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Abstract

There are three possible interpretations of the wave function in the
de Broglie-Bohm theory: taking the wave function as corresponding to a
physical entity or a property of the Bohmian particles or a law. In this
paper, we argue that the first interpretation is favored by an analysis of
protective measurements.

The de Broglie-Bohm theory is an alternative to standard quantum mechan-
ics initially proposed by de Broglie (1928) and later developed by Bohm (1952).
According to the theory, a complete description of a quantum system is provided
by the configuration defined by the positions of its particles together with its
wave function. The wave function follows the linear Schrödinger equation and
never collapses. The motion of the particles, which are usually called Bohmian
particles, follows the so-called guiding equation. Although the de Broglie-Bohm
theory is mathematically equivalent to quantum mechanics, there is no clear
consensus with regard to its physical interpretation. In particular, the interpre-
tation of the wave function in the theory has been debated by its proponents.
According to a recent review (Belot 2012), there are mainly three interpretations
of the wave function in the de Broglie-Bohm theory: taking the wave function as
corresponding to a physical entity different from the Bohmian particles, taking
the wave function as corresponding to a property of the Bohmian particles, and
taking the wave function as corresponding to a law. In this paper, we will argue
that the first interpretation of the wave function is favored by an analysis of
protective measurements.

The meaning of the wave function is often analyzed in the context of conven-
tional (impulsive) measurements, for which the coupling between the measuring
device and the measured system is very strong and almost instantaneous, and
the measurement results are the eigenvalues of the measured observable. Due to
the resulting collapse of the wave function, such impulsive measurements cannot
measure the actual physical state of the measured system and determine what
its wave function represents (when the system is not in one of the eigenstates
of the measured observable). Fortunately, it has been known that the coupling
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strength and the measuring time can be adjusted for a standard measurement
procedure, and there also exist other kinds of measurements such as weak mea-
surements and protective measurements (Aharonov, Albert and Vaidman 1988;
Aharonov and Vaidman 1993; Aharonov, Anandan and Vaidman 1993)1. Pro-
tective measurement uses a weak and long duration coupling interaction and an
appropriate procedure to protect the measured system from being disturbed. A
general scheme is to let the measured system be in a nondegenerate eigenstate
of the whole Hamiltonian using a suitable protective interaction (in some situa-
tions the protection is provided by the measured system itself), and then make
the measurement adiabatically so that the state of the system neither collapses
nor becomes entangled with the measuring device appreciably. In this way, such
protective measurements can measure the expectation values of observables on
a single quantum system. Since the principle of protective measurements is
independent of the controversial collapse postulate, their results as predicted
by quantum mechanics can be used to examine the no-collapse alternatives to
quantum mechanics such as the de Broglie-Bohm theory.

An immediate implication of protective measurements is that the result of a
protective measurement, namely the expectation value of the measured observ-
able in the measured state, reflects the actual physical state of the measured
system2, as the system is not disturbed after this result has been obtained3.
This is in accordance with the fundamental assumption that the result of a
measurement that does not disturb the measured system reflects the actual
property or state of the system. Moreover, since the wave function can be re-
constructed from the expectation values of a sufficient number of observables,
it is a representation of the physical state4.

This result can be illustrated with a specific example (Aharonov and Vaid-
man 1993). Consider a quantum system in a discrete nondegenerate energy
eigenstate ψ(x). In this case, the system itself supplies the protection of the
state due to energy conservation and no artificial protection is needed. We take
the measured observable An to be (normalized) projection operators on small
spatial regions Vn having volume vn:

1Note that weak measurements have been implemented in experiments (Lundeen et al
2011), and it can be reasonably expected that protective measurements can also be imple-
mented in the near future with the rapid development of quantum technologies.

2Several authors, including the inventors of protective measurements, have obtained the
similar conclusion as given here (Aharonov and Vaidman 1993; Anandan 1993; Dickson 1995).
However, their arguments seem to rely on the presupposition that protective measurements are
completely reliable. As pointed out notably by Dass and Qureshi (1999), this presupposition
is wrong, as a realistic protective measurement can never be performed on a single quantum
system with absolute certainty. Our argument here avoids this problem.

3For a realistic protective measurement whose measuring interval T is finite, there is always
a tiny probability proportional to 1/T 2 to obtain a different result, and after obtaining the
result the measured state also collapses to the state corresponding to the result. However, the
key point here is that when the measurement obtains the expectation value of the measured
observable, the state of the measured system is not disturbed. Moreover, the above probability
can be made arbitrarily small in principle when T approaches infinity, as well as negligibly
small in practice by making T sufficiently large.

4This implication is independent of whether the wave function of the system is known
beforehand for protective measurements. The reason is that even though we know the wave
function, which is an abstract mathematical object, we still don’t know its physical meaning.
An initial analysis of what physical state the wave function represents has been given by Gao
(2013).
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An =

{
1
vn
, if x ∈ Vn,

0, if x 6∈ Vn.
(1)

An adiabatic measurement of An then yields

〈An〉 =
1

vn

∫
Vn

|ψ(x)|2dv, (2)

which is the average of the density ρ(x) = |ψ(x)|2 over the small region Vn.
Similarly, we can measure another observable Bn = ~

2mi (An∇ + ∇An). The
measurement yields

〈Bn〉 =
1

vn

∫
Vn

~
2mi

(Ψ∗∇Ψ−Ψ∇Ψ∗)dv =
1

vn

∫
Vn

j(x)dv. (3)

This is the average value of the flux density j(x) in the region Vn. Then when
vn → 0 and after performing measurements in sufficiently many regions Vn we
can obtain ρ(x) and j(x) everywhere in space5. Since the measured system is
not disturbed after the above measurement results, namely the density ρ(x) and
flux density j(x), have been obtained, these results reflect the actual physical
state of the measured system. Moreover, since the wave function ψ(x, t) can be
uniquely expressed by ρ(x, t) and j(x, t) (except for an overall phase factor), it
also represents the underlying physical state.

Now we can examine the three interpretations of the wave function in the de
Broglie-Bohm theory in terms of the above analysis of protective measurements.
It can be seen that the analysis favors the first interpretation and disfavors the
other two interpretations. If the wave function corresponds to a law, then
the results of the above protective measurements made throughout the whole
space can hardly be explained. A law, unlike a physical entity, has no direct
manifestation in the physical space. By contrast, if taking the wave function as
a representation of the state of a physical entity, then these results can readily
be explained as the manifestation of the entity. It is obvious that the physical
entity is not localized in one position but distributed throughout space, and it
is not the Bohmian particle of the measured system6. Therefore, at least for
one-body systems, the wave function represents the state of a physical entity
which is distinct from the Bohmian particle in the de Broglie-Bohm theory.

It is worth noting that the above argument is not influenced by the con-
cept of effective wave function in the de Broglie-Bohm theory (cf. Esfeld et
al 2012). First, it is logically possible that the universal wave function can be
decoupled into a direct product of the wave functions of some subsystems and
the wave function of all others. Then these subsystems can be used as measured
systems and measuring devices for protective measurements in the above argu-
ment. Next, experiments show that we can always prepare a system whose wave
function is a pure state, which means that the universal wave function can be

5When the interaction Hamiltonian of these protective measurements is physically realized
by the electromagnetic or gravitational interaction between the measured system and the
measuring device, it can be argued that what the protective measurements measure is the
charge or mass density and flux density of a physical entity. For details see Gao (2013).

6It has been shown that during the protective measurements the Bohmian particle of the
measured system remains still and does not generate the measurement results (Aharonov,
Englert and Scully 1999; Drezet 2006).
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decoupled into a direct product of the wave function of this system and the wave
function of all other systems. Moreover, we can also prepare a measured system
and a measuring device whose wave functions are independent of each other and
not entangled with the wave function of all others, which is required by a pro-
tective measurement (as well as by a conventional measurement). Thirdly, even
though the (effective) wave function of a system may be taken as encoding the
information of the Bohmian particles of all other systems as argued by Esfeld et
al (2012), its direct manifestation in the physical space (as revealed by protec-
tive measurements) can hardly be accounted for according to the nomological
interpretation of the wave function.

Lastly, we will briefly discuss the meaning of the wave function for many-
body systems, without referring to which our analysis will be incomplete. It
is well known that the wave function of a many-body system lives not in real
space but in the configuration space. This seems to pose some difficulties when
interpreting the wave function as representing the state of a physical entity
(see, e.g. Belot 2012; Esfeld et al 2012). However, these difficulties arise largely
because of directly taking the physical entity as a field. A further analysis
of protective measurements suggests that the wave function may describe the
state of certain ergodic motion of particles in real space7, and at a deeper level,
it may represent the property of these particles that determines their motion
(Gao 2013)8. In this view, the physical entity described by the wave function
of a one-body system, which is distributed throughout space and measurable
by protective measurements, is formed by the ergodic motion of a particle, for
which the probability density that this particle appears in every position is equal
to the modulus squared of its wave function there.

Appendix: Mathematical formulation of protec-
tive measurement

Protective measurement, in the language of standard quantum mechanics, is a
method to measure the expectation value of an observable on a single quantum
system (Aharonov and Vaidman 1993; Aharonov, Anandan and Vaidman 1993;
Aharonov, Anandan and Vaidman 1996; Vaidman 2009). As a typical example,
we consider a quantum system in a discrete nondegenerate energy eigenstate
|En〉. In this case, the system itself supplies the protection of the state due to
energy conservation and no artificial protection is needed9.

According to the standard von Neumann procedure, measuring an observable
A in this state involves an interaction Hamiltonian

7Note that the motion of the Bohmian particles is not ergodic in the de Broglie-Bohm
theory (Aharonov, Erez and Scully 2004).

8This view is also supported by the analyses of Monton (2002, 2006) and Lewis (2004,
2011) from other angles. For example, according to Monton (2006), “the wave function can
correspond to a property possessed by the system of all the particles in the universe”.

9As will be shown below, before the protective measurement we only need to know the
measured state is a discrete nondegenerate energy eigenstate of the Hamiltonian of the system,
and we need not to know the measured state or the Hamiltonian of the system or the measured
state is one of a known collection of energy eigenstates. In this case, by a conventional
impulsive measurement we can only measure the energy of the system, and we cannot measure
the expectation value of any other observable of the system (as well as the wave function of
the system). Note also that for a protective measurement the measured observable does not
necessarily commute with the system’s Hamiltonian either.
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HI = g(t)PA (4)

coupling the measured system to an appropriate measuring device, where P is
the momentum conjugate to the pointer variable X of an appropriate measuring
device. The time-dependent coupling strength g(t) is a smooth function nor-
malized to

∫
dtg(t) = 1 during the interaction interval T , and g(0) = g(T ) = 0.

The initial state of the pointer at t = 0 is supposed to be |φ(x0)〉, which is a
Gaussian wave packet of eigenstates of X with width w0, centered around the
eigenvalue x0.

For a conventional impulsive measurement, the interaction HI is of very
short duration and so strong that it dominates the rest of the Hamiltonian (i.e.
the effect of the free Hamiltonians of the measuring device and the measured
system can be neglected). Then the state of the combined system at the end of
the interaction can be written as

|t = T 〉 = e−
i
~PA |En〉 |φ(x0)〉 . (5)

By expanding |En〉 in the eigenstates of A, |ai〉, we obtain

|t = T 〉 =
∑
i

e−
i
~Paici |ai〉 |φ(x0)〉 , (6)

where ci are the expansion coefficients. The exponential term shifts the center
of the pointer by ai:

|t = T 〉 =
∑
i

ci |ai〉 |φ(x0 + ai)〉 . (7)

This is an entangled state, where the eigenstates of A with eigenvalues ai get
correlated to measuring device states in which the pointer is shifted by these
values ai. Then by the collapse postulate of standard quantum mechanics,
the state will instantaneously and randomly collapse into one of its branches
|ai〉 |φ(x0 + ai)〉 with probability |ci|2. This means that the measurement result
can only be one of the eigenvalues of measured observable A, say ai, with a
certain probability, say |ci|2. The expectation value of A is then obtained as
the statistical average of eigenvalues for an ensemble of identically prepared
systems, namely 〈A〉 =

∑
i |ci|2ai.

Different from the conventional impulsive measurements, for which the inter-
action is very strong and almost instantaneous, protective measurements make
use of the opposite limit where the interaction of the measuring device with
the system is weak and adiabatic, and thus the free Hamiltonians cannot be
neglected. Let the Hamiltonian of the combined system be

H(t) = HS +HD + g(t)PA, (8)

where HS and HD are the free Hamiltonians of the measured system and the
measuring device, respectively. The interaction lasts for a long time T , and g(t)
is very small and constant for the most part, and it goes to zero gradually before
and after the interaction.

The state of the combined system after T is given by

|t = T 〉 = e−
i
~
∫ T
0

H(t)dt |En〉 |φ(x0)〉 . (9)
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By ignoring the switching on and switching off processes10, the full Hamiltonian
(with g(t) = 1/T ) is time-independent and no time-ordering is needed. Then
we obtain

|t = T 〉 = e−
i
~HT |En〉 |φ(x0)〉 , (10)

where H = HS +HD + PA
T . We further expand |φ(x0)〉 in the eigenstate of HD,∣∣Ed

j

〉
, and write

|t = T 〉 = e−
i
~HT

∑
j

cj |En〉
∣∣Ed

j

〉
, (11)

Let the exact eigenstates of H be |Ψk,m〉 and the corresponding eigenvalues be
E(k,m), we have

|t = T 〉 =
∑
j

cj
∑
k,m

e−
i
~E(k,m)T 〈Ψk,m|En, E

d
j 〉|Ψk,m〉. (12)

Since the interaction is very weak, the Hamiltonian H of Eq.(8) can be
regarded as H0 = HS + HD perturbed by PA

T . Using the fact that PA
T is a

small perturbation and that the eigenstates of H0 are of the form |Ek〉
∣∣Ed

m

〉
,

the perturbation theory gives

|Ψk,m〉 = |Ek〉
∣∣Ed

m

〉
+O(1/T ),

E(k,m) = Ek + Ed
m +

1

T
〈A〉k〈P 〉m +O(1/T 2). (13)

Substituting Eq.(13) in Eq.(12) and taking the limit T →∞ yields

|t = T 〉T→∞ =
∑
j

e−
i
~ (EnT+Ed

j T+〈A〉n〈P 〉j)cj |En〉
∣∣Ed

j

〉
. (14)

For the case where P commutes with the free Hamiltonian of the device11,
i.e., [P,HD] = 0, the eigenstates

∣∣Ed
j

〉
of HD are also the eigenstates of P , and

thus the above equation can be rewritten as

|t = T 〉T→∞ = e−
i
~EnT− i

~HDT− i
~ 〈A〉nP |En〉 |φ(x0)〉 . (15)

It can be seen that the third term in the exponent will shift the center of the
pointer |φ(x0)〉 by an amount 〈A〉n:

|t = T 〉T→∞ = e−
i
~EnT− i

~HDT |En〉 |φ(x0 + 〈A〉n)〉. (16)

This indicates that the result of the protective measurement is the expectation
value of the measured observable in the measured state, and moreover, the
measured state is not changed by the protective measurement12.

10The change in the total Hamiltonian during these processes is smaller than PA/T , and
thus the adiabaticity of the interaction will not be violated and the approximate treatment
given below is valid.

11For the derivation for the case [P,HD] 6= 0 see Dass and Qureshi (1999).
12It might be worth noting that there appeared numerous objections to the validity of

protective measurements (see, e.g. Unruh 1994; Rovelli 1994; Ghose and Home 1995; Uffink
1999), and these objections have been answered (Aharonov, Anandan and Vaidman 1996; Dass
and Qureshi 1999; Vaidman 2009; Gao 2012). For a more detailed introduction to protective
measurements see Gao (2013).
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This strict mathematical result can also be understood in terms of the adi-
abatic theorem and the first order perturbation theory in quantum mechanics.
By the adiabatic theorem, the adiabatic interaction during the protective mea-
surement ensures that the measured system cannot make a transition from one
discrete energy eigenstate to another. Moreover, according to the first order
perturbation theory, for any given value of P , the energy of the measured en-
ergy eigenstate shifts by an infinitesimal amount: δE = 〈HI〉 = P 〈A〉n/T ,
and the corresponding time evolution e−iP 〈A〉n/~ then shifts the pointer by the
expectation value 〈A〉n.
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