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Interactions between twodifferent guilds of entities are pervasive in biology.Theymayhappen atmolecular level, like in a diseasome,
or amongst individuals linked by biotic relationships, such as mutualism or parasitism. These sets of interactions are complex
bipartite networks. Visualization is a powerful tool to explore and analyze them, but the most common plots, the bipartite graph
and the interaction matrix, become rather confusing when working with real biological networks. We have developed two new
types of visualization which exploit the structural properties of these networks to improve readability. A technique called k-core
decomposition identifies groups of nodes that share connectivity properties. With the results of this analysis it is possible to build a
plot based on information reduction (polar plot) and another which takes the groups as elementary blocks for spatial distribution
(ziggurat plot). We describe the applications of both plots and the software to create them.

1. Introduction

Network science is a powerful tool for biological research
across all scales: molecular [1–3], genetic [4–6], individual
[7, 8], and community [9, 10]. The conceptual framework is
valid for them all, and this fact has fostered both theoretical
and applied developments. An important subset of biological
networks are bipartite. They have two different classes of
nodes. Each one may be tied to nodes of the opposite guild
but never to its peers.

Gene-protein, host-pathogen, and predator-prey inter-
actions are the basis of bipartite biological networks. A
common structural property of them is the core-periphery
organization [11–13]. This fact is well-known in ecology. In
mutualistic communities there is one group of very intercon-
nected nodes, the generalists, that provide stability and
resilience [14]. Species with a low number of links (degree)
are tied to those specialists.This property is called nestedness,
and there are different indexes to measure its strength [15].
Another important structural feature is modularity, which

accounts for the existence of small groups of nodes with a
high number of links (also known as degree) inside a network
sparsely connected [16].

Inmany cases the issue of interest is not the generalization
of the network properties but the study of a particular
system itself. In these fields dealing with complex systems,
scientists are more interested in finding special relationships
or understanding the role of a specific node than their
statistical properties. A more detailed, qualitative rather than
quantitative analysis about relationships in a complex net-
work may be more useful for some researchers in medicine,
biology, sociology, or even economy. Visualization may play
an important role in network analysis as an interface between
data and people [17–19].

The range of possible applications is wide [20]. For
instance, a field ecologist could identify central species and
those most endangered within a community with a good
network plot. A clinical researcher may detect anomalies
in complex gene-protein associations. Visualization is an
essential procedure in the exploratory stage [21] and requires
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Figure 1: Mutualistic community in Tenerife, Canary Islands (Spain), with 68 species and 129 links [29]. In mutualism, species fall into two
disjoint guilds, such as plants and pollinators or plants and seed dispersers. Ties amongst species of the same guild are forbidden. (a) Bipartite
plot of this community. (b) Interaction matrix.

fast and interactive applications able to disentangle structure.
General purpose network analysis applications like Gephi
[22] are a good choice to have a quick overview, but plotting
bipartite layouts is not their primary purpose. Although a lot
of effort has been put in development, those tools designed
for bipartite biological visualization are still scarce [23–28].

The most common plots in literature are the bipartite
graph and the interaction matrix, two ways to visualize a
bipartite network of any kind. In the bipartite graph, nodes
of both classes are plotted along parallel lines. Interactions
appear as links amongst them (Figure 1(a)). On the one hand,
it is quite simple, as it makes clear the separation of guilds. On
the other hand, it is not easy to follow indirect interactions,
those between two nodes of the same class linked by a
common node of the opposite. They are not much relevant
in affiliation networks (journals-authors, movies-actors) [34]
but are extremely important in many biological networks.
They create feedback loops that increase complexity and
eventually emerging properties that arise from it [35, 36].

For networks with more than 75 nodes, the bipartite
plot becomes extremely confusing. It is hard to distinguish
individual links and impossible to follow indirect interac-
tions. Accumulation of links in the space between guilds
creates what is known as the hairball effect [37], but the main
shortcoming of the bipartite plot is that it does not show the
network hierarchical organization.

In the interaction matrix, nodes of one guild are arranged
along rows and species of the opposite guild along columns.
A filled cell marks the interaction between two species

(Figure 1(b)). With the interaction matrix it is possible to
visually discover patterns of nestedness and modularity, so
it is more expressive in the representation of structure. On
the other hand, indirect interactions are even less apparent
than in the bipartite plot.Thematrix also becomes difficult to
interpret when the number of nodes and links raises.

To overcome the drawbacks of the bipartite graph and the
interaction matrix, there are two possible attack strategies:
information reduction or taking advantage of knownnetwork
traits to order nodes and links in space. In this paper,
we explain how structural properties of bipartite biological
networks are the basis of two new types of visualization. Both
rely on a classical technique called 𝑘-core decomposition [38].
We also describe an interactive application to plot them.

2. Plots

The rationale behind this research is that as biological
networks are not random, this fact should provide a natural
way to group nodes using their topological properties. These
groups must be the basis for a spatial distribution that min-
imizes the hairball effect and, in addition, makes structural
sense.

The 𝑘-core decomposition is a fast and efficient technique
to cluster nodes by their connectivity properties [39, 40].
The 𝑘-core of a graph 𝐺 is a maximal connected subgraph of
degree 𝑘. Each node of the core of order𝑚 (called𝑚-shell) has
linkswith at least𝑚 other nodes that belong to that same core.
The practical implication of this definition is that nodes are
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classified according to their connectivity.The innermost shell
is the set of highest 𝑘 index nodes. Nodes with higher degrees
are the generalists. As 𝑘 index decreases, nodes become more
specialist. The usual way to identify the𝑚-𝑠ℎ𝑒𝑙𝑙 subsets is the
pruning algorithm: one starts pruning the nodes with just one
link, recursively. This subset of nodes constitutes the 1-shell.
The remaining nodes are tied by at least two links. In the next
step one extracts nodes with only two links, also recursively;
this subset is the 2-shell. And so on. This procedure helps
to recognize how the nodes of the 𝑚-shell are tied to the
network. We refer to [41] for further details on the k-core
analysis of bipartite networks.

As a result of the analysis we define two magnitudes. The
first one is 𝑘radius. The 𝑘𝐴radius(𝑚) of node 𝑚 of guild 𝐴 is the
average distance to all nodes of the innermost shell of guild 𝐵
(set 𝐶𝐵).

𝑘𝐴radius (𝑚) =
1
󵄨󵄨󵄨󵄨𝐶𝐵
󵄨󵄨󵄨󵄨
∑
𝑗∈𝐶𝐵

dist𝑚𝑗 𝑚 ∈ 𝐴, (1)

where dist𝑚𝑗 is the shortest path from node 𝑚 of guild 𝐴 to
node 𝑗 of guild 𝐵. In an intuitive way, 𝑘radius measures how far
the node is from the most connected shell, the group that is
the corner stone of the network.

The second magnitude is 𝑘degree. It is defined as the recip-
rocal of sum of the reciprocal values of 𝑘radius of neighbour
nodes:

𝑘𝐴degree (𝑚) = ∑
𝑗

𝑎𝑚𝑗
𝑘𝐵radius (𝑗)

𝑚 ∈ 𝐴, ∀𝑗 ∈ 𝐵, (2)

where 𝑎𝑚𝑗 is the element of the interaction matrix that
represents the link, considered as binary (1 if 𝑎𝑚𝑗 > 0, 0 if
𝑎𝑚𝑗 = 0). Note that 𝑘

𝐴
degree(𝑚) is a weighted degree.

2.1. The Polar Plot. The 𝑘-core decomposition helps to visual-
ize very large systems and networks and to understand their
structure [42, 43]. In particular, the fingerprint plot uses a
polar coordinate system [44].Nodes are depicted at a distance
proportional to the shell they belong to and their areas are
proportional to their degree.The plot includes only a fraction
of links. There are some variations that work on the principle
of edge-bundling [45], merging nodes and links to create a
more readable plot [46].

Taking this idea as the starting point, we build the polar
plot. Differences are noteworthy. The first one is the bipartite
nature of the networks, so space is divided into two half-
planes, one for each guild. Node shapes are also different
for each guild. This plot provides an overview of how far
from the core the nodes are and, at the same time, their
connectivity (by the size of the marker) and to which𝑚-shell
they belong (by the color of the marker). This visualization
is interesting to detect some special features of the network;
for instance, a well bonded core will present the innermost
shell at distance 𝑘radius equal to one, and a nested network
will show a periphery close to the core. This plot shows the
periphery nodes less relevant for the network connectivity as
markers far away from the core and it allows detecting highly
connected nodes that do not belong to the core. Angle does

not convey information; the algorithm computes it to reduce
node overlapping. Links are not displayed.

Optionally, the usermay choose to display the histograms
of 𝑘degree, 𝑘radius, and 𝑘-𝑠ℎ𝑒𝑙𝑙. The 𝑘radius histogram shows the
distribution of node distances to network core. The 𝑘degree
histogram is very similar to the degree distribution but with
noninteger bins, due to the weights in its definition.Themost
interesting histogram is that of the 𝑘shell; a typical nested
network exhibits a U-shaped 𝑘shell histogram. This shape of
distribution is related to a big core and numerous peripheral
nodes; an L-shaped histogram is related to a networkwith too
many peripheral nodes and a small core.

Figure 2 is the polar plot of a host-parasite assembly with
a characteristic high concentration of nodes in the innermost
shell. Most nodes lay inside the 𝑘radius 1 circle, but there
is a sensible number of outlying species. This network is
moderately nested (NODF = 29, where NODF is a common
measure of nestedness that ranges from 0 to 100 [47]).

2.2. The Ziggurat Plot. The polar plot does not show network
links, as it works on the information reduction strategy. The
ultimate goal of this research is the creation of a new kind
of diagram with as many details as possible. The basic idea is
grouping nodes by their 𝑘shell. If we stick nodes with the same
𝑘index in a reduced area, links amongst the same shell nodes
will not spread across the whole space. Only ties with their
edges in different shells would have long paths. The receding
stepped-shape of each group of nodes reminded us of the
ancientMesopotamian temples, so we have called this second
kind of plot ziggurat.

This simple principle is not so easy to implement. The
bipartite nature of networks means that links have to go from
one guild to the opposite.

The core-periphery organization implies that there are
many ties from 1-shell nodes towards upper 𝑘-index groups.
Nodes with high degree are prone to be visually suffocated
by surrounding links in the bipartite graph. See plant species
numbers 1, 2, 3, 4 in Figure 1. This challenge is a formidable
obstacle.

Thegeneral procedure to draw a ziggurat plot is as follows:

(1) Perform the 𝑘-core decomposition and assign each
node its 𝑘-index.

(2) Compute 𝑘radius and 𝑘degree.
(3) Draw the highest 𝑘-index shell of each guild as a

group of stacked rectangles ordered by 𝑘degree and
decreasing height.

(4) For (𝑘 < 𝑘max) and (𝑘 > 2) draw species groups as
stacked rectangles, with the one with smallest 𝑘degree
as the basis. Raise the position of the basis according
to their 𝑘-index.

(5) Draw 1-index species as rectangles in the outer part of
the plot. If two or more nodes of 1-shell are tied to the
same node of a higher shell, merge them into just one
rectangle.

(6) Draw outliers, chains of 1-shell nodes tied to other 1-
shell nodes.
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Figure 2: Polar plot of a host-parasite assembly in Tyva (Russian Federation) with the histograms of 𝑘radius, 𝑘degree, and 𝑘shell of the 37 species
[30].

(7) Draw nodes disconnected of the giant component as
a small bipartite plot in the lower area of the graph.

(8) Draw links.

Figure 3 shows a ziggurat plot under construction. It is
the same network of Figure 1. The 𝑘-core decomposition puts
each species inside one shell; we do not show nodes of 1-
shell at this moment. The maximum 𝑘-index is 4 for this
community.

The innermost shell (4-shell) is found on the center of
the plot, slightly leftwards. Nodes are rectangular-shaped
and are ordered by 𝑘degree. Heights decrease just for plotting
convenience. The specular position of both guilds leaves
space to draw the links amongst them. In Figure 3 we have
plotted just three connections from pollinator 1 towards plants
of 4-shell.

Lower 𝑘-shells have ziggurat shape, with nodes ordered by
ascending 𝑘radius, so pollinator 7 is the closest to the innermost
shell in 3-shell. Links inside the shell (grey color) connect the
left sides of rectangles (plant 4-pollinator 9). Links between

two different shells (green) connect the right side of the
highest 𝑘-index node to the left side of the lowest one (plant
17-pollinator 7).

3-shell ziggurats are more distant from the horizontal axis
than 2-shell ziggurats. Moving them up or down, it is possible
to change the area of the internal almond-shaped space
defined by the ziggurats and the innermost shell triangles.
This area is key because links from 4-shell lay here and do not
cross the inner ziggurats.

The outer space is the 1-shell nodes home.We divide them
into three groups: outsiders, tails, and chains of specialists.
Outsiders are nodes disconnected from the giant component.
They are unusual in recorded ecological networks because
by definition they do not interact with the community. This
network lacks outsiders. Tails are nodes directly connected to
higher 𝑘-index nodes. They are very common, and to reduce
the number of lines we apply a simple grouping rule. If 𝑛 tails
are tied to the same species of a ziggurat, we plot them in a
unique box with just one link. Chains of specialists are less
frequent. They are built with nodes of 1-shell linked amongst
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Figure 3: Building blocks of the ziggurat plot. Blue boxes represent nodes of guild 𝐴 and red boxes nodes of guild 𝐵. The innermost core of
this network is 4-shell, and node blocks are aligned with the parallel axis. ziggurats of 3-shell and 2-shell are built stacking nodes ordered by
decreasing 𝑘radius. Solid grey links are ties amongst nodes of 4-shell, the dotted grey link is an example of connection between two species of
the same 𝑘-shell, and green links connect nodes of different 𝑘shell.

them; the edge that has a link with a higher 𝑘-index shell is
the root node (plant 13).

Putting everything together, we obtain the ziggurat plot
of Figure 4.This may be compared with the bipartite graph of
the same network (Figure 1).

Links are drawn as straight lines or splines that make
the diagram more appealing to the eye. If links are weighted,
setting the width of each link to be proportional to a function
of the interaction strength is optional.

Note that, for a given node, the main links are those
towards higher 𝑘-shells. With this plot, it is very easy to
observe how many links depart from a node to higher and
to lower 𝑘-shells. One can also determine if a node is more
connected to higher 𝑘-shell than another one and, then, if its
contribution to the network is more important.

3. Exploratory Analysis Using 𝑘-Core Plots
The ziggurat plot unveils structural details that are hard to
visualize in the bipartite graph. Figure 5 is a network of
associations amongst human diseases and noncoding RNA

(lncRNA); we refer to the original paper for comparison with
the bipartite visualization [31]. It is a small network with 39
nodes and low connectivity, just 44 links. The highest degree
lncRNA node is number 8 (XIST), which in the bipartite plot
looks as the most central one. The ziggurat shows at a glance
that, despite its high connectivity, it appears in association
with diseases that belong to its chain of specialists. On the
other hand, diseases like breast cancer and acute myeloid
leukemia are associated with multiple lncRNAs.

The network of Figure 6 is slightly bigger, with 29 gene
signatures used for predicting the reoperative treatment
response of breast cancer and 19 pathways to different types
of cancer [32]. The bipartite plot is hard to understand in the
original paper, because of the number of ties, 149.

Figure 6 shows a network with a stronger hierarchy
than Figure 5. The identification of genes most frequently
associated with pathways to cancer is straightforward.

The main application of the polar plot is the visual
comparison of networks even if their sizes are very different.
Figure 7 is a subset of a disease-cofactor network. Authors
selected diseases tied to at least 5 cofactor-interacting proteins
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(39 nodes) and plotted the bipartite graph 7. The ziggurat
plot (Figure 7(a)) of the subset shows an extremely nested
structure, an effect of the selection rule. The polar plot of
the full network (Figure 7(b)), with 414 nodes, displays a
much richer structure. Diseases are distributed across a wider
range of 𝑘radius. Most cofactors have high degree and were not
filtered; the opposite happened to the disease nodes.

These figures are a small sample of the importance of
choosing a good visualization tool with a correct analysis of
decomposition of a network.

4. Software

The 𝑘-core analysis and plotting of ziggurat and polar graphs
are provided as an open source application.

4.1.The kcorebip Package. The R package kcorebip contains
the functions to perform the analysis and to plot static graphs
of a network. It comes with a set of networks for testing
purposes. Ecological data were downloaded from the web
of life database [48]. As the format of the web of life files
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Figure 8: Interactive ziggurat user interface. Plant-pollinator assembly inGarajonay, Canary Islands (Spain), recorded byOlesen, highlighting
the pollinator species number 11, Gonepteryx cleopatra.

has become a standard de facto by its simplicity, kcorebip
follows the same convention for input files.

The function network k analysis computes the k-
magnitudes and other useful indexes, using the functions that
provide packages as bipartite and igraph [49, 50]. We
refer to the user manual for details.

Ziggurat and polar graphs use basic calls to the ggplot2
graphics package [51]. We compute from scratch coordinates
and sizes, not relying on other network plotting libraries.

4.2. Interactive Application. The kcorebip package is a
powerful solution for researchers with programming skills
that need high quality plots for scientific publications, but
exploratory analysis requires a more interactive approach.
BipartGraph has been designed with this need in mind.

The technological choice is Shiny, the R reactive pro-
gramming environment. It has the advantage of a native
backend and a JavaScript-based user interface thatmay be
easily extended. This combination of technologies ensures a
wide compatibility with most common operating systems.

The interactive ziggurat is the main feature
of BipartGraph. The original implementation of the
kcorebip package only provided the ggplot2 object to
display or save. To create an interactive version we faced
two main choices, replicating the code with a dynamic

technology or extending kcorebip. We found a fast and
almost nonintrusive solution creating an SVG object. The
ziggurat is a set of rectangles, lines, and texts. The most
time consuming tasks are network analysis and spatial
distribution. These computations are performed just once,
and besides each ggplot2 element in the function plots, it
creates the SVG equivalent.

The browser displays the SVG ziggurat with multiple
options for the user: tooltips, select a node or a link,
highlight connections, zoom in, and zoom out. In addition,
a second panel shows information of highlighted nodes and
the available information on Wikipedia (Figure 8).

The configuration panels make plot properties easy to
modify. Visual and intuitive Shiny controls, as sliders or
checkboxes, hide the complexity of the input parameters of
the ziggurat graph function.

At any moment, the user may download the high quality,
high resolution static plot with the printable ziggurat
option. In order to reproduce the results or to include
the graph in other environments, such as R Markdown or
Jupyter notebooks, we added the Download generating
code button. When clicked upon, BipartGraph writes a file
with the last ziggurat graph call, ready to use in any R
script.



10 Complexity

There is not interactive version of the polar plot, as
we think that network exploration is much easier with the
ziggurat. The user may produce the static polar plot, the high
quality downloadable PNG file, and the generating code, in the
same way that we have explained with the ziggurat.

5. Conclusions

Visualization of bipartite biological networks is very useful
for researcherswhen they are interested in following the paths
from a node or scanning the structure of the network. Using
the 𝑘-core decomposition we have designed and developed
two new graphs that work by information reduction (polar
plot) and spatial grouping by connectivity (ziggurat plot).
They provide two complementary views of internal network
structure.

Wewould like to emphasize the importance of choosing a
correct visualization of complex networks and, in particular,
of bipartite networks, which helps in correctly understanding
networks of a large number of nodes and high density.

We benchmarked both tools with the full collection of
ecological bipartite collection of the web of life database.
The ziggurat plot remains readable up to 250 nodes, that is,
about fourfold the limit of the bipartite plot. The polar plot
works fine for networks beyond that size because it works on
reducing information, paying the price of a loss of detail.

Software is provided as open source, under a very
loose MIT license, and comes in two versions. The
package kcorebip provides the full functionality for
researchers with a minimum of R programming skills. The
application BipartGraph is the fully fledged interactive
environment to build both kinds of graphs for this public.
Its user centric design makes it very easy to master, provides
some additional features, and is open to new fields of
application such as education.

Data Availability

Interaction matrixes were downloaded from the web of
life database http://www.web-of-life.es. A subset of these
matrixes is installed by default with BipartGraph, including
all networks used in this paper. Software availability data
are as follows: name of software: BipartGraph; programming
language: R; operating system:Windows, Linux, andMacOS;
availability: SW at https://github.com/jgalgarra/bipartgraph;
user interface: web browser; license: free, underMIT License.
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