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Articulated arm coordinate measuring machine (AACMM) is a specific robotic structural instrument, which uses D-H method
for the purpose of kinematic modeling and error compensation. However, it is difficult for the existing error compensation models
to describe various factors, which affects the accuracy of AACMM. In this paper, a modeling and error compensation method for
AACMM is proposed based on BP Neural Networks. According to the available measurements, the poses of the AACMM are used
as the input, and the coordinates of the probe are used as the output of neural network. To avoid tedious training and improve
the training efficiency and prediction accuracy, a data acquisition strategy is developed according to the actual measurement
behavior in the joint space. A neural networkmodel is proposed and analyzed by using the data generated viaMonte-Carlomethod
in simulations. The structure and parameter settings of neural network are optimized to improve the prediction accuracy and
training speed. Experimental studies have been conducted to verify the proposed algorithm with neural network compensation,
which shows that 97% error of the AACMM can be eliminated after compensation. These experimental results have revealed the
effectiveness of the proposed modeling and compensation method for AACMM.

1. Introduction

The articulated armcoordinatemeasuringmachine (AACMM)
is a specific precision measurement instrument, which has a
mechanical structure similar to a robotic arm [1]. As an open-
linkage structure, the linkages of AACMM are connected by
joints one after another, which results in error propagation
and accumulation [2, 3].Therefore, the accuracy of AACMM
is relatively lower than that of normal coordinate measuring
machines [4, 5].

There are mainly two ways to improve the accuracy
of AACMM [6–8]. The first solution is to improve the
hardware accuracy of the AACMM, such as the use of high-
precision angle encoders and improvement of the accuracy
of manufacturing and assembly. However, improving the
accuracy of the hardware will inevitably lead to increased
costs. Furthermore, the improvement on the accuracy of
hardware is also technically restricted [9]. The second solu-
tion is to conduct calibration which improves the accuracy

of the AACMM by identifying the errors of the parame-
ters and then compensating them in the kinematic models
[10]. Currently, the parameter identification and compen-
sation are the major strategies to improve the accuracy of
AACMM, and they have been the current topic in this field
[11, 12].

Santolaria et al. [13] presented an identification method
for an AACMM using nominal data collected by a ball bar
gauge, along with the algorithm and objective functions.
The method is based on a new approach including the
terms regarding the measurement accuracy and repeatability.
Zheng et al. [14] proposed multiple measurement models
built by Denavit-Hartenberg’s (DH) notation, where the
homemade standard rod components are used as a calibra-
tion tool and the Levenberg-Marquardt algorithm is applied
to solve the structural parameters in the measurement mod-
els. Benciolini and Vitti [1] presented a mathematical model
of a kinematic chain used in the design and implementation
of the algorithms that are necessary for the operation and the
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identification of an AACMM. Gao et al. [6] presented a self-
calibration method based on a D-H model and constrained
movement chains.

Currently, most of the above-mentioned kinematic mod-
els of AACMM have been developed based on D-H method,
which uses structural parameters to describe the relationship
between the coordinates of the probe and the rotation
angles of the joints. However, the real structural parameters
cannot be obtained due to the complex couplings of the
parameters in the D-H model [2]. Moreover, the struc-
tural parameters are not stable due to the measuring force,
gravity, environmental temperature, and so on. Therefore,
D-H method is not complete in the modeling and com-
pensation of AACMMs. Motivated by these facts, a new
modeling and error compensation method for AACMMs
with BP neural network (BPNN) will be proposed in this
paper.

First, the kinematic model of AACMMs with BPNN is
established with the joint angles being the input and the coor-
dinates of the probe being the output.Then, simulations were
conducted to verify the feasibility of the proposedmodel.The
training data was generated by Mont-Carlo method. And the
setting parameters of the model were optimized based on
the analysis of the further prediction simulations. To avoid
useless training and improve the training efficiency and pre-
diction accuracy, a data acquisition strategy was developed
according to the actual measurement behavior in the joint
space. To facilitate practical implementations, experimental
studies have been conducted based on a practical AACMM.
These experimental results have indicated the effective-
ness of the proposed modeling and error compensation
method.

In comparison to some other modeling and error com-
pensation methods for AACMM, the idea proposed in
this paper does not need complex kinematics calculations
and structural parameter identification. Moreover, it can
also compensate for the effect of environment temperature
variation,measuring force, gravity, and other factors affecting
the measurement accuracy.

The paper is organized as follows: Section 2 presents
the kinematic modeling with D-H method and BPNN,
respectively; simulations are conducted to determine the
structure of the BPNN and optimize the setting parameters
in Section 3 and experimental results are given in Section 4.
Section 5 provides conclusions.

2. Kinematic Modeling of AACMM

2.1. Kinematic Modeling Based on D-H Method. According
to D-H method [15], we built the coordinate systems for
each joint of the AACMM, as shown in Figures 1 and
2.

As shown in Figure 1, the coordinates (𝑥, 𝑦, 𝑧) of the probe
can be derived through six homogeneous transformations as
follows:
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Figure 1: The structure of the AACMM.

[[[[[
[

𝑥
𝑦
𝑧
1
]]]]]
]
= 𝑇0,1 ⋅ 𝑇1,2 ⋅ 𝑇2,3 ⋅ 𝑇3,4 ⋅ 𝑇4,5 ⋅ 𝑇5,6 ⋅

[[[[[
[

0
0
𝑙
1
]]]]]
]

= 6∏
𝑖=1

[[[[[
[

cos 𝜃𝑖 − sin 𝜃𝑖 cos𝛼𝑖 sin 𝜃𝑖 sin𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos𝛼𝑖 − cos 𝜃𝑖 sin𝛼𝑖 𝑎𝑖 sin 𝜃𝑖0 sin𝛼𝑖 cos𝛼𝑖 𝑑𝑖0 0 0 1

]]]]]
]

⋅ [[[[[
[

0
0
𝑙
1
]]]]]
]
,

(1)

where 𝑑𝑖 is the linkage length, 𝑎𝑖 is the joint length, 𝛼𝑖 is the
torsion angle, and 𝜃𝑖 is the joint angle. The nominal value of
each parameter in (1) is shown in Table 1.

2.2. Kinematic Modeling with BP Neural Network. There are
various factors that can influence the movement uncertainty
of AACMMs, for example, error of structural parameters,
deformation caused by the measuring force and gravity,
rotation error of joints, and thermal deformation. Hence,
it is difficult to model and compensate for all these factors
explicitly.

Back-Propagation Neural Network (BPNN), originally
proposed by Zipser et al. [16, 17], is one of the most
widely used artificial neural network with a powerful ability
of nonlinear mapping and self-learning [18–20]. With this
ability, BPNN can predict the errors of AACMMs caused
by various factors, which makes it possible to compensate
for the comprehensive errors and improve the movement
uncertainty of AACMM. Hence, this paper will apply BPNN
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Table 1: The nominal structural parameters of the AACMM.

Linkage number 𝑖 𝑎𝑖 [mm] 𝑑𝑖 [mm] Δ𝜃𝑖 [∘] 𝛼𝑖 [∘] 𝑙 [mm]
1 0 376 0 −90 98
2 62 0 0 −90
3 0 751 0 −90
4 62 0 0 −90
5 0 500 0 −90
6 0 15 0 90
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Figure 2: Coordinate systems of the AACMM.

to model AACMMs and further improve the modeling
accuracy.

The kinematic model of AACMMs based on BPNN is
established as shown in (2) with joint angles being the input
and the position (coordinates) of the probe being the output.

𝑃𝑗 (𝜃) = 𝑓( 𝑛∑
𝑗=1

𝑤𝑖𝑗𝑥𝑗 (𝜃) − 𝑇𝑗) , (2)

where 𝑥𝑗 is the input (six joint angles), 𝑤𝑖𝑗 is the neural
network’s weight fromneurons 𝑗 to 𝑖,𝑇𝑗 is the threshold of the
neuron 𝑗, 𝑓 is the activation function of neurons, and 𝑃𝑗(𝜃) is
the position of the probe.

The structure of the kinematic model based on BPNN is
shown in Figure 3. There are six neurons in the input layer
which are the six joint angles (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6). The three
neurons in the output layer are the coordinates (𝑥, 𝑦, 𝑧) of
the probe. The number of the hidden layers and the number
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Figure 3: The structure of the kinematic model based on BPNN.

of the neurons in each hidden layer will be determined by
using optimizationmethods in Sections 3 and 4.The neurons
between the layers are all fully connected.

Theoretically, it is shown that the model of neural net-
work (2) can be used to simulate the AACMM model (1)
with arbitrarily accuracy and hence can compensate for the
modeling errors. However, in practice, we need to determine
the parameters of neural network (e.g., number of neurons𝑛 and weights 𝑤𝑖𝑗 of the neural network). In this paper, we
will first determine the parameters of the neural network via
simulations, where the BP algorithm will be used to obtain
the optimized weights of neural network. Then, practical
experiments based on an AACMM will be given to validate
the improved modeling accuracy.

3. Determining the Structure and
Parameters of the BPNN

To validate the proposed kinematic model based on BPNN
and obtain the optimized parameters, Mont-Carlo simula-
tions are carried out to generate training data set for neural
network learning.

3.1. Acquisition of Training Data. According to (2), it is
known that the input of the model is the six joint angles of
the AACMM and the output is the coordinates of the probe.
The pose of the AACMM is determined by the six joint angles
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Table 2: Simulation results of different parameters of BPNN for the AACMM.

Simulation
number TD HL NN LR GA Epoch [times] Training time

[seconds]
Maximum error

[mm]
Average error

[mm](1) 10000 1 10 0.1 4𝑒 − 5 1000 124 25.9080 8.511(2) 8000 1 10 0.1 4𝑒 − 5 516 51 20.4858 8.6132(3) 5000 1 10 0.1 4𝑒 − 5 1000 64 22.6937 9.4585(4) 20000 1 10 0.1 4𝑒 − 5 586 253 22.3574 8.9189(5) 9000 1 10 0.1 4𝑒 − 5 1000 115 20.6444 8.3117(6) 10000 1 10 0.1 1𝑒 − 5 1000 127 26.887 8.8126(7) 10000 1 10 0.1 4𝑒 − 6 1000 126 25.8964 8.1825(8) 10000 1 10 1 4𝑒 − 5 360 123 21.5603 8.7369(9) 10000 1 10 0.01 4𝑒 − 5 1000 125 18.1312 8.1551(10) 10000 1 10 0.001 4𝑒 − 5 1000 125 27.6223 8.8921(11) 10000 1 10 10 4𝑒 − 5 136 17 31.2093 10.1348(12) 10000 1 3 0.1 4𝑒 − 5 1000 93 90.7123 34.1409(13) 10000 1 4 0.1 4𝑒 − 5 293 25 68.0939 26.4297(14) 10000 1 13 0.1 4𝑒 − 5 589 89 14.8641 6.3235(15) 10000 1 50 0.1 4𝑒 − 5 40 21 6.1157 2.5537(16) 10000 1 100 0.1 4𝑒 − 5 17 12 9.4408 2.8841(17) 10000 2 [20, 20] 0.1 4𝑒 − 5 38 23 11.5531 2.4639

which can be generated with the Mont-Carlo method [21].
Then the coordinates of the probe can be calculated by (1).
If there are no errors with the structural parameters, the
coordinates of the probe would be the theoretic value without
any bias.The joint angles and the coordinates will be used for
training the BPNN model.

3.2. Structure of the BPNN. The performance of BPNN is
affected by many parameters such as the amount of train-
ing data (TD), number of hidden layers (HL), number of
neuron nodes (NN), leaning rate (LR), goal accuracy (GA),
and active function (AF) [22, 23]. To obtain the optimal
parameters, extensive simulations were conducted, where
BP algorithm will be used to obtain the optimized neural
network’s weights. The maximum epochs are set to be 1000.
Tansig and Marquardt are selected as the active function and
training function, respectively. For the high nonlinearities
and complex dimension of the BPNN model built for the
AACMM, there is some randomness in the result of the
simulation. The results of the simulations were shown as
Table 2.

To test the training results, another 10 groups of joint
angles were used for prediction. The prediction and its error
response of the simulation of number (1) are shown in
Figure 4. As it is shown, after training the BPNN can predict
the coordinates (x, y, z) of the probe of the AACMM with
fairly good error response.

From the simulations of numbers (1)–(5), it is known that
increasing the amount of the training data can improve the
prediction precision, while the speed of error convergence
will be reduced. Furthermore, the influence of increasing the
number of the training data is not obvious after it reaches
a certain amount. The simulation reveals that 9000 groups
of training data are appropriate in our case study. Moreover,

the choice of the neural network’s learning rate affects the
stability and convergence of BPNNmodel directly. In general,
a large learning rate can speed up the convergence rate and
reduce training time but will lead to instability of the BPNN.
A small learning rate will increase the training time greatly.
To balance the prediction precision and the training time,
the learning rate of the BPNN is set to 0.001 according to the
results of simulations numbers (1) and (8)–(11). Simulations
of numbers (12)–(16) are used to determine the number of
nodes in the hidden neurons, among which the parameters
of numbers (12)–(14) are determined by empirical formulas.
According to these results, the number of neurons in the
single hidden layer is set to 50. Simulation of number (17)
is based on a double hidden layer BPNN; comparing with
number (15) we know that the double hidden layer BPNN
can satisfy the same requirements with fewer epochs and less
calculating time than the single BPNN.

3.3. Parameter Optimization of the BPNN. The performance
of neural networks is influenced greatly by the parameter
settings [24, 25]. To improve the accuracy of BPNN for the
AACMM, 12 simulations were conducted to optimize the
parameters by taking into account the impact of the couplings
from the parameters. To compare the performance of each
setting and search for the optimized one, the training time,
maximumerror, and average error of theAACMMare treated
as the objective functions. In the simulations, the number
of the training data is 9000, the maximum iteration is 1000,
the leaning rate is 0.01, and the target convergence accuracy
is set to 4𝑒 − 9. The results of the simulations are shown in
Table 3.

Table 3 shows that the maximum and average error
of the simulation of number (6) is the minimal. Hence,
the optimized settings of the BPNN are two HLs (hidden
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Table 3: Prediction simulation results for optimization.

Simulation
number HL NN TF GA Epoch [times] Training time

[seconds]
Maximum error

[mm]
Average error

[mm](1) 1 100 LM 4𝑒 − 5 1000 922 2.5544 0.2452(2) 1 200 LM 4𝑒 − 5 1000 2298 0.6351 0.0967(3) 1 300 LM 4𝑒 − 5 1000 4161 0.5994 0.0629(4) 2 [10, 10] LM 4𝑒 − 5 738 43 17.1128 2.6204(5) 2 [30, 30] LM 4𝑒 − 5 1000 1289 0.4888 0.0833(6) 2 [50, 50] LM 4𝑒 − 5 582 6431 0.2071 0.0315(7) 2 [40, 40] LM 4𝑒 − 5 1000 2177 0.5525 0.0467(8) 2 [80, 80] LM 4𝑒 − 5 150 2769 0.7598 0.0497(9) 2 [50, 50] LM 4𝑒 − 5 1000 4237 6.4022 0.6042(10) 2 [50, 50] LM 4𝑒 − 5 1000 4237 4.3345 0.6983(11) 2 [50, 50] ND 4𝑒 − 5 1000 24 633.8425 119.36(12) 2 [50, 50] DX 4𝑒 − 5 119 3 383.9885 105.247
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Figure 4: The prediction result and prediction error of the simulation number (1).
layers) with neuron nodes (NN) of [50, 50], LM (Levenberg-
Marquardt) method as the TF (training function), and
hyperbolic tangent S-shaped function as the AF (active
function).

4. Practical Experiments

4.1. Error before Compensation. According to (1) and Table 1,
the coordinates of the AACMM (shown in Figure 5) were
calculated and then were compared with the actual values.
The errors of the coordinates are shown in Figure 6, which are
mainly due to the errors of structural parameters including
the linkage length errors, the torsion angle errors, the joint
length errors, the probe length errors, and the joint angle
deviations [2]. With these errors, the nominal parameters of
the AACMM are not the same as the actual ones and the
kinematic model in (1) cannot describe the AACMM system
accurately. 200 poses of the AACMM are used for the test.
The maximum error is 0.8978mm and the average error is

Figure 5: The articulated arm coordinate measuring machine used
in practical experiments.

0.4492mm, which are not satisfactory for practical use. We
can see evident systematic errors in Figure 6 for the reason
that there are systematic errors in the nominal structural
parameters of Table 1.
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Table 4: Experimental training results of the BPNN model for AACMM.

Experiment
number HL NN LR GA Epoch [times] Training time

[seconds]
Maximum error

[mm]
Average error

[mm](1) 2 [50, 50] 0.01 4𝑒 − 9 100 176 0.3199 0.0293(2) 2 [40, 40] 0.01 4𝑒 − 9 704 625 0.1735 0.0201(3) 1 300 0.01 4𝑒 − 9 911 1662 0.4059 0.0503(4) 2 [30, 30] 0.01 4𝑒 − 9 1000 404 0.1428 0.0149
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Figure 6: The errors of the AACMM before compensation.

4.2. Error Compensation with BPNN Model. To further im-
prove the modeling performance, the proposed neural net-
work model (2) is then adopted, and the neural network’s
training procedure as proposed in Section 3 will be run again
to determine the neural network’s parameters and topology.
In this case study, 3100 poses of the AACMM are acquired,
among which 3000 poses are used to train the BPNN model
and the other 100 poses are used to test the prediction
accuracy of the BPNN. The training results are shown in
Table 4. To simplify the procedure of obtaining the optimum
parameters, the training settings in Table 4 are based on the
results of Section 3.3.

It is shown that it is feasible to predict the coordinates
of the AACMM with satisfactory response by using the
prediction values. In particular, from Table 4, we know that
the prediction accuracy of the experiment of number (4)
is the highest with the maximum error of 0.1428mm and
the average error of 0.0149mm. Compared to the settings
in Section 3.3, the optimum neuron nodes are not the same
in simulations and experiments for the difference data used
in simulations and experiments. In simulations, the actual
noises of the data, for example, variation of temperature,
structural deformation of the AACMM, and limited accuracy
of the joint angles, are not considered.

After determining the BPNN topology and deriving
the BPNN parameters, another 200 groups of poses of the
AACMM are acquired to test the trained BPNN model
with the settings of number (4) in Table 4. The prediction
coordinates and prediction errors of the BPNN model are
shown in Figures 7 and 8. The maximum error is 0.0873mm
and the average error is 0.0136mm.According to the traversal
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Figure 7: The prediction coordinates of the BPNN model for the
AACMM.

0 20 40 60 80 100 120 140 160 180 200
−0.1

−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

Er
ro

r (
m

m
)

Number of poses 

X

Y

Z

Figure 8: Prediction error of the BPNN model for the AACMM.

of the error we found that there are 3 coordinate errors which
are greater than 0.08mm and 13 coordinate errors which are
greater than 0.05mm in the 600 coordinates (200 groups of
poses).Wehave the conclusion that the prediction error is less
than 0.05mm in the principle of 2 Sigma [5]. By comparing
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Figures 6 and 8, we know that after the error compensation
with the BPNN model the average error of the AACMM is
reduced from 0.4492mm to 0.0136mm, which means 97%
error is removed. Therefore, the BPNN model for AACMM
is feasible in practice.

5. Conclusions

A modeling and error compensation approach based on
BPNN has been presented for AACMMs in this paper. The
kinematicmodel of AACMMswith BPNN is establishedwith
the joint angles being the input and the coordinates of the
probe being the output. The training data was first generated
byMont-Carlomethod andused to determine the parameters
of neural network. And BP training algorithm is used to
obtain the optimized neural network’s parameters. According
to the simulation results, the structure of the BPNN model
can be determined with satisfactory error performance. And
the setting parameters of the model were optimized based
on the analysis of the further prediction simulations. To
facilitate practical implementations, experimental studies
have been conducted based on a practical AACMM. After
error compensationwith the BPNNmodel, 97% average error
of the AACMM was eliminated. These experimental results
have shown the effectiveness of the proposed modeling and
error compensation method. Therefore, for other AACMM
applications, the traditional D-H model can be replaced by
the BPNN model which avoids using complex kinematics
calculation and structural parameter identification. The pro-
posed BPNNmodel forAACMMcan also compensate for the
effect of environment temperature, measuring force, gravity,
and other factors on the measurement accuracy.

The effectiveness of the proposed modeling and com-
pensation method relies on a training phase which needs
to acquire some data set of poses and coordinates of the
AACMM. Hence, optimization of the setting of the neural
network and use of other new neural networks may further
improve the effectiveness of the error compensation.This will
be further studied in our future work.
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