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Abstract

The ontological status of the wave function in quantum mechanics is
usually analyzed in the context of conventional impulsive measure-
ments. These analyses are always based on some nontrivial assump-
tions, e.g. a preparation independence assumption is needed to prove
the PBR theorem. In this paper, we point out that the reality of the
wave function can be argued without resorting to nontrivial assump-
tions by analyzing protective measurements, by which one can measure
the expectation values of observables on a single quantum system. The
existing objections to this argument are answered. Moreover, we also
give a PBR-like argument for the reality of the wave function in terms
of protective measurements.

The physical meaning of the wave function has been a hot topic of de-
bate in the foundations of quantum mechanics. A long-standing question
is whether the wave function relates only to an ensemble of identically pre-
pared systems or directly to the state of a single system. Recently, Pusey,
Barrett and Rudolph demonstrated that under a preparation independence
assumption, the wave function is a representation of the physical state of a
single quantum system (Pusey, Barrett and Rudolph 2012)|H This poses a
further interesting question, namely whether the reality of the wave function
can be argued without resorting to nontrivial assumptions such as the prepa-
ration independence assumption (cf. Lewis et al 2012; Leifer and Maroney
2013; Patra, Pironio and Massar 2013). In this paper, we will argue that
protective measurements, by which one can measure the expectation values
of observables on a single quantum system (Aharonov and Vaidman 1993;
Aharonov, Anandan and Vaidman 1993), already provide such an argument.

!For more discussions about the Pusey-Barrett-Rudolph theorem or PBR theorem, see
Colbeck and Renner (2012); Schlosshauer and Fine (2012, 2013); Wallden (2013).
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The ontological status of the wave function in quantum mechanics is
usually analyzed in the context of conventional impulsive measurements.
Although the wave function of a quantum system is in general extended
over space, one can only detect the system in a random position in space by
an (impulsive) position measurement, and the probability of detecting the
system in the position is given by the modulus squared of the wave function
there. Thus it seems reasonable for a realist to assume that the wave function
does not refer directly to the physical state of the system but only relate
to the state of an ensemble of identically prepared systems. Although there
are several interesting theorems such as the PBR theorem which reject this
epistemic view of the wave function, these theorems always depend on some
nontrivial assumptions. By denying these nontrivial assumptions, one can
still restore the epistemic view of the wave function. Moreover, it has been
demonstrated that additional assumptions are always necessary to rule out
the epistemic view of the wave function when considering only conventional
impulsive measurements (Lewis et al 2012).

Thanks to the important discoveries of Yakir Aharonov and Lev Vaidman
et al, it has been known that there exist other kinds of quantum measure-
ments such as weak measurements and protective measurements (Aharonov,
Albert and Vaidman 1988; Aharonov and Vaidman 1990; Aharonov and
Vaidman 1993; Aharonov, Anandan and Vaidman 1993). In particular, by
a series of protective measurements on a single quantum system, one can
detect the system in all regions where its wave function extends and further
measure the whole wave function of the system (Aharonov and Vaidman
1993; Aharonov, Anandan and Vaidman 1993). During a protective mea-
surement, the measured state is protected by an appropriate procedure (e.g.
via the quantum Zeno effect) so that it neither changes nor becomes entan-
gled with the state of the measuring device appreciably. In this way, such
protective measurements can measure the expectation values of observables
on a single quantum system, even if the system is initially not in an eigen-
state of the measured observable, and the whole wave function of the system
can also be measured as expectation values of certain observables.

Since the wave function of a single quantum system can be measured
by a series of protective measurements, it seems natural to assume that
the wave function refers directly to the physical state of the system. Sev-
eral authors, including the discoverers of protective measurements, have
given similar arguments supporting this implication of protective measure-
ments for the ontological status of the wave function (Aharonov and Vaid-
man 1993; Aharonov, Anandan and Vaidman 1993; Anandan 1993; Dickson
1995; Gao 2013). However, these analyses have been neglected by most re-
searchers, and they are also subject to some objections (Unruh 1994; Dass
and Qureshi 1999; Schlosshauer and Claringbold 2014). Here we will first
present a clearer argument for the reality of the wave function in terms of
protective measurements, and then answer these objections.



According to quantum mechanics, we can prepare a single measured
system whose associated wave function is ¢(t) at a given instant t. The
question is whether the wave function refers directly to the physical state
of the system or merely to the state of an ensemble of identically prepared
systems. As noted above, this question can hardly be answered by analyz-
ing non-protective impulsive measurements of the system, by each of which
one obtains one of the eigenvalues of the measured observable, and the ex-
pectation value of the observable as well as the value of ¥ (t) can only be
obtained by calculating the statistical average of the eigenvalues for an en-
semble of identically prepared systems. Now, by a protective measurement
on the measured system, we can directly obtain the expectation value of
the measured observable. Moreover, by a series of protective measurements
of certain observables on this system, we can further obtain the value of
¥ (t). Since we can measure the wave function only from a single prepared
system by protective measurements, the wave function represents the state
of a single system. Similarly, the expectation values of observables are also
properties of a single system.

That the wave function of a single prepared system can be measured by
protective measurements can be illustrated with a specific example (Aharonov
and Vaidman 1993). Consider a quantum system in a discrete nondegener-
ate energy eigenstate ¥ (x). In this case, the measured system itself supplies
the protection of the state due to energy conservation and no artificial pro-
tection is needed. We take the measured observable A,, to be (normalized)
projection operators on small spatial regions V,, having volume v,:
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An adiabatic measurement of A,, then yields
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which is the average of the density p(x) = |1(x)|?> over the small region V,.
Similarly, we can adiabatically measure another observable B,, = 5 (A V+
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This is the average value of the flux density j(x) in the region V;,. Then when
v, — 0 and after performing measurements in sufficiently many regions
V., we can measure p(x) and j(x) everywhere in space. Since the wave
function ¢ (z,t) can be uniquely expressed by p(z,t) and j(x,t) (except for
an overall phase factor), the above protective measurements can obtain the
wave function of the measured system.



There are two possible objections to the above conclusion that protective
measurements support the reality of the wave function. The first is based on
the requirement that the unknown state of a single system is measurable. It
claims that since the unknown state of a single quantum system cannot be
protectively measured, protective measurements do not have implications for
the ontological status of the wave function (see, e.g. Unruh 1994). However,
this requirement is too stringent to be true (see also Hetzroni and Rohrlich
2014). If it were true, then no argument for the reality of the wave function
including the PBR theorem could exist, because it is a well-known result of
quantum mechanics that an unknown quantum state cannot be measured.
Moreover, it is worth noting that knowing the wave function does not mean
knowing the physical state of the measured system in our argument. The
wave function is only a mathematical object associated with the prepared
physical system, and we need to determine whether it refers to the physical
state of the system or to the state of an ensemble of identically prepared
systems. In this sense, although the wave function is known, the physical
state of the system is still unknown. Thus, precisely speaking, what the
above protective measurements measure is not the known wave function,
but the unknown physical state, which, as shown above, turns out to be
represented by the wave function.

The second objection concerns realistic protective measurements (Dass
and Qureshi 1999; Schlosshauer and Claringbold 2014). A realistic protec-
tive measurement can never be performed on a single quantum system with
absolute certainty. For example, for a realistic protective measurement of
an observable A on a non-degenerate energy eigenstate whose measurement
interval T is finite, there is always a tiny probability proportional to 1/T?
to obtain a different result (A) |, where L refers to a normalized state in the
subspace normal to the measured state as picked out by the first order per-
turbation theory, and correspondingly, the measured state collapses into this
state. It thus claims that this precludes an ontological status for the wave
function. If in the argument one directly resorts to the Einstein-Podolsky-
Rosen criterion of reality (see, e.g. Hetzroni and Rohrlich 2014), according
to which “If, without in any way disturbing a system, we can predict with cer-
tainty (i.e. with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physi-
cal quantity.” (italics in the original) (Einstein, Podolsky and Rosen 1935),
then this objection may be valid. However, one may avoid this objection
by resorting to a somewhat different criterion of reality, which is similarly
reasonable and more appropriate for realistic protective measurements.

The new criterion of reality is that if, with an arbitrarily small distur-
bance on a system, we can predict with probability arbitrarily close to unity
the value of a physical quantity, then there exists an element of physical re-
ality corresponding to this physical quantity. Although a realistic protective
measurement with finite measurement time 7" can never be performed on



a single quantum system with absolute certainty, the uncertainty and the
disturbance on the measured system can be made arbitrarily small when
the measurement time T approaches infinity. Thus according to this crite-
rion of reality, realistic protective measurements also support the reality of
the wave function. Note that in order to argue for the reality of the wave
function in terms of protective measurements, it is not necessary to directly
measure the wave function of a single quantum system, and measuring the
expectation value of an arbitrary observable on a single quantum system is
enough. If the expectation values of observables are physical properties of a
single quantum system, then the wave function, which can be reconstructed
from the expectation values of a sufficient number of observables, will also
represent the physical property or physical state of a single quantum sys-
tem. This will avoid the scaling problem (see Schlosshauer and Claringbold
2014).

Interestingly, we can also give another argument for ¥-ontology in terms
of protective measurements, which is similar to the argument used by the
PBR theorem (Pusey, Barrett and Rudolph 2012). For two arbitrary (pro-
tected) nonorthogonal states of a quantum system, select an observable
whose expectation values in these two states are different. Then the overlap
of the probability distributions of the results of protective measurements of
the observable on these two states can be arbitrarily close to zero (e.g. when
the measurement interval 7" approaches infinity). If there exists a non-zero
probability p that these two nonorthogonal states correspond to the same
physical state A, then when assuming the same X yields the same probability
distribution of measurement results as the PBR theorem assumes, the over-
lap of the probability distributions of the results of protective measurements
of the above observable on these two states will be not smaller than p. Since
p is a determinate number, this leads to a contradiction. This argument, like
the previous one, only considers a single quantum system, and thus avoids
the preparation independence assumption used by the PBR theorenﬂ Note
that the above protective measurements on the two protected nonorthogonal
states are the same.

Finally, we note that there might also exist other components of the
underlying physical state, which are not measureable by protective mea-
surements and not described by the wave function, e.g. the positions of
the particles in the de Broglie-Bohm theory. In this case, according to our
argument, the wave function still represents the underlying physical state,
though it is not a complete representation. Certainly, the wave function also
plays an epistemic role by giving the probability distribution of measurement
results according to the Born rule. However, this role will be secondary and

Different from the present argument, the PBR argument does not rely on knowing the
state being prepared, and knowing the state being prepared does not help for the PBR
argument either.



determined by the complete quantum dynamics that describes the measure-
ment process, e.g. the collapse dynamics in dynamical collapse theories.
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