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Abstract

We argue that when assuming (1) the wave function is a representation
of the physical state of a single system; (2) the wave function of an N-
body system describes N physical entities; and (3) each triple of the
3N coordinates of a point in configuration space that relates to one
physical entity represents a point in ordinary three-dimensional space,
the physical entities described by the wave function are particles, and
these particles move in a discontinuous and random way.

In quantum mechanics, the wave function of an N-body system is a
mathematical function defined in a 3N-dimensional configuration space. We
assume that (1) the wave function is a representation of the physical state
of a single system; (2) the wave function of an N-body system describes
N physical entities, which have respective masses and charges as indicated
by the mass and charge parameters in the Schrödinger equation for the
system; (3) each triple of the 3N coordinates of a point in configuration space
that relates to one physical entity represents a point in an ordinary three-
dimensional space. The first assumption is a common assumption in most
realistic alternatives to quantum mechanics, and it is also supported by some
arguments (Aharonov and Vaidman 1993; Aharonov, Anandan and Vaidman
1993; Pusey, Barrett and Rudolph 2012; Gao 2013a, 2013b). The other
two assumptions seem obvious when considering the many-body Schrödinger
equation and its Galilean invariance, and they are also supported by some
arguments (Monton 2002; Lewis 2004). In this paper, we will analyze the
existing form of the physical entities described by the wave function under
these assumptions.

A direct consequence of the above assumptions is that the N physical
entities described by the wave function of an N-body system exist in the
region of space where the wave function is not zero, and do not exist in the
region of space where the wave function is zero. The question is: In what
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form? For simplicity, we consider a two-body system whose wave function is
defined in a six-dimensional configuration space. We first suppose the wave
function of the system is localized in one position (x1, y1, z1, x2, y2, z2) in
the configuration space of the system at a given instant. This wave function
can be decomposed into a product of two wave functions which are localized
in positions (x1, y1, z1) and (x2, y2, z2) in our ordinary three-dimensional
space, respectively. According to the above assumptions, this wave function
describes two independent physical entities, which are localized in positions
(x1, y1, z1) and (x2, y2, z2) in our three-dimensional space, respectively, and
which have respective masses, say m1 and m2 (as well as charges Q1 and Q2

etc), respectively.
Now suppose the wave function of the two-body system is localized in

two positions (x1, y1, z1, x2, y2, z2) and (x
′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) in the config-

uration space of the system at a given instant. This is a so-called en-
tangled superposition state, which can be generated from a non-entangled
state by the time evolution of the system1. According to the above anal-
ysis, the wave function of the two-body system being localized in position
(x1, y1, z1, x2, y2, z2) in configuration space means that physical entity 1 with
mass m1 and charge Q1 exists in position (x1, y1, z1) in three-dimensional
space, and physical entity 2 with mass m2 and charge Q2 exists in position
(x2, y2, z2) in three-dimensional space. Similarly, the wave function of the
two-body system being localized in position (x

′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) in config-

uration space means that physical entity 1 exists in position (x
′
1, y

′
1, z

′
1) in

three-dimensional space, and physical entity 2 exists in position (x
′
2, y

′
2, z

′
2)

in three-dimensional space. Moreover, according to the above consequence
of the three assumptions, the wave function of the two-body system being
localized in both positions (x1, y1, z1, x2, y2, z2) and (x

′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2) in

configuration space means that these two situations both exist in certain
form.

An obvious existent form is that physical entity 1 exists in both positions
(x1, y1, z1) and (x

′
1, y

′
1, z

′
1), and physical entity 2 exists in both positions

(x2, y2, z2) and (x
′
2, y

′
2, z

′
2). However, the above consequence also requires

that the physical entities described by their wave function do not exist in
the region of space where the wave function is zero. Therefore, when physical
entity 1 exists in (x1, y1, z1), physical entity 2 cannot exist in (x

′
2, y

′
2, z

′
2), and

when physical entity 1 exists in (x
′
1, y

′
1, z

′
1), physical entity 2 cannot exist in

(x2, y2, z2), or vice versa. In other words, the wave function that describes
this existent form should be localized in four positions (x1, y1, z1, x2, y2, z2),
(x
′
1, y

′
1, z

′
1, x

′
2, y

′
2, z

′
2), (x1, y1, z1, x

′
2, y

′
2, z

′
2), and (x

′
1, y

′
1, z

′
1, x2, y2, z2) in the

configuration space of the system. Therefore, this existent form, which seems
to be the only possible form, is not possible.

It seems that there is a dilemma here; for the above entangled superposi-

1The existence of entangled states has also been confirmed by experiments.
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tion state, the superposition requires that the two situations corresponding
to its two branches exist at the same time, while the entanglement rejects
this2. The key to finding the way out of the dilemma is to realize that the
superposition does not require the two situations must exist at the same time
at a precise instant, as the wave function of a quantum system at a given in-
stant represents either the physical state of the system at the precise instant
(like the position of a classical particle) or the limit of the time-averaged
state of the system in an arbitrarily short time interval around the instant
(like the standard velocity of a classical particle). For the latter case, the
above two situations only need to exist “at the same time” during an arbi-
trarily short time interval. This is indeed possible.

Concretely speaking, the situation in which physical entity 1 is in (x1, y1, z1)
and physical entity 2 is in (x2, y2, z2) exists in one part of continuous time,
and the situation in which physical entity 1 is in (x

′
1, y

′
1, z

′
1) and physical

entity 2 is in (x
′
2, y

′
2, z

′
2) exists in the other part. The restriction is that

the temporal part in which each situation exists cannot be a continuous
time interval during an arbitrarily short time interval; otherwise the wave
function describing the state in the time interval will be not the original
superposition of two branches, but one of the branches, according to the
above consequence. This means that the set of the instants when each situ-
ation exists is not a continuous set but a discontinuous, dense set. At some
discontinuous instants, physical entity 1 with mass m1 and charge Q1 exists
in position (x1, y1, z1), and physical entity 2 with mass m2 and charge Q2

exists in position (x2, y2, z2), and at other discontinuous instants, physical
entity 1 exists in position (x

′
1, y

′
1, z

′
1), and physical entity 2 exists in position

(x
′
2, y

′
2, z

′
2). By this way of time division, the above two situations exist “at

the same time” during an arbitrarily short time interval3.
This way of time division also implies a strange picture of motion for

the involved physical entities. It is as follows. Physical entity 1 with mass
m1 and charge Q1 jumps discontinuously between positions (x1, y1, z1) and
(x
′
1, y

′
1, z

′
1), and physical entity 2 with mass m2 and charge Q2 jumps dis-

continuously between positions (x2, y2, z2) and (x
′
2, y

′
2, z

′
2). Moreover, they

jump in a precisely simultaneous way. When physical entity 1 jumps from
position (x1, y1, z1) to position (x

′
1, y

′
1, z

′
1), physical entity 2 must jump from

position (x2, y2, z2) to position (x
′
2, y

′
2, z

′
2), or vice versa. In the limit situa-

tion where position (x2, y2, z2) is the same as position (x
′
2, y

′
2, z

′
2), physical

entities 1 and 2 are no longer entangled, while physical entity 1 with mass
m1 and charge Q1 still jumps discontinuously between positions (x1, y1, z1)

2Note that the existence of this dilemma does not depend on the second assumption,
namely that the wave function of an N-body system describes N physical entities, but only
depend on the third assumtion, which requires that a point in the configuration space of
a two-body system corresponds two points in real space.

3Moreover, the measure of each set of instants relates to the modulus squared of the
wave function in the corresponding branch (Gao 2013a).
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and (x
′
1, y

′
1, z

′
1). This means that the picture of discontinuous motion also

exists for one-body systems. Since quantum mechanics does not provide fur-
ther information about the positions of the physical entities at each instant,
the discontinuous motion described by the theory is also essentially random.

The above analysis can be extended to an arbitrary entangled wave func-
tion for an N-body system. Since each physical entity is only in one position
in space at each instant, it may well be called particle. Here the concept of
particle is used in its usual sense. A particle is a small localized object with
mass and charge etc, and it is only in one position in space at an instant.
Moreover, the motion of these particles is not continuous but discontinuous
and random in nature, and especially, the motion of entangled particles is
precisely simultaneous. By a more detailed mathematical analysis of ran-
dom discontinuous motion of particles (Gao 2013a), it can be further argued
that the wave function of an N-body system provides a description of the
state of random discontinuous motion of N particles, and in particular, the
modulus squared of the wave function gives the probability density that the
particles appear in certain positions in space4.

To sum up, we have argued that the three assumptions, namely (1) the
wave function is a representation of the physical state of a single system; (2)
the wave function of an N-body system describes N physical entities; and (3)
each triple of the 3N coordinates of a point in configuration space that relates
to one physical entity represents a point in ordinary three-dimensional space,
imply particle ontology, and moreover, the motion of particles is essentially
discontinuous and random.
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