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Abstract

It is a fundamental and widely accepted assumption that a measure-
ment result exists universally, and in particular, it exists for every ob-
server, independently of whether the observer makes the measurement or
knows the result. In this paper, we will argue that, based on an analysis of
protective measurements, this assumption is rejected by the many-worlds
interpretation of quantum mechanics, and worlds, if they indeed exist ac-
cording to the interpretation, can only exist relative to systems which are
decoherent with respect to the measurement result.

In standard quantum mechanics, it is postulated that when the wave func-
tion of a quantum system is measured by a macroscopic device, it no longer
follows the linear Schrödinger equation, but instantaneously collapses to one of
the wave functions that correspond to definite measurement results. However,
this collapse postulate is ad hoc, and the theory does not tell us why and how
a definite measurement result appears. This measurement problem is widely
acknowledged as the most difficult problem in the foundations of quantum me-
chanics. One way to solve the problem is to reject the collapse postulate and
assume that the Schrödinger equation completely describes the evolution of the
wave function. There are two main alternative theories for avoiding collapse.
The first one is the de Broglie-Bohm theory (de Broglie 1928; Bohm 1952), which
takes the wave function as an incomplete description and adds some hidden vari-
ables to explain the emergence of definite measurement results. The second one
is the many-worlds interpretation (Everett 1957; DeWitt and Graham 1973),
which assumes the existence of many equally real worlds corresponding to all
possible results of quantum experiments and still regards the unitarily evolving
wave function as a complete description of the total worlds.

Although the many-worlds interpretation is one of the main alternatives to
quantum mechanics, its many fundamental issues, e.g. the preferred basis prob-
lem and the interpretation of probability, have not been completely solved yet
(see Barrett 1999, 2011; Saunders et al 2010 and references therein). In this
paper, we will try to answer a basic question about the stuff of these worlds,
namely whether everything in the universe, no matter it interacts with a deco-
herent measuring device or observer, has a copy in each of the worlds formed
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by the measuring process. According to some authors (e.g. Barrett 2011), the
answer seems to be yes, while according to others (e.g. Wallace 2012), the an-
swer may be no. Here we will give a simple proof that worlds, if they indeed
exist according to the many-world interpretation, can only exist relative to the
systems which are decoherent with respect to the measurement result. In other
words, the many-worlds interpretation of quantum mechanics must reject the
fundamental assumption that a measurement result, once it has been recorded
by a measuring device or an observer, does not merely exist relative to this mea-
suring device or observer, and it also exists for other non-decoherent observers
who does not make the measurement or know the result.

According to the many-worlds interpretation, the components of the wave
function of a measuring device, each of which represents a definite measure-
ment result, correspond to many worlds (Vaidman 2008; Barrett 2011). What,
then, is each of these worlds composed of? It seems natural to assume that
everything in the universe has a copy in each world. Obviously, when a sys-
tem does not interact with the measuring device, its copyies in all worlds are
exactly the same. It is unsurprising that the existence of such worlds may
be consistent with the results of conventional impulsive measurements1, as the
many-worlds interpretation is just invented to explain the emergence of these
results, e.g. the definite measurement result in each world always denotes the
result of a conventional impulsive measurement. However, this does not guar-
antee consistency for all types of measurements. It has been known that there
exists another type of measurement, the protective measurement (Aharonov
and Vaidman 1993; Aharonov, Anandan and Vaidman 1993; Aharonov, Anan-
dan and Vaidman 1996). Like conventional impulsive measurement, protective
measurement also uses the standard measuring procedure, but with a weak,
adiabatic coupling and an appropriate protection. Its general method is to let
the measured system be in a nondegenerate eigenstate of the whole Hamilto-
nian using a suitable protective interaction, and then make the measurement
adiabatically. This permits protective measurement to be able to measure the
expectation values of observables on a single quantum system. In particular, the
wave function of the system can also be measured by protective measurement
as expectation values of certain observables (see the Appendix)2.

It can be seen that the existence of the above worlds is inconsistent with the
results of protective measurements. The reason is that the whole superposed
wave function of a measuring device can be directly measured by a series of
protective measurements in a single world, namely our world3. The results of
the protective measurements as predicted by quantum mechanics indicate that
all components of the wave function of the measuring device exist in our world.
Therefore, according to protective measurements, the superposed wave function
of a measuring device do not correspond to many worlds, one of which is our

1It should be pointed out that the consistency is still debated due to the controversial
interpretation of probability. For more discussions see Saunders et al (2010) and references
therein.

2Note that the earlier objections to the validity of protective measurements have been
answered (Aharonov, Anandan and Vaidman 1996; Dass and Qureshi 1999; Vaidman 2009;
Gao 2012).

3Protective measurement generally requires that the measured wave function is known
beforehand so that an appropriate protective interaction can be added. But this requirement
does not influence our argument, as the superposed wave function of a measuring device can
be prepared in a known form before the protective measurement.
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world.
Several points needs to be clarified regarding this argument. First of all,

the above argument does not depend on how many worlds are precisely de-
fined in the many-worlds interpretation. In particular, it is independent of
whether worlds are fundamental or emergent, e.g. it also applies to the recent
formulation of the many-worlds interpretation based on a structuralist view on
macro-ontology (Wallace 2003, 2012). The key point is that all components of
the superposed wave function of a measuring device can be detected by protec-
tive measurements in a single world, namely our world, and thus they all exist
in this world. Therefore, it is impossible that the superposed wave function
of a measuring device corresponds to many worlds, one of which is our world.
Note that this objection is more serious than the problem of approximate de-
coherence for the many-worlds interpretation (cf. Janssen 2008). Although the
interference between the nonorthogonal components of a wave function can be
detected in principle due to the unitary dynamics, it cannot be detected for indi-
vidual states, but only be detected for an ensemble of identical states. Moreover,
the presence of tiny interference terms in a (local) wave function in our world
does not imply that all components of the wave function wholly exist in this
world. For example, it is possible to explain the interference by assuming that
each world has most of one component of the wave function that represents a
definite measurement result and tiny parts of other components.

Next, the above argument is not influenced by environment-induced deco-
herence. Even if the superposition state of a measuring device is entangled
with the states of other systems, the entangled state of the whole system can
also be measured by protective measurement in principle (Anandan 1993). The
method is by adding appropriate protection procedure to the whole system so
that its entangled state is a nondegenerate eigenstate of the total Hamiltonian
of the system together with the added potential. Then the entangled state can
be protectively measured. On the other hand, we note that if environment-
induced decoherence is an essential element of the many-worlds interpretation,
then the theory will be inconsistent with standard quantum mechanics. When
a measuring device is isolated from environment, standard quantum mechanics
still predicts that the device can obtain a definite result, while the many-worlds
theory will predict the opposite due to the lack of environment-induced deco-
herence.

Thirdly, the above argument does not require protective measurement to be
able to distinguish the superposed wave function of a measuring device from
one of its components, or whether the superposed wave function collapses or
not during an impulsive measurement. Since the determination demands the
distinguishability of two non-orthogonal states, which is prohibited by quantum
mechanics, no measurements consistent with the theory including protective
measurement can do this. Fourthly, we stress again that the principle of protec-
tive measurement is independent of the controversial process of wavefunction
collapse and only depends on the linear Schrödinger evolution and the Born
rule. As a result, protective measurement can (at least) be used to examine the
internal consistency of the no-collapse solutions to the measurement problem,
e.g. the many-worlds interpretation, before experiments give the last verdict4.

In order to save the many-worlds interpretation from the above serious ob-

4For a more detailed analysis of the implications of protective measurement see Gao (2013).
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jection posed by protective measurements, one must drop the initial assumption
that everything in the universe has a copy in each world. In particular, one must
assume that worlds, if they can indeed be formed by a quantum measurement,
can only exist relative to the systems which are decoherent with respect to the
measurement result. According to the principle of protective measurement, only
observers (or measuring devices) whose states are not entangled with the super-
posed wave function of a measuring device can make a protective measurement
of the wave function, while observers who are decoherent with respect to the
result obtained by the device cannot make a protective measurement of its wave
function. Then by dropping the initial assumption and assuming the relativity
of worlds, the many-worlds interpretation can be saved. For the observers in
each world must be already decoherent with respect to the result obtained by
the device, and thus they cannot make the protective measurement required by
the above argument5.

To sum up, we have argued that in order to be consistent with quantum
mechanics, worlds must be relative in the many-worlds interpretation. This
means that a measurement result exists only relative to the systems which are
decoherent with respect to the measurement result, and it does not exist for non-
decoherent observers who does not make the measurement or know the result.
This seems to lead to the so-called relative facts interpretation proposed by
Saunders (1995, 1998). Whether such an approach can be ultimately satisfactory
deserves further investigation.
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Appendix: Protective measurement of the wave
function of a single quantum system

As a typical example of protective measurement, consider a quantum system in
a discrete nondegenerate energy eigenstate |En〉. In this case, the system itself
supplies the protection of the state due to energy conservation and no artificial
protection is needed.

The interaction Hamiltonian for a protective measurement of an observable
A in this state involves the same interaction Hamiltonian as the standard mea-
suring procedure:

HI = g(t)PA, (1)

where P is the momentum conjugate to the pointer variable X of an appro-
priate measuring device. The time-dependent coupling strength g(t) is also a
smooth function normalized to

∫
dtg(t) = 1. But different from conventional

impulse measurements, for which the interaction is very strong and almost in-
stantaneous, protective measurements make use of the opposite limit where the
interaction of the measuring device with the system is weak and adiabatic. Con-
cretely speaking, the interaction lasts for a long time T , and g(t) is very small
and constant for the most part, and it goes to zero gradually before and after
the interaction.

Let the total Hamiltonian of the combined system be

H(t) = HS +HD + g(t)PA, (2)

where HS and HD are the Hamiltonians of the measured system and the mea-
suring device, respectively. Let the initial state of the pointer at t = 0 be
|φ(x0)〉, which is a Gaussian wave packet of eigenstates of X with width w0,
centered around the eigenvalue x0. Then the state of the combined system after
T is

|t = T 〉 = e−
i
h̄

∫ T
0

H(t)dt |En〉 |φ(x0)〉 . (3)

By ignoring the switching on and switching off processes6, the full Hamiltonian
(with g(t) = 1/T ) is time-independent and no time-ordering is needed. Then
we obtain

|t = T 〉 = e−
i
h̄HT |En〉 |φ(x0)〉 , (4)

where H = HS +HD + PA
T . We further expand |φ(x0)〉 in the eigenstate of HD,∣∣Ed

j

〉
, and write

|t = T 〉 = e−
i
h̄HT

∑
j

cj |En〉
∣∣Ed

j

〉
, (5)

6The change in the total Hamiltonian during these processes is smaller than PA/T , and
thus the adiabaticity of the interaction will not be violated and the approximate treatment
given below is valid. For a more strict analysis see Dass and Qureshi (1999).
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Let the exact eigenstates of H be |Ψk,m〉 and the corresponding eigenvalues be
E(k,m), we have

|t = T 〉 =
∑
j

cj
∑
k,m

e−
i
h̄E(k,m)T 〈Ψk,m|En, E

d
j 〉|Ψk,m〉. (6)

Since the interaction is very weak, the Hamiltonian H of Eq.(2) can be
thought of as H0 = HS + HD perturbed by PA

T . Using the fact that PA
T is a

small perturbation and that the eigenstates of H0 are of the form |Ek〉
∣∣Ed

m

〉
,

the perturbation theory gives

|Ψk,m〉 = |Ek〉
∣∣Ed

m

〉
+O(1/T ),

E(k,m) = Ek + Ed
m +

1

T
〈A〉k〈P 〉m +O(1/T 2). (7)

Note that it is a necessary condition for Eq.(7) to hold that |Ek〉 is a nonde-
generate eigenstate of HS . Substituting Eq.(7) in Eq.(6) and taking the large
T limit yields

|t = T 〉 ≈
∑
j

e−
i
h̄ (EnT+Edj T+〈A〉n〈P 〉j)cj |En〉

∣∣Ed
j

〉
. (8)

When P commutes with the free Hamiltonian of the device, i.e., [P,HD] = 0,
the eigenstates

∣∣Ed
j

〉
of HD are also the eigenstates of P , and thus the above

equation can be rewritten as

|t = T 〉 ≈ e− i
h̄EnT−

i
h̄HDT− i

h̄ 〈A〉nP |En〉 |φ(x0)〉 . (9)

It can be seen that the third term in the exponent will shift the center of the
pointer |φ(x0)〉 by an amount 〈A〉n:

|t = T 〉 ≈ e− i
h̄EnT−

i
h̄HDT |En〉 |φ(x0 + 〈A〉n)〉. (10)

This shows that the center of the pointer shifts by 〈A〉n at the end of the
interaction. For the general case where [P,HD] 6= 0, we can also obtain the
similar result. Thus protective measurement can measure the expectation value
of the measured observable in the measured state.

Let the explicit form of |En〉 be ψ(x), and the measured observable A be
(normalized) projection operators on small spatial regions Vn having volume vn:

A =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(11)

A protective measurement of A then yields

〈A〉 =
1

vn

∫
Vn

|ψ(x)|2dv, (12)

which is the average of the density ρ(x) = |ψ(x)|2 over the small region Vn.
Similarly, we can measure another observable B = h̄

2mi (A∇ +∇A). The mea-
surement yields

〈B〉 =
1

vn

∫
Vn

h̄

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)dv =

1

vn

∫
Vn

j(x)dv. (13)
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This is the average value of the flux density j(x) in the region Vn. Then when
vn → 0 and after performing measurements in sufficiently many regions Vn we
can measure ρ(x) and j(x) everywhere in space.

Since the wave function ψ(x, t) can be uniquely expressed by ρ(x, t) and
j(x, t) (except for a constant phase factor):

ψ(x, t) =
√
ρ(x, t)e

im
∫ x
−∞

j(x′,t)
ρ(x′,t)dx

′/h̄
, (14)

the whole wave function of the measured system can be measured by protective
measurement.
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