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A novel hybrid algorithm that employs BP neural network (BPNN) and particle swarm optimization (PSO) algorithm is proposed
for the kinematic parameter identification of industrial robots with an enhanced convergence response. The error model of the
industrial robot is established based on a modified Denavit-Hartenberg method and Jacobian matrix. Then, the kinematic
parameter identification of the industrial robot is transformed to a nonlinear optimization in which the unknown kinematic
parameters are taken as optimal variables. A hybrid algorithm based on a BPNN and the PSO is applied to search for the
optimal variables which are used to compensate for the error of the kinematic parameters and improve the positioning accuracy
of the industrial robot. Simulations and experiments based on a realistic industrial robot are all provided to validate the efficacy
of the proposed hybrid identification algorithm. The results show that the proposed parameter-identification method based on

the BPNN and PSO has fewer iterations and faster convergence speed than the standard PSO algorithm.

1. Introduction

The nominal parameters of industrial robots for the mechan-
ical design are usually not accurate due to manufacturing and
assembly errors, limited precision of components, flexible
deformation of linkages and joints and so on, which will lead
to the decrease of the positional accuracy of industrial robots
in practical applications. Kinematic calibration is an effective
way to improve the accuracy of industrial robots, and param-
eter identification is a key step of calibration [1]. Hence,
many research works have been focusing on this area.
Parameter identifications are usually realized through mini-
mizing the residuals of the end-effectors’ poses of industrial
robots. It is a nonlinear or standard linear least-squares opti-
mization process. As a commonly used algorithm, the least-
squares method [2, 3] does not need to consider any prior
information of the system, but its low computationality and
the noise sensitivity limit its application [4, 5]. The extended
Kalman filter [6, 7] is a useful method for dealing with
nonlinear problems, which is possible to realize the state
estimation under some mild conditions on the measuring

error. However, the actual distribution of the positioning
errors is not taken into account in the above work, result-
ing in a situation where the state estimate is not accurate
enough and the filter is divergent. The Levenberg—Marquardt
algorithm [8, 9] is used to solve nonlinear least-squares
problems; however, it generally can only find the local
minimum, which is not necessarily for the global mini-
mum. Daney et al. [10] proposed an algorithm based on
a constrained optimization method to select a set of mea-
surement configurations in the calibration of robots. Jiang
et al. [1] proposed a hybrid kinematic calibration method
based on the extended Kalman filter and particle filter
algorithm that can significantly improve the positioning
accuracy of the robot. Xiong et al. [11] presented a systematic
and practical calibration method based on the global
product-of-exponential formula considering some practical
constraints for an industrial robot to improve its absolute
accuracy, in which all the kinematic parameters are identified
via the linear least-squared iteration.

In recent years, many intelligent bionic algorithms have
been used in parameter identification. Gong et al. [12]
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proposed a new hybrid optimization algorithm based on the
bee swarm particle swarm optimization algorithm to obtain
the optimum structural parameters of a manipulator. Fan
etal. [13] conducted the parameter identification of a parallel
mechanism based on genetic algorithm. Wang et al. [14] pro-
posed a universal index and an improved PSO algorithm for
optimal pose selection. Shi et al. [15] proposed a quantum
particle swarm optimization (QPSO) algorithm based on
the path-planning method, so that the base position and
the end position can simultaneously reach the desired state.
Fang and Dang [16] proposed a method based on the QPSO
algorithm, which is suitable for the kinematic calibration of
both serial and parallel robots.

As an evolutionary algorithm, PSO starts from a random
solution and searches the optimal solution through iteration.
However, it needs much iteration in dealing with parameter
identification of industrial robots since there are more than
20 dimensions in the optimization model. BPNN can
improve the convergence ability of PSO [17, 18]. Inspired
by this fact, this paper proposes a kinematic parameter-
identification method based on BPNN-PSO, which can
greatly improve the convergence speed of the PSO algorithm.
To maintain the positioning accuracy and repeatability,
industrial robots are required to be calibrated regularly, espe-
cially after collisions and overload operations. Thus, the pro-
posed method can improve the efficiency of identification
greatly in the follow-up calibration of industrial robots.

This paper is organized as follows. Section 2 presents the
kinematic modelling of the industrial robots with MDH
model. In Section 3, the kinematic identification of the struc-
tural parameter is formulated as a nonlinear optimization
problem. Simulations and experiments are conducted to ver-
ify the identification model and search for the optimal set-
tings of PSO and BPNN in Section 4 and Section 5,
respectively. Section 6 provides the conclusion.

2. Kinematic Modeling of the Industrial Robot

ER20-C10 is a kind of universal industrial robot, which is a
six-degree-of-freedom (6-DOF) joint-type industrial robot,
as shown Figure 1. According to the D-H modified method
[19], the coordinate systems for each joint of the robot are
built, as shown in Figure 2. There are a base coordinate sys-
tem (F,) and six joint coordinate systems (F1, F2, ..., F6)
in the coordinate systems, where F6 is the end-flange coordi-
nate system. A laser tracker shown in Figure 1 will be used to
acquire the end position data of the robot in experimental
verification, which is a portable, highly accurate coordinate
measuring system with an ADM (absolute distance measure-
ment) accuracy of +£10 um. An active target (AT) is installed
at the end of the robot as the end effector, which can assure
that the tracker will not lose the laser in the process of mea-
surement. In addition, the tool coordinate system F, ; and
the world coordinate system Fy, 4 must also be considered.
Fiuyord 1S set at the measurement coordinate system of the
laser tracker. F, is set at the center of the active target
(AT) mounted on the flange, and its direction is the same
as the end-flange coordinate system F6.
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FIGURE 1: Experimental setup with ER20-C10 robot and Radian™
laser tracker.
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FIGURE 2: The coordinate systems of the robot.

2.1. Kinematics and Error Identification Modelling. Given the
joint variable vector g=[0,,0,,...,6,], the end-effector’s
pose is represented as follows:

H(q) = Tgvorld T(6) T(tSOOI’ ( 1)

where T{: is the homogeneous matrix representing the pose of
frame F; with respect to F;. These three homogeneous matri-

ces are calculated as follows:

T world _ RO to
0 - >
1000 1
[1 0 0 x
010 y (2)
T6tool — t ,
0 0 1 z
10 0 0 1

TS =Ty T2 TS TATS TS,

where R, is the rotation matrix representing the orientation
of the base frame with respect to the world frame and ¢, is
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TaBLE 1: Nominal values of DH kinematic parameters of the
industrial robot.

TaBLE 2: The complete kinematic parameters of the industrial robot.

Number of

Number of linkage  a,_; (mm) d;(mm) 6,() «a_, () linkage 4.y (mm) d; (mm) 0.0 %1 0)

1 0 504 0, 0 1 Aa, 504+Ad, 0, +A6,, 0+Ad

2 166.605 0 0, -90 2 166.605 + Aa, Ad, 0, +A0,, —90 + Aa;

3 782.270 0 05 0 3 782270+ Aa,  Ad, 6, +A6, A

4 138.826 761.35 0, =90

. . o 0 4 138.826 + Aay 761.35+Ad, 6, +A0,, —90 + Aa,

5

6 125 0, —90 5 Aay Ad, 05, + 4055 90+ Aa,

6 Aas 125+ Adg O+ A0, —90 + Aaig

the position of the origin of the base frame with respect to the
world frame. x,, y,, and z, are the position of the tool frame
with respect to the end-flange frame. For i=1,2,...,6, the
homogeneous matrix of each successive pair of frames is
obtained using the MD-H parameters as follows:

T§—1 =Ry(;1)Dx(a;1)R,(0;)D,(d;)

c@i —s@i 0 a; 1
sOicaiy  Bica; -S04 —d;sa;_y
= b
sOsa;iy  cB;sa; ooy dico;_y
0 0 0 1

where «;_,, a,_,, and d; are the MD-H parameters, s0; = sin 0,,
c0; = cos 0, sa; = sa;, and ca; = cos ;. The nominal values of
the industrial robot are shown in Table 1.

2.2. Preliminary Identification of the Base Frame and the
Tool Frame

2.2.1. Preliminary Identification of the Base Frame. As we
know, the location of the base frame of a robot can be mea-
sured directly if the robot is properly mounted. But unfortu-
nately, the location of the base frame in the robot is difficult
to measure with instruments directly; hence, we will get the
location through preliminary identification. Firstly, we define
the base frame F, with respect to frame F, [20]. The steps of
defining the base frame F; can be described as follows.

(1) One keeps the robot at zero position (the value of
each joint angle 0, is 0).

(2) One keeps joints 2—-6 unchanged and joint 1 rotating;
the position of the AT is measured at a certain angle
interval using a laser tracker. Based on these positions
measured, we can get circle 1.

(3) Similar to step 1, one rotates joint 2 and we can get
circle 2.

(4) According to the normals of circle 1 and circle 2, their
common vertical line can be obtained.

(5) The intersection of the common vertical line and the
normal of circle 1 is set as the origin of the frame F,.

The normal of circle 1 is taken as the z-axis and the
vertical is the x-axis.

(6) One translates d, along the negative direction of the
z-axis of F,; the base frame F,, can be obtained.

After establishing the base frame of the robot, we could
transfer the measurement coordinate system to the base
frame. Then the world frame Fy 4 is unified with F,.

2.2.2. Preliminary Identification of the Tool Frame. The tool
frame also needs to be preliminarily identified, where the
values of x, and y, depend primarily on the concentricity of
the AT and the end flange. With high machining accuracy
of the connecting flange, we can set the value of x, and y, to
be 0. And the value of z, could be obtained by the method
as follows. Rotating joint 5 with the others being blocked,
the position of the AT is measured at a certain angle with
the laser tracker. Based on these positions, a circle is fitted.
Then, the radius of this circle is the sum of the length of z,
and d.

Once the sum of the length of z, and d, is obtained, we
can compensate the length of z, to d;, and z, will not partic-
ipate in the following identification calculation.

2.3. Design of Fitness Function. After preliminary identifica-
tion and unification of the base frame and measurement
coordinate system, we can describe the position of the tool
frame with respect to the base frame as follows:

o= Ty T, @

Therefore, the complete kinematic model consists of
24 kinematic parameter errors as shown in Table 2. The kine-
matic model of the robot can be expressed as

p=f(k q), (5)

where p is the position vector of the end-effector calculated
by the model, k is the vector of 24 kinematic parameters,
and q is the vector of six joint variables. The vector of kine-
matic parameters k can also be written as

k =k, + 0k, (6)

where k, is the nominal set of kinematic parameters and Ok is
the kinematic parameter error. Then, the residuals for such a
model are



e(0k) =p* - £(k. q), (7)

where pR is the position vector measured by the laser
tracker; the identification problem is to select §k to minimize
a cost function:

¢ (8k)e(k) = ||p* - f(k. ). (8)

Then, the identification problem will be referred to as the
nonlinear least-squares method, and the optimization of L
could be accomplished through evolutionary algorithms.

3. Kinematic Parameter Identification

The identification is transformed into an optimization prob-
lem of nonlinear systems, and a novel hybrid algorithm of
BPNN-PSO is applied to solve the problem.

3.1. PSO. Particle swarm optimization (PSO) algorithm is a
parallel global optimization algorithm based on swarm intel-
ligence. In PSO, the potential solutions, called particles,
search through the problem space by following their own
experiences and the current best particles. Due to its simple
structure, fast convergence speed, and advantages in dealing
with high-dimensional problems, it has been widely used in
science and engineering in recent years [21]. The specific
steps are as follows.

Assuming the number of particles as N, the number
of iterations is denoted by ¢ and the maximum number of
iterations is denoted by ¢, ..
(1) One selects N groups of poses in the robot’s work-

space and gets the actual position error e; where

i=1,2,...,N.

(2) Initializing the positions of particle swarms, the posi-
tion vector and the velocity vector of the ith particle
are set as X,(¢) and V,(t), respectively. In this step,
the initial positions of particles are used as the input
of BPNN.

(3) One calculates the fitness of the ith particle according
to the fitness function. p,; is set as the current posi-
tion of the particle i, and p, is set as the position of

the best particle in the initial population.

(4) One determines whether iteration termination con-
ditions are met. If the termination conditions are
met, the algorithm will stop running and output
the optimal result; otherwise, the algorithm will go
to step 5.

(5) One calculates velocity and position of each particle
with the following two equations.

Vi(t+ 1) =wVi(t) + ¢;r, (£) [pig — X;(1)]
)
+6y15(t) |:Pgd ‘Xi(t)}
X(t+1)=X;(t)+ Vi(t+1), (10)
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where ¢; and ¢, are accelerating constants, 7, and r,
are two independent random functions, and w is a
nonnegative number which is called the weight.

(6) One calculates the fitness of each particle, updates the
new local optimal position p,; of each particle, and
updates the global optimal position p , of the particle

swarm.

(7) One determines whether the iteration termination
conditions are met. If met, the algorithm will stop
running and output the optimal result; otherwise,
the algorithm will go to step 5.

3.1.1. Design of Objective Function. According to (1), there
are various errors in the robot error model which can
affect the positioning accuracy of the robot. In the PSO
identification model, each particle represents a set of solu-
tions for optimizing the robot parameters, through which
one optimization variable Ak will be reached for the opti-
mization problem.

In Section 2.3, we constructed the objective functions of a
set of data for parameter identification. However, in the cal-
ibration process, we collected multiple sets of robot data for
parameter identification. Therefore, the objective function
is set as the sum of fitness functions for multiple sets of robot
data. Then the objective function can be expressed as follows:

(11)

N N
min F(AK)= Y L= Y [|pR - £,(k q)|".
i i=1

i=

—_

where N indicates the number of positions acquired by mea-
surement instruments and L; represents the fitness function
(8) which means the sum of squared errors of point i.

3.1.2. Parameter Setting of PSO. The parameters that need to
be determined in the particle swarm optimization algorithm
[22] are the search space dimension D, the number of parti-
cles in the population #, the acceleration factors ¢, and c,,
and the inertia weight w. The search space dimension D is
the same as the number of robot kinematic parameters that
need to be identified, which is 24 in this paper. For such a
high-dimensional search space, the number of particles 7 is
selected as 200. According to [23], we set acceleration factor
¢; equal to 0.5, ¢, equal to 1.25, and inertia weight w equal
to 0.9.

3.2. BPNN-PSO. The BP neural network (BPNN) is a repre-
sentative neural network, which is widely used in many prac-
tical systems [24]. The training of neural network is a process
that makes the neural network interactive to the external
environment in a new way. In the process of training, the free
parameters of the neural network will be adapted by the stim-
ulating effect of the environment. The BP neural network is
usually composed of an input layer, hidden layer, and output
layer. The adjacent layers are fully interconnected, but the
nodes of the same layer are not connected. In this paper, a
BPNN with a single hidden layer is chosen to combine with
particle swarm optimization (PSO) algorithm to solve the
parameter error vector Ak.
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3.2.1. Training of BPNN. A three-layer BP neural network
with a hidden layer (enough of hidden nodes) can approxi-
mate any nonlinear continuous function with arbitrary preci-
sion in the closed set [25]. In this paper, we use a three-layer
BP neural network with a hidden layer as our network archi-
tecture. The model of a neural network based on BPNN is
established as shown in (12), where wy; is the neural net-
work’s weight from neuron j to 7, x; is the input (the positions

of particle swarms), T is the threshold of the neuron j, fis the

activation function of neurons, and P is the position of the
best particle.

n
P=f Zwijxj - Tj . (12)
=

The structure of the BPNN used in this paper is shown in
Figure 3. There are n neurons in the input layer which are the
locations of particle swarms initialized in the second step of
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TaBLE 3: The settings of kinematic parameter errors.
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PSO. When the iteration of PSO stops, we will get the optimal
value of Ak which is used as the output of BPNN. The num-
ber of hidden nodes is a key parameter of the neural network.
Determination of the optimal number of hidden nodes has
always been a problem that is raised in neural network appli-
cations [26]. In this paper, the reference value of the number
of nodes in the hidden layer is calculated by the empirical for-
mula n, = /m + na, where m, n, and n, represent the num-
ber of neurons in the output layers, input layers, and
hidden layers, respectively. a is a constant, and its value is
usually between 1 and 10. Then the number of nodes in the

hidden layer is determined through a step-by-step experi-
ment method. As described in Figure 4, the number of parti-
cle swarm particles can be regarded as the size of the training
data of the BP neural network. When the particle swarm
algorithm is used to identify parameters, the number of par-
ticles in the swarm is set to 200, so the training data of the BP
neural network are 200 groups.

3.2.2. Parameter Identification Based on BPNN-PSO. After
training, the BPNN model will be added to the PSO algo-
rithm on the next identification procedure of the same
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industrial robot. Comparing with PSO, the objective function
is the same, but the proposed BPNN-PSO uses the trained
neural networks to predict the location of particles before
updating the particles, which can increase the convergence
ability and global search capabilities. The training flow chart
of BPNN is shown as Figure 5.

4. Simulations

4.1. Error Settings. To verify the identification model of
industrial robots, we set errors with the kinematic parameters
and the kinematic parameter-identification simulations are
carried out based on PSO and BPNN-PSO. First, we acquired
joint angle data, and set errors with kinematic parameters for
each joint, as shown in Table 3. The theoretical position can

TaBLE 4: The identified error with PSO in simulations.

Number of linkage Aa,; (mm) Ad; (mm) A6, ) Aa_, )

1 0.0994 0.0508 0.01 0.01

2 0.0577 0.5017 0.0146 0.005
3 0.065 -0.3564  0.0022  0.0149
4 0.0396 0.0115 0.012 0.0065
5 0.035 0.9515 0.0039  0.0043
6 0.229 0.0098 0.9910 -0.0260

TaBLE 5: The identified error with BPNN-PSO in simulations.

Number of linkage Ag, ; (mm) Ad,; (mm) AG,.)O ) Aa, ()

1 0.1000 0.0503 0.0101 0.01

2 0.0508 —-0.1087  0.0149  0.0049
3 0.0643 0.2521 0.0028  0.0148
4 0.0561 0.0086 0.0129  0.0064
5 0.0306 -0.3314  0.0352  0.0046
6 0.3562 0.0122 0.2028  0.3001

x1073

Position error (mm)

Number

—— Ax
—— Ay
—e— Az

FIGURE 9: The error after simulation compensation with PSO.

be calculated by (1) with the nominal kinematic parameters
(shown in Table 1). Similarly, we can obtain the reference
position (which is considered as the real one) with the kine-
matic parameter. Then the position error before identifica-
tion and compensation is calculated, as shown in Figure 6.
The simulation results of the PSO algorithm and the
BPNN-PSO algorithm are used to solve (10), and the conver-
gence speed of the fitness is shown in Figures 7 and 8, respec-
tively. The PSO algorithm achieves the minimum fitness of
5.5519E—-5 with 404 iterations. The BPNN-PSO achieves
the minimum fitness of 6.6432E -5 with 71 iterations. The
parameter error Ak identified by the two methods is shown
in Tables 4 and 5, respectively. Compared with the setting
error of the kinematic parameters, not all parameters are
accurately identified, which is due to the existence of a cou-
pling relationship among them, but it does not affect the
accuracy of compensation [27, 28]. The position error of
the two methods after compensation is shown in Figures 9



and 10. Compared with the compensation effect based on
PSO algorithm, the identification based on BPNN-PSO
can achieve nearly the same precision, but BPNN-PSO
has much fewer iteration times and faster convergence
speed. To compare the time spent in parameter identification
of the two algorithms, we performed parameter identification
on the same computer, whose configurations are 64-bit
Windows 10 operating system, 8 GB RAM, and an Intel i7
processor. The simulation results show that the time for the
identification of the two algorithm parameters is 1067 s and
183 s, respectively.

5. Experimental Verification

5.1. Experimental Data Acquisition. The data-acquisition
process consists of moving the end effector to some positions
in the workspace of the robot and recording the joint dis-
placements. In this paper, we obtained the location of the
end effector with the laser tracker. The data-acquisition
experiment platform is shown in Figure 1. We measured
the position data of the robot in 100 different poses and
recorded the joint angle data in the corresponding pose. Dur-
ing the measuring process, the position data of the robot
should be distributed evenly in the working space as much
as possible. Of the 100 groups of acquired data, 50 groups
of data are used to identify the kinematic parameters of the
robot, and the other 50 groups of data are used for indepen-
dent verification.

5.2. Experimental Results. Following data acquisition, the
identification process is performed by PSO algorithm and
BPNN-PSO algorithm. The parameters identified by the
two algorithms are given by Tables 6 and 7. Figure 11 shows
the position errors of the 50 groups of the robot before iden-
tification and compensation. The identification results of the
two algorithms are used to compensate the kinematic param-
eters’ error, and the position error after compensation is
shown in Figures 12 and 13. Figures 14 and 15 show the
iteration results and convergence rates, respectively, of
the two algorithms. From the two figures, we can know
that the PSO algorithm has a slower convergence speed
in the late stage of the search, which is due to the fact that
the particle swarm tends to be homogenous and the global
search capability becomes worse. Compared with PSO, the
BPNN-PSO has a faster convergence speed. In Table 8, the
effects of the two algorithms are compared. The experiment
results show that, compared with the PSO algorithm, the
position error after compensation based on the BPNN-PSO
algorithm is nearly the same but the convergence rate is
improved by 89%. Particularly, the time consumed by the
identification-based PSO is 1235 seconds, while the time
consumed by BPNN-PSO is only 162 seconds, which means
the identification efficiency increased by 86%.

6. Conclusions

A novel hybrid parameter-identification method based on
BPNN-PSO was proposed for industrial robots to solve the
convergence efficiency of standard PSO. The kinematic
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FiGure 10: The error after simulation compensation with BPNN-
PSO.

TasBLE 6: The identified error with PSO in experiments.

Number of linkage Ag, ; (mm) Ad,; (mm) AG,.)O ) Aa, ()

1 -0.303 1.055 0.292 0.006
2 0.323 -1.227 0.039 0.006
3 0.389 -1.380 0.063 -0.074
4 —1.487 —-1.400 0.069 0.229
5 0.204 -1.385 0.441 -0.304
6 0.053 0.572 0.195 0.338

TaBLE 7: The identified error with BPNN-PSO in experiments.

Number of linkage Aa; | (mm) Ad; (mm) A0, () Aa;, ()

1 -0.3025 1.055 0.292 0.006
2 0.352 -1.515 0.040 0.009
3 0.381 —-1.545 0.063 -0.037
4 —-1.487 -1.527 0.069 0.286
5 0.204 -1.374 0.172 -0.281
6 0.033 0.592 0.447 0.332

model was established based on the MDH model. To unify
the position data of the industrial robot and measurement
instrument, a preliminary identification of the base frame
and the tool frame were presented. The modeling and train-
ing method of BPNN-PSO were conducted to identify the
kinematic parameters. Simulations and experiments were
carried out to verify the efficiency of the proposed method.
The results showed that the identification method based on
BPNN-PSO can identify the error kinematic parameters
and improve the position accuracy of industrial robots. Com-
pared with standard PSO, the identification accuracy of
BPNN-PSO is nearly the same, but its convergence efficiency
can be significantly improved.

This work mainly aimed at improving the conver-
gence efficiency of parameter identification for industrial
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robots. Our future work will focus on improving the identifi-
cation accuracy.
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