Thomas’ method (see also [14]). However, 

                                                        
4 This relation seems reasonable because the UV cutoff usually determines the minimal detectable length. 



 

as we have shown in the last section, this energy density is about the quadruple of the observed dark energy 

density.  

In conclusion, although the spacetime foam argument may not provide a satisfactory explanation of 

HDE, it does suggest a promising possibility, namely that the holographic dark energy may come from 

quantum fluctuations of spacetime, not from quantum fluctuations in spacetime.  

5. A conjecture on the origin of dark energy 

In this section, we will show that a revision of Thomas and Ng’s ideas may provide a possible 

interpretation of the HDE model, and it is also consistent with the latest observation data of dark energy 

(see also [35-36]). 

Following Ng’s spacetime foam argument, we also assume that the holographic dark energy comes 

from the quantum fluctuations of spacetime. Following Thomas’ bulk holography argument, we further 

assume each degree of freedom of such quantum fluctuations is also delocalized. But different from both of 

these arguments, we assume that the degrees of freedom are delocalized on the scale of the event horizon of 

the universe. In other words, we assume that the universe is a finite system limited by its event horizon in 

space, and the dark energy comes from the quantum fluctuations of the spacetime limited in the event 

horizon. This assumption has two interesting consequences. First, the Heisenberg quantum energy of one 

degree of freedom will be 
L
cc

L 42
2/ hh

=≈ε . Note that the size of space limited by the event horizon is 2L, 

not L. This is equivalent to introducing one numerical factor 1/2 into Eq. (8) in Thomas’ model. Next, since 

such quantum fluctuations of spacetime of one degree of freedom corresponds to two Planck area units at 

the two ends of the event horizon, the total number of degrees of freedom for such quantum fluctuations is 
22 2/2/ PLLN π= . Note that the holographic principle implies that the event horizon contains finite area 

units, whose number is 222 /4/ PP LLLAN π=≡ . This is equivalent to introducing another numerical 

factor 1/2 into Eq. (8) in Thomas’ model. Therefore, the energy density of the quantum fluctuations of 

spacetime limited by the event horizon of the universe is: 

2

4

3 32
3

3/4
2/

GL
c

L
N

V =≈
π
ερ    (9) 

Compared with Eq. (8) in Thomas’ model, Eq. (10) gains an additional numerical factor 1/4. This 

additional factor comes not from a mathematical trick, but from a different physical explanation. Eq. (10) 

indicates 886.02/ ≈≈ πd . This value is basically consistent with the latest observations [5-6]. 

In the following, we will give several comments on this new interpretation of the HDE model. First, it 

should be stressed that the physical nature and precise mathematical description of the quantum 

fluctuations of spacetime are still unknown, as a complete theory of quantum gravity is not yet available. 

However, it has been widely argued that spacetime should undergo some kind of quantum fluctuations, and 

they at least include the fluctuations of spacetime metric (see, e.g. [12-13, 23-24]). Despite these 



 

uncertainties, the above model may be also applicable because it only depends on the total number of 

degrees of freedom of such fluctuations and the fluctuation energy of each degree of freedom.  

Secondly, there is still one undetermined part in the above conjecture, namely the precise relation of 

the quantum fluctuation energy of one degree of freedom. Although the dimensional relation Lc 2/~ hε  

seems to have a firm basis, the concrete numerical factor in the relation is still unknown, which is expected 

to be determined by the application of a complete theory of quantum gravity to the universe. The numerical 

factor 1/2 in the formula c
L2
2/h

≈ε  is only an assumption, which might be an interesting one when 

considering its consistency with the latest observations. Here we also stress that the use of Heisenberg’s 

uncertainty principle for spacetime fluctuations is still a tentative assumption, and it needs to be further 

justified. As we think, it might be reasonable to assume that any physical entity, no matter it is a matter 

field or a gravitational field, will have quantum fluctuations when limited in a finite space interval, and the 

fluctuation energy also satisfies Heisenberg’s uncertainty principle. This assumption is also used to derive 

the dark energy density in Thomas and Ng’s models [2, 14, 29]5. As a result, the energy is only related to 

the spatial scale, and especially, it is irrelevant to the nature of the field. For example, for a gravitational 

field the fluctuation energy of one degree of freedom does not contain the gravitational constant G6. 

However, the total fluctuation energy in a finite region contains G as indicated by Eq. (10). Certainly, 

whether this assumption is right or not can only be determined by experiments. 

Thirdly, the choice of event horizon in our model seems to have a physical basis. Contrary to the 

apparent horizon, the event horizon represents a real boundary of spacetime, and thus the quantum 

fluctuations of spacetime should be limited by the event horizon, not by other horizons. Moreover, the 

event horizon in the context of cosmology as well as in the context of a black hole is always defined 

globally, as the causal structure of spacetime is a global thing (see more discussions in [4]). However, the 

choice of event horizon may also raise some problems such as the circularity problem etc (see also [9]). 

The HDE needs a finite event horizon, while a finite event horizon also needs HDE (without a dark energy 

or a cosmological constant to induce acceleration, the event horizon is necessarily infinite). Then which is 

first, HDE or event horizon? As we think, this is indeed a potential problem. However, it is not completely 

unsolvable. For example, the existence of both HDE and event horizon may be the results of the complete 

evolution law of the universe with certain initial condition, and there is no question of which is first. A 

universe without dark energy and event horizon is likely to exist too. A more detailed analysis does support 

this suggested solution to the circularity problem [37]. In addition, it has also been shown that the 

circularity problem and the causality problem of the HDE model may be solved by deriving the model 

from the action principle [38,39].  

To sum up, the above interpretation of the HDE model seems tenable and promising. Moreover, it 

may help to solve some problems plagued by the HDE model, e.g. the IR cutoff choice problem, the 

                                                        
5 Note that Thomas seemed to also implicitly use this assumption because the holographic vacuum energy in his argument 
may include the contributions from the quantum fluctuation of the gravitational field [2].  
6 It is worth noting that the uncertainty relations for the length and time fluctuations of a spacetime region may directly 
contain the gravitational constant through the involved Planck scale (see, e.g. [12, 33-34]). 



 

saturated/ unsaturated problem and so on. In addition, the analysis also suggests that the dark energy of the 

universe may originate from the quantum fluctuations of spacetime limited by its event horizon.  

6. Conclusions 

It is widely thought that the dark energy in the HDE model comes from the quantum zero-point energy 

predicted by an effective QFT with the UV/IR connection suggested by Cohen et al. However, it has been 

pointed out by Horvat that such a theory cannot consistently describe all epochs of the universe. Moreover, 

the UV/IR connection argument based on energy bound also has some serious drawbacks. Therefore, the 

well-accepted explanation of the HDE model is probably wrong. Different from the UV/IR connection 

argument, Thomas presented a bulk holography argument based on entropy bound, which has been 

regarded as another support for the HDE model. Although his method can give the right form of the density 

of HDE when the entropy bound is saturated, a concrete calculation shows that it will give more vacuum 

energy than the observed dark energy. Thus it seems that the bulk holography argument cannot provide a 

plausible explanation of the HDE model either. 

The failure of the arguments of Cohen et al and Thomas may reveal something positive about the 

nature of dark energy. Maybe the dark energy of the universe does not originate from the usual quantum 

zero-point energy. Ng’s spacetime foam argument is an important attempt along this line of thinking, 

according to which the dark energy comes from a special form of quantum fluctuations of spacetime. 

However, this argument also has several drawbacks. In particular, like Thomas’ argument, it also predicts 

more energy than the observed dark energy.  

Inspired by the ideas of Thomas and Ng, we further propose a new interpretation of the HDE model. It 

is suggested that the dark energy of the universe originates from the quantum fluctuations of spacetime 

limited by the event horizon of the universe. By using the holographic principle and Heisenberg’s 

uncertainty principle, it is shown that the energy density of such fluctuations assumes the same form as Eq. 

(1) in the HDE model. Moreover, the value of the numerical constant in Eq. (1), which turns out to be 

2/π≈d , is also consistent with the latest observations. Therefore, our proposal might provide a 

physically plausible interpretation of the HDE model. Besides, it also suggests that the dark energy may 

come from the quantum fluctuations of spacetime, not from the quantum fluctuations in spacetime such as 

quantum zero-point energy. 
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