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Abstract

This article concerns a phenomenon of elementary quantum mechanics that
is quite counter-intuitive, very non-classical, and apparently not widely known:
a quantum particle can get reflected at a potential step downwards. In contrast,
classical particles get reflected only at upward steps. As a consequence, a quantum
particle can be trapped for a long time (though not forever) in a region surrounded
by downward potential steps, that is, on a plateau. Said succinctly, a quantum
particle tends not to fall off a table. The conditions for this effect are that the wave
length is much greater than the width of the potential step and the kinetic energy
of the particle is much smaller than the depth of the potential step. We point out
how the topic is accessible with elementary methods, but also with mathematical
rigor and numerically.

PACS: 03.65.-w, 03.65.Nk, 01.30.Rr. Key words: Schrödinger equation; potential
step; confining potential; reflection and transmission coefficients.

1 Introduction

Suppose a quantum particle moves towards a sudden drop of potential as in Figure 1,
with the particle arriving from the left. As a classical analogue, we may imagine a ball
rolling towards the edge of a table. Will it fall down or be reflected? Classically, the
ball is certain to fall down, but a quantum particle has a chance to be reflected. That
sounds paradoxical because the particle turns around and returns to the left under a
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force pointing to the right! Under suitable conditions reflection even becomes close to
certain. This non-classical, counter-intuitive quantum phenomenon we call “paradoxical
reflection,” or, when a region is surrounded by downward potential steps, “paradoxical
confinement”—where “paradoxical” is understood in the sense of “counter-intuitive,”
not “illogical.” It can be derived easily using the following simple reasoning.

V(x)

x
∆E

Figure 1: A potential V (x) containing a step downwards

Suppose the particle moves in 1 dimension, and the potential is a rectangular step
as in Figure 1,

V (x) = −∆E Θ(x) (1)

with Θ the Heaviside function and ∆E ≥ 0. A wave packet coming from the left
gets partially reflected at the step and partially transmitted. The size of the reflected
and the transmitted packets can be determined by a standard textbook method of
calculation (e.g., [1, 2]), the stationary analysis, replacing the wave packet by a plane
wave of energy E and solving the stationary Schrödinger equation. The transmitted
and reflected probability currents, divided by the incoming current, yield the reflection
and transmission coefficients R ≥ 0 and T ≥ 0 with R + T = 1. We give the results
in Section 2 and observe two things: First, R 6= 0, implying that partial reflection
occurs although the potential step is downwards. Second, R even converges to 1, so that
reflection becomes nearly certain, as the ratio E/∆E goes to zero. Thus, paradoxical
reflection can be made arbitrarily strong by a suitable choice of parameters (e.g., for
sufficiently big ∆E if E is kept fixed).

If it sounds incredible that a particle can be repelled by a potential step downwards,
the following fact may add to the amazement. As derived in [2, p. 76], the reflection
coefficient does not depend on whether the incoming wave comes from the left or from
the right (provided the total energy and the potential are not changed). Thus, a step
downwards yields the same reflection coefficient as a step upwards. (But keep in mind
the difference between a step upwards and a step downwards that at a step upwards,
also energies below the height of the step are possible for the incoming particle, a case
in which reflection is certain, R = 1.)

To provide some perspective, it may be worthwhile to point to some parallels with
quantum tunneling: there, the probability of a quantum particle passing through a
potential barrier is positive even in cases in which this is impossible for a classical
particle. In fact, paradoxical reflection is somewhat similar to what could be called
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anti-tunneling, the effect that a quantum particle can have positive probability of being
reflected by a barrier so small that a classical particle would be certain to cross it.

In the rest of this article, we address the following questions: Is paradoxical reflection
a real physical phenomenon or an artifact of mathematical over-simplification? (We
will look at numerical and rigorous mathematical results.) How does it depend on
the parameters of the situation: the width L (see Figure 2) and the depth ∆E of
the potential step, the wave length λ and the width σ of the incoming wave packet?
Why does this phenomenon not occur in the classical regime? That is, how can it be
that classical mechanics is a limit of quantum mechanics if paradoxical reflection occurs
in the latter but not the former? And, could one use this phenomenon in principle
for constructing a particle trap? In spring 2005, these questions gave rise to lively and
contentious discussions between a number of physics researchers visiting the Institut des
Hautes Études Scientifiques near Paris, France; these discussions inspired the present
article.

2 Stationary Analysis of the Rectangular Step

We begin by providing more detail about the stationary analysis of the rectangular step
(1), considering the time-independent Schrödinger equation (m = mass)

Eψ(x) = − ~
2

2m
ψ′′(x) + V (x)ψ(x) . (2)

This can be solved in a standard way: for x < 0, let ψ be a superposition of an incoming
wave eik1x and a reflected wave Be−ik1x, while for x > 0, let ψ be a transmitted wave
Aeik2x, with a possibly different wave number k2. Indeed, from (2) we obtain that

k1 =
√

2mE/~ , k2 =
√

2m(E + ∆E)/~ . (3)

The value E ≥ 0 is the kinetic energy associated with the incoming wave. The coef-
ficients A and B are determined by continuity of ψ and its derivative ψ′ at x = 0 to
be

A =
2k1

k1 + k2

, B =
k1 − k2

k1 + k2

. (4)

The reflection and transmission coefficients R and T are defined as the quotient of the
quantum probability current j = (~/m)Im(ψ∗ψ′) associated with the reflected respec-
tively transmitted wave divided by the current associated with the incoming wave,

R =
|jrefl|
jin

, T =
jtra
jin

. (5)

Noting that jtra = ~k2|A|2/m, jrefl = −~k1|B|2/m, jin = ~k1/m, we find that

R = |B|2 = 1 − k2

k1

|A|2 , T =
k2

k1

|A|2 . (6)
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Note that both R and T lie in the interval [0, 1], and that R + T = 1. By inserting (4)
into (6), we obtain

R =
(k1 + k2)

2 − 4k1k2

(k1 + k2)2
=

(k2 − k1)
2

(k1 + k2)2
(7)

and make two observations: First, R 6= 0, implying that reflection occurs, if k1 6= k2,
which is the case as soon as ∆E 6= 0. Second, R even converges to 1, so that reflection
becomes nearly certain, as the ratio r := E/∆E tends to zero; that is because

R =

(
k2 − k1

k2 + k1

)2

=

(√
E + ∆E −

√
E√

E + ∆E +
√
E

)2

=

(√
r + 1 −√

r√
r + 1 +

√
r

)2

→ 1 , (8)

since both the numerator and the denominator tend to 1 as r → 0. This is the simplest
derivation of paradoxical reflection.

3 Soft Step

For a deeper analysis of the effect, we will gradually consider increasingly more realistic
models. In this section, we consider a soft (or smooth, i.e., differentiable) potential step,
as in Figure 2, for which the drop in the potential is not infinitely rapid but takes place
over some distance L. The result will be that paradoxical reflection exists also for soft
steps, so that the effect is not just a curious feature of rectangular steps (which could not
be expected to ever occur in nature). Another result concerns how the effect depends
on the width L of the step.

V(x) L

x
∆E

Figure 2: A potential containing a soft step

To study this case it is useful to consider the explicit function

V (x) = −∆E

2

(
1 + tanh

x

L

)
, (9)

depicted in Figure 2. (Recall that tanh = sinh / cosh converges to ±1 as x→ ±∞.) The
reflection coefficient for this potential can be calculated again by a stationary analysis,
obtaining from the time-independent Schrödinger equation (2) solutions ψ(x) which are
asymptotic to eik1x + Be−ik1x as x → −∞ and asymptotic to Aeik2x as x → ∞, i.e.,
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limx→∞(ψ(x) − Aeik2x) = 0. The calculation is done in [2, p. 78]: The values k1 and k2

are again given by (3), and the reflection coefficient turns out to be

R =

(
sinh

(
π
2
(k2 − k1)L

)

sinh
(

π
2
(k2 + k1)L

)
)2

. (10)

From this and (3) we can read off that, again, R 6= 0 for ∆E 6= 0, and R → 1 as E → 0
while ∆E and L are fixed (since then k1 → 0, k2 →

√
2m∆E/~, so both the numerator

and the denominator tend to sinh(π
2

√
2m∆EL/~)). As ∆E → ∞ while E and L are

fixed, R → exp(−2π
√

2mEL/~) because for large arguments sinh ≈ 1
2
exp.

In addition, we can keep E and ∆E fixed and see how R varies with L: In the limit
L → 0, (10) converges to (7) because sinh(αL) ≈ αL for L ≪ 1 and fixed α; this is
what one would expect when the step becomes sharper and (9) converges to (1). In the
limit L→ ∞, R converges to 0 because for fixed β > α > 0

sinh(αL)

sinh(βL)
=

eαL − e−αL

eβL − e−βL
=

e(α−β)L − e(−α−β)L

1 − e−2βL
→ 0 , (11)

as the numerator tends to 0 and the denominator to 1. Thus, paradoxical reflection
disappears for large L; in other words, it is crucial for the effect that the drop in the
potential is sudden.

Moreover, (10) is a decreasing function of L, which means that reflection will be the
more probable the more sudden the drop in the potential is. To see this, let us check
that for β > α > 0 and L > 0 the function f(L) = sinh(αL)/ sinh(βL) is decreasing:

df

dL
=
α cosh(αL) sinh(βL) − β sinh(αL) cosh(βL)

sinh2(βL)
< 0 (12)

because
α

tanhα
<

β

tanh β
, (13)

as x/ tanhx is increasing for x > 0.
How about soft steps with other shapes than that of the tanh function? Suppose

that the potential V (x) is a continuous, monotonically decreasing function such that
V (x) → 0 as x → −∞ and V (x) → −∆E as x → +∞. To begin with, we note
that the fact, mentioned in the introduction, that the reflection coefficient is the same
for particles coming from the left or from the right, still holds true for such a general
potential [2, p. 76]. This suggests that paradoxical reflection occurs also for general
potential steps. Unfortunately, we do not know of any general result on lower bounds
for the reflection coefficient R that could be used to establish paradoxical reflection in
this generality. However, an upper bound is known [3, eq. (82)], according to which R
is less than or equal to the reflection coefficient (7) of the rectangular step. This agrees
with our observation in the previous paragraph that reflection is the more likely the
sharper the step.
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4 Wave Packets

Another respect in which we can be more realistic is by admitting that the wave function
with which a quantum particle reaches a potential step is not an infinitely-extended
plane wave eik1x but in fact a wave packet of finite width σ, for example a Gaussian
wave packet

ψin(x) = Gµ,σ(x)1/2 eik1x (14)

with Gµ,σ the Gauss function with mean µ and variance σ2,

Gµ,σ(x) =
1√
2πσ

e−(x−µ)2/2σ2

. (15)

Suppose this packet arrives from the left and evolves in the potential V (x) according to
the time-dependent Schrödinger equation

i~
∂ψ

∂t
(x, t) = − ~

2

2m

∂2ψ

∂x2
(x, t) + V (x)ψ(x, t) . (16)

Ultimately, as t → ∞, there will be a reflected packet ψrefl in the region x < 0 moving
to the left and a transmitted packet ψtra in the region x > 0 moving to the right, and
thus the reflection and transmission probabilities are

R = ‖ψrefl‖2 , T = ‖ψtra‖2 , (17)

with ‖ψ‖2 =
∫∞

−∞
|ψ(x)|2 dx.

Because of the paradoxical feel of paradoxical reflection, one might suspect at first
that the effect does not exist for wave packets but is merely an artifact of the stationary
analysis. We thus address, in this section, the question as to how wave packets behave,
and whether the reflection probability (17) agrees with the reflection coefficient discussed
earlier. We begin with the numerical evidence confirming paradoxical reflection.

4.1 Numerical Simulation

A numerical simulation of a wave packet partly reflected from a (soft) step downwards
is shown in Figure 3. The simulation starts with a Gaussian wave packet moving to
the right and initially located on the left of the potential step. After passing the step,
there remain two wave packets, no longer of exactly Gaussian shape, one continuing to
move to the right and the other, reflected one returning to the left. For the choice of
parameters in this simulation, the transmitted and reflected packet are of comparable
size, thus providing evidence that there can be a substantial probability of reflection
at a step downwards (even for wave packets of finite width). That is, the numerical
simulation confirms the prediction of the stationary analysis.
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Figure 3: Numerical simulation of the time-dependent Schrödinger equation for the soft
step potential (9). The picture shows ten snapshots of |ψ|2 (black lines) at different
times before, during, and after passing the potential step. (Order: left column top
to bottom, then right column top to bottom.) It can clearly be seen that there is a
transmitted wave packet and, “paradoxically,” a reflected wave packet. The initial wave
function is a Gaussian wave packet centered at x = 0.1 with σ = 0.01 and k0 = 200π.
The simulation assumes infinite walls at x = 0 and x = 1. The parameters are m = 1,
L = 1/100 and ∆E = 18.4E, and the linear mesh has N = 1000 points. The additional
lines in the figures depict the potential in arbitrary units. The figure shows the modulus
of the wave packet at times: 1, 4, 8, 11, 12, 13, 16, 18, 22, 27 ∆t in arbitrary time units.

4.2 But Is It for Real?

We now point out how rigorous mathematics confirms paradoxical reflection as a conse-
quence of the Schrödinger equation. We thus exclude the possibility that it was merely
numerical error that led to the appearance of paradoxical reflection for wave packets.

Do not think the worry that numerical errors may lead to the wrong behavior of a
wave packet was paranoid: There are cases in which exactly this happens. Here is an
example involving the potential V (x) = −x2: In some numerical simulations, a wave
packet starting near the origin and moving to the right gets reflected at some point and
returns to the origin, whereas in the rigorous solution of the Schrödinger equation the
wave packet never returns, but accelerates more and more. As illustrated in Figure 4, the
numerically predicted time of reflection depends on the mesh width (i.e., the numerical
resolution): the higher the resolution, the later the predicted reflection.
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Figure 4: An example of how numerical error may lead to wrong predictions. The plot
shows numerical results about the evolution of the average position of a Gaussian wave
packet (initially as in Figure 3) with the parabolic potential V (x) = −50k2

0(x − 0.3)2

as a function of time for several numbers of nodes of the linear mesh, N . The black
dashed line corresponds to the evolution for V (x) = 0. We see that there is a spurious
reflection of the wave packet due to the finite size effects of the numerical simulation.
Note that in the figure only in the N = 10, 000 case the wave function collides with the
x = 1 wall. In the other cases the reflection occurs far from the x = 1 wall (see for
instance the N = 500 case).

We return to the mathematics of paradoxical reflection. The rigorous mathematical
analysis of scattering problems of this type is a fairly complex and subtle topic. The
main techniques and results (also for higher dimensional problems) are described in [4, 5],
and the mathematical results relevant to potentials of the step type can be found in [6].
The reflection probability R of eq. (17) is given in terms of the plane wave reflection
coefficients R(k1) by the following formula, expressing exactly what one would intuitively
expect:

R =

∫ ∞

0

dk1R(k1) |ψ̂in(k1)|2 . (18)

The same formula holds with all R’s replaced by T ’s. In (18), R(k1) is given by the
stationary analysis, as in (7) or (10), with k2 expressed in terms of k1 and ∆E, k2 =√
k2

1 + 2m∆E/~2; and ψ̂in(k1) is the Fourier transform of the incoming wave packet
ψin(x).
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(In brackets: To be precise, the incoming packet ψin(x, t) is defined as the free
asymptote of ψ(x, t) for t→ −∞, i.e., ψin(x, t) evolves without the potential,

i~
∂ψin

∂t
(x, t) = − ~

2

2m

∂2ψin

∂x2
(x, t) , (19)

and
lim

t→−∞
‖ψin(·, t) − ψ(·, t)‖ = 0 . (20)

Similarly, ψrefl + ψtra is the free asymptote of ψ for t → +∞. When we write ψin(x),
we mean to set t = 0; note, however, that (18) actually does not depend on the t-value

as, by the free Schrödinger equation (19), ψ̂in(k, t) = exp(−it~k2/2m) ψ̂in(k, 0) and thus

|ψ̂in(k, t)|2 = |ψ̂in(k, 0)|2. Since we assumed that the incoming wave packet comes from
the left, ψin is a “right-moving” wave packet consisting only of Fourier components with
k ≥ 0.)

From (18) we can read off the following: If the incoming wave packet consists only
of Fourier components k1 for which R(k1) > 1 − ε for some (small) ε > 0, then also
R > 1 − ε. More generally, if the incoming wave packet consists mainly of Fourier
components with R(k1) > 1 − ε, that is, if the proportion of Fourier components with
R(k1) > 1 − ε is

∫ ∞

0

dk1 Θ
(
R(k1) − (1 − ε)

)
|ψ̂in(k1)|2 = 1 − δ , (21)

then R > 1 − ε− δ because
∫ ∞

0

dk1R(k1) |ψ̂in(k1)|2 ≥
∫ ∞

0

dk1R(k1) Θ
(
R(k1) − (1 − ε)

)
|ψ̂in(k1)|2 ≥

≥
∫ ∞

0

dk1 (1 − ε) Θ
(
R(k1) − (1 − ε)

)
|ψ̂in(k1)|2 = (1 − ε)(1 − δ) > 1 − ε− δ .

Therefore, whenever the stationary analysis predicts paradoxical reflection for cer-
tain parameters and values of k1, then also wave packets consisting of such Fourier
components will be subject to paradoxical reflection.

5 Parameter Dependence

Let us summarize and be explicit about how the reflection probability R from a potential
step downwards depends on the parameters of the situation: the mean wave number k1

and the width σ of the incoming wave packet, and the depth ∆E and width L of the
potential step. We claim that R is close to 1 in the parameter region with

1

k1

≫ L (22a)

∆E ≫ ~
2k2

1

2m
= E (22b)

σ ≫ 1

k1

. (22c)
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Note that 1/k1 is (up to the factor 2π) the (mean) wave length λ.
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Figure 5: The region (shaded) in the plane of the parameters u and v, defined in (23),
in which the reflection probability (24) exceeds 99 percent. The horizontally shaded
subset is the region in which condition (25) holds.

To derive this claim from (10) and (18), consider first the case σ → ∞ of a very very
wide packet. For such a packet, its Fourier transform is very sharply peaked at k1. The
reflection coefficient R given by (10) depends on the parameters k1, L,∆E,m only in
the dimensionless combinations

u = π
2
k1L , v = π

2

√
2m∆EL/~ , (23)

that is,

R = R(u, v) =

(
sinh(

√
u2 + v2 − u)

sinh(
√
u2 + v2 + u)

)2

. (24)

Figure 5 shows the region in the uv plane in which R > 0.99. As one can read off from
the figure, for (u, v) to lie in that region, it is sufficient, for example, that

u < 10−3 and v > 103u . (25)

More generally, for R(u, v) to be very close to 1 it is sufficient that u≪ 1 and v ≫ u,
which means (22a) and (22b). To see this, note that

sinh(
√
u2 + v2 − u) = sinh(

√
u2 + v2 + u− 2u) =

= sinh(
√
u2 + v2 + u) cosh(2u) − cosh(

√
u2 + v2 + u) sinh(2u)

(26)

so that

√
R(u, v) =

sinh(
√
u2 + v2 − u)

sinh(
√
u2 + v2 + u)

= cosh(2u) − sinh(2u)

tanh(
√
u2 + v2 + u)

. (27)
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Suppose that u≪ 1. Then Taylor expansion to first order in u yields

√
R(u, v) ≈ 1 − 2u

tanh v
. (28)

If v is of order 1, this is close to 1 because u ≪ 1. If, however, v is small, then tanh v
is of order v, and the right hand side of (28) is close to 1 when u/v ≪ 1. Thus, when
(22a) and (22b) are satisfied

√
R is close to 1, and thus so is R.

Now consider a wave packet that is less sharply peaked in the momentum representa-
tion. If it has width σ in position space then, by the Heisenberg uncertainty relation, it
has width of order 1/σ in Fourier space. For the reflection probability to be close to one,
the wave packet should consist almost exclusively of Fourier modes that have reflection
coefficient close to one. Thus, every wave number k̃1 in the interval, say, [k1− 10

σ
, k1 + 10

σ
]

should satisfy (22a) and (22b). This will be the case if 10
σ

is small compared to k1, or
σ ≫ 1/k1. Thus, (22c), which is merely what is required for (14) to be a good wave
packet, i.e., an approximate plane wave, is a natural condition on σ for keeping R close
to 1.

6 The Classical Limit

If paradoxical reflection exists, then why do we not see it in the classical limit? On
the basis of (22) we can understand why: Classical mechanics is a good approximation
to quantum mechanics in the regime in which a wave packet moves in a potential that
varies very slowly in space, so that the force varies appreciably only over distances much
larger than the wave length. For paradoxical reflection, in contrast, it is essential that
the length scale of the drop in the potential be smaller than the wave length. For further
discussion of the classical limit of quantum mechanics, see [7].

7 A Plateau as a Trap

Given that a quantum particle will likely be reflected from a suitable potential step
downwards, it is obvious that it could be trapped, more or less, in a region surrounded
by such a potential step. In other words, also potential plateaus, not only potential
valleys, can be confining. To explore this possibility of “paradoxical confinement,” we
now consider a potential plateau

V (x) = −∆E
(
Θ(x− a) + Θ(−x− a)

)
, (29)

depicted in Figure 6.
A particle starting on the plateau could remain there—at least with high probability—

for a very long time, much longer than the maximal time τcl that a classical particle
with energy E would remain on the plateau, which is

τcl = a

√
2m

E
, (30)
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V(x)

x
∆E

a

Figure 6: Potential plateau

independently of the height of the plateau. Instead, the time the quantum particle likely
remains on the plateau is of the order

√
∆E/E τcl and is thus much larger than τcl if

the height ∆E is large enough. One can say that a quantum particle on a table tends
not to fall down. In this formulation, the “table” is supposed to be of an appreciable
height, i.e., ∆E ≫ E. In fact, as we shall argue in the subsequent sections, a quantum
particle starting on the plateau should leave the plateau at the rate τ−1

qu with the decay
time

τqu = a

√
2m∆E

4E
=

1

4

√
∆E

E
τcl . (31)

The lifetime (31) can be obtained in the following semi-classical way: Imagine a
particle traveling along the plateau with the speed

√
2E/m classically corresponding to

energy E, getting reflected at the edge with probability R given by (7), traveling back
with the same speed, getting reflected at the other edge with probability R, and so on.
Since the transmission probability T = 1 −R corresponding to (7) is

4
√
E/∆E + higher powers of E/∆E , (32)

a number of reflections of order (
√
E/∆E)−1 should typically be required before trans-

mission occurs, in qualitative agreement with (31). In fact, the transmission probability
of T = 4

√
E/∆E, when small, corresponds to a decay rate T/τcl and hence to the decay

time τcl/T given by (31).

V(x)

x
∆E

Figure 7: Potential well

One must be careful with this reasoning, since applied carelessly it would lead to the
same lifetime for the potential well depicted in Figure 7 as for the potential plateau.
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(That is because the reflection probability at a potential step upwards is, as already
mentioned, the same as that at a potential step downwards.) However, the potential well
possesses bound states for which the lifetime is infinite. In this regard it is important
to bear in mind that the symmetry in the reflection coefficient derived in [2] always
involves incoming waves at the same total energy E > 0; for a potential well it would
thus say nothing about bound states, which have E < 0.

This is a basic difference between confinement in a potential well and paradoxical
confinement on a potential plateau: In the well, the particle has positive probability
to stay forever. Mathematically speaking, the potential well has bound states (i.e.,
eigenfunctions in the Hilbert space L2(R) of square-integrable functions), whereas the
potential plateau does not. For the potential well, the initial wave packet will typically
be a superposition ψ = ψbound + ψscattering of a bound state (a superposition of one or
more square-integrable eigenfunctions) and a scattering state (orthogonal to all bound
states); then ‖ψbound‖2 is the probability that the particle remains in (a neighborhood of)
the well forever. In contrast, because of paradoxical reflection, the potential plateau has
metastable states, which remain on the plateau for a long time but not forever. Indeed,
we will show that (31) is the lifetime. Our tool for the proof will be a method similar to
the stationary analysis of Section 2, using special states lying outside the Hilbert space
L2(R) (as do the stationary states of Section 2). And again like the stationary states of
Section 2, the special states are similar to eigenfunctions of the Hamiltonian: they are
solutions of the time-independent Schrödinger equation (2), but with complex “energy”!

8 Eigenfunctions with “Complex Energy”

We now derive the formula (31) for the lifetime τ = τqu from the behavior of solutions
to the eigenvalue equation (2), but with complex eigenvalues. To avoid confusion, let us
now call the eigenvalue Z instead of E; thus, the equation reads

Zψ(x) = − ~
2

2m
ψ′′(x) + V (x)ψ(x) , (33)

where V is the plateau potential as in (29). Such “eigenfunctions of complex energy”
were first considered by Gamow [8, 9] for the theoretical treatment of radioactive alpha
decay.

The fact that the eigenvalue is complex may be confusing at first, since the Hamilto-
nian is a self-adjoint operator, and it is a known fact that the eigenvalues of a self-adjoint
operator are real. However, in the standard mathematical terminology for self-adjoint
operators in Hilbert spaces, the words “eigenvalue” and “eigenfunction” are reserved for
such solutions of (33) that ψ is square-integrable (= normalizable), i.e., ψ ∈ L2(R). In
this sense, all eigenvalues must be real indeed; for us this means that any solution ψ
of (33) for Z ∈ C \ R is not square-integrable. In fact, even the eigenfunctions with
real eigenvalue E considered in (2) were not square-integrable, which means that they
do not count as “eigenfunctions” in the mathematical terminology, and do not make
the number E an “eigenvalue.” Instead, E is called an element of the spectrum of the
Hamiltonian. Still, the spectrum of any self-adjoint operator consists of real numbers,
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and thus Z ∈ C \ R cannot belong to the spectrum of the Hamiltonian. So, the eigen-
values Z we are talking about are neither eigenvalues in the standard sense, nor even
elements of the spectrum. (Nevertheless we continue calling them “eigenvalues,” as they
satisfy (33) for some nonzero function.)

Let us explain how these complex eigenvalues can be useful in describing the time
evolution of wave functions. Consider an eigenfunction ψ with a complex eigenvalue Z.
It generates a solution to the time-dependent Schrödinger equation by defining

ψ(x, t) = e−iZt/~ψ(x, 0) . (34)

The function grows or shrinks exponentially with time, with rate given by the imaginary
part of Z. More precisely,

|ψ(x, t)|2 = e2Im Zt/~|ψ(x, 0)|2 , (35)

so that 2ImZ/~ is the rate of growth of the density |ψ(x, t)|2. For those eigenfunctions
relevant to our purposes, the imaginary part of Z is always negative, so that ψ shrinks
with time. In particular, the amount of |ψ|2 on top of the plateau decays with the expo-
nential factor that occurs in (35). Assuming that |ψ|2 is proportional to the probability
density at least in some region around the plateau (though not on the entire real line)
for a sufficiently long time, and using that the lifetime τ for which the particle remains
on the plateau is reciprocal to the decay rate of the amount of probability on top of the
plateau, we have that

τ = − ~

2ImZ
. (36)

From (34) we can further read off that the phase of ψ(x, t) at any fixed x rotates
with frequency ReZ/~, while for eigenfunctions with real eigenvalue E it does so with
frequency E/~, which motivates us to call ReZ the energy and denote it by E. Thus,

Z = E − i
~

2τ
. (37)

Below, we will determine τ by determining the relevant eigenvalues Z, i.e., those corre-
sponding to decay eigenfunctions, see below (40).

How can it be that |ψ|2 shrinks everywhere? Does that not conflict with the conser-
vation of the total probability? Apart from the fact that |ψ|2 cannot be the probability
density anyway since ψ is not square-integrable, the shrinking of ψ means that there
is a flow of |ψ|2 to infinity (that is not compensated by an equally large flow of |ψ|2
from infinity). This is indeed similar to the situation we want to consider, in which the
amount of |ψ|2 on top of the plateau continuously shrinks due to a flow of |ψ|2 away from
the plateau. It also suggests that ψ should grow exponentially in space as x → ±∞:
The density at great distance from the plateau would be expected to agree with the flow
off the plateau in the distant past, which was exponentially larger than in the present
if the wave function on top of the plateau shrinks exponentially with time. As we will
see now, the eigenfunctions behave exactly that way.
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The general solution of (33) with Z ∈ C except Z = 0 or Z = −∆E is1

ψ(x) =






B−e−ik̃x + C−eik̃x when x < −a,
A+eikx + A−e−ikx when − a < x < a,

B+eik̃x + C+e−ik̃x when x > a,

(38)

where
k =

√
2mZ/~ and k̃ =

√
2m(Z + ∆E)/~ (39)

with the following (usual) definition of the complex square root: Given a complex num-
ber ζ other than one that is real and ≤ 0, let

√
ζ denote the square root with positive

real part, Re
√
ζ > 0. For ζ ≤ 0, we let

√
ζ = i

√
|ζ|. (Since (38) remains invariant

under changes in the signs of k and k̃, choosing the positive branch for the square roots
is not a restriction for the solutions.) We are interested only in those solutions for Z
with ReZ = E > 0; these are the ones that should be relevant to the behavior of states
starting out on the plateau (with positive energy). Nevertheless, for mathematical sim-
plicity, we will also allow ReZ ≤ 0 but exclude any Z that is real and negative or zero.
For any Z ∈ C \ (−∞, 0] we have that Re k̃ > 0, so that the probability current j
associated with exp(ik̃x) is positive (i.e., a vector pointing to the right). Since we do
not want to consider any contribution with a current from infinity to the plateau, we
assume that

C+ = C− = 0 . (40)

We thus define a decay eigenfunction or Gamow eigenfunction to be a nonzero function
ψ of the form (38) with (39) and C± = 0, satisfying the eigenvalue equation (33) except
at x = ±a (where ψ′′ does not exist) for some Z ∈ C \ (−∞, 0], such that both ψ
and ψ′ are continuous at ±a; those Z that possess a decay eigenfunction we call decay
eigenvalues or Gamow eigenvalues.2

The remaining coefficients A±, B± are determined up to an overall factor by the
requirement that both ψ and its derivative ψ′ be continuous at ±a, the ends of the
plateau. We will see that Im k̃ < 0, so that, indeed, |ψ(x)| → ∞ exponentially as
x → ±∞. Continuity of ψ and ψ′ determines the possible values of (not only A±, B±

but also) Z and thus k, k̃. We have collected the details of the computations into
Appendix A, and report here the results. To describe the solutions, let

λ0 =
2π~√
2m∆E

, α =
a

π~

√
2m∆E =

2a

λ0

. (41)

λ0 is the de Broglie wavelength corresponding to the height ∆E of the potential plateau,
and α is the width of the plateau in units of λ0.

1For Z = 0, the line for −a < x < a has to be replaced by A0+A1x; for Z = −∆E, ψ(x) = D−+E−x
for x < −a and ψ(x) = D+ + E+x for x > a.

2Here is a look at the negative Z’s that we excluded in this definition: In fact, for Z ∈ (−∞, 0] \
{−∆E} there exist no nonzero functions with C± = 0 satisfying the eigenvalue equation (33) for all
x 6= ±a such that ψ and ψ′ are continuous. (But we have not included the proof in this paper.) For
Z = −∆E, the coefficients C± are not defined, so the condition (40) makes no sense.
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Proposition 1 If α ≥ 10, then the number N of decay eigenvalues Z of (33) with
|Z| ≤ ∆E/4 lies in the range α− 2 < N ≤ α+ 2. There is a natural way of numbering
these eigenvalues as Z1, . . . , ZN . (There is no formula for the eigenvalue Zn, but it can
be defined implicitly.) With each Zn is associated a unique (up to a factor) eigenfunction
ψn, and |ψn(x)| is exponentially increasing as x→ ±∞. Furthermore, for n≪ α,

Zn ≈ n2∆E

4α2

(
1 − i

2

πα

)
. (42)

−a 0 a

Figure 8: Plot of |ψn(x)|2 for an eigenfunction ψn with complex eigenvalue according
to (33) with V (x) the plateau potential as in Figure 6; the parameters are n = 4 and
α = 8; in units with a = 1, m = 1, and ~ = 1, this corresponds to λ0 = 1/4 and
∆E = 32π2 = 315.8.

The proof is given in Appendix A; the values (42) are not (to our knowledge) in the
literature so far. What can we read off about the lifetime τ? In the regime a

√
2m∆E ≫

~ of large ∆E, which corresponds to α≫ 1, the n-th complex eigenvalue Zn with n≪ α
is such that

ReZn ≈ ~
2π2n2

8ma2
, ImZn ≈ − 2~

a
√

2m∆E
ReZn . (43)

(Readers familiar with the infinite well potential, V (x) = 0 when −a ≤ x ≤ a and
V (x) = ∞ when |x| > a, which corresponds to the limit ∆E → ∞ of very deep wells of
the type shown in Figure 7, will notice that ReZn given above actually coincides with
the eigenvalues of the infinite well potential of length 2a.) Using (36) and E = ReZ,
one finds that

τ = a

√
2m∆E

4E
=

1

4

√
∆E

E
τcl = τqu , (44)

the same value as specified in (31). This completes our derivation of the lifetime (31)
from complex eigenvalues. As we did for the potential step, we now also look at the
question whether wave packets behave in the same way as the eigenfunctions, that is,
whether a wave packet can remain on top of the plateau for the time span (31).

9 Wave Packets on the Plateau

Now consider the long-time asymptotics for a normalized (square-integrable) wave func-
tion of more or less definite energy such that the reflection coefficient is near 1, confined
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initially in the plateau interval. As time proceeds, with the wave function slowly leaking
out exponentially, a quasi-steady-state situation should be approached—in an expand-
ing region surrounding the plateau—one that differs from a genuine steady state in that
there is a global uniform overall exponential decay in time. (This state corresponds to
a fixed point of the dynamics on projective space.) This situation should be described
by a wave function of the sort discussed in the previous section, one that corresponds
to a complex eigenvalue Z with negative imaginary part and that grows exponentially
as |x| → ∞.

On the rigorous mathematical level, we can use the eigenfunctions with complex
eigenvalue to establish that initial wave functions originating in the plateau region and
involving only sufficiently low energy components have decay times given by τqu as in
(31) for the lowest relevant energy. As mentioned earlier, the complex Zn are not eigen-
values of the quantum Hamiltonian in the standard mathematical terminology, and the
corresponding eigenfunctions are not at all localized, but rather grow exponentially with
increasing distance from the plateau. They nevertheless can be used for the mathemat-
ical analysis. As a first step, we construct special states approximately localized in the
plateau region which have the slow decay just described. This is the essence of Propo-
sition 2 below. We then conclude in Corollary 1 that the slow decay applies to much
more general initial states.

Proposition 2 Let n be a fixed positive integer; keep a and m fixed and consider the
regime ~

2/2ma2 ≪ ∆E → ∞, so that α ≫ n. There exists a normalized wave function
φn(x) such that (i) on the plateau φn agrees (up to a factor) with the eigenfunction
ψn with complex eigenvalue Z = Zn = E − i~/2τ ; (ii) the initial probability of the
particle being on the plateau is close to 1; (iii) for every 0 < t < τ , the time-evolved
wave function φn,t = e−iHt/~φn is close, on the plateau [−a, a], to (a factor times) the
time-evolved eigenfunction ψn,t = e−iZnt/~ψn. Put differently,

(i) φn(x) = Anψn(x) for −a ≤ x ≤ a with some constant An ∈ C;

(ii) 1 −
∫ a

−a
|φn(x)|2dx≪ 1;

(iii)
∫ a

−a
|φn,t(x) − Anψn,t(x)|2dx≪ 1.

The proof is included in Appendix B. As a consequence of Proposition 2, the amount
of probability on the plateau indeed shrinks at rate 1/τ , at least up to time τ . In
particular, the particle has probability ≈ 1/e = 0.3679 to stay on the plateau until τ .

Let us describe how φn is chosen. We make the n-th decay eigenfunction ψn normal-
izable by multiplying it outside the plateau by a Gaussian function with width σ > 0.
We assume that σ = O(a), i.e., it does not grow with α. Finally, we multiply the re-
sulting function by a constant An which is so chosen that φn has norm 1. Explicitly,
then

φn(x) = An ×






B−e−ik̃x− 1
4σ2 (x+a)2 when x < −a,

B+eik̃x− 1
4σ2 (x−a)2 when x > a,

A+eikx + A−e−ikx when − a ≤ x ≤ a.

(45)

17



That is, φn is obtained from the eigenfunction ψn by “cutting off” the function around
x = ±(a + σ). Among the statements in Proposition 2, property (i) is immediate, and
property (ii) is quite straightforward: Using the explicit form of A± and B± given in
Appendix A, one can compute that, in the regime n≪ α,

∫ a

−a

|ψn(x)|2dx ≈ a , (46)

while the integrals

∫ ∞

a

∣∣∣
φn(x)

An

∣∣∣
2

dx and

∫ −a

−∞

∣∣∣
φn(x)

An

∣∣∣
2

dx (47)

can be neglected in comparison, as they become small when α is large: They are of
order 1/α2. This can be understood by noticing that |ψn(a)|2, the value at the left end
of the interval [a,∞), is of order 1/α2, and the width σ of the Gaussian is independent
of α, so that the integral is of order 1/α2, since |ψn|2 grows with rate of order 1/α2, so
slowly that the increase is negligible over an interval of length σ. Property (iii) will be
established in Appendix B.

Corollary 1 For any initial wave function ψ on the plateau with contributions only
from eigenfunctions ψn with low n, i.e.,

ψ(x) =






nmax∑

n=1

cn ψn(x) when − a ≤ x ≤ a,

0 otherwise,

(48)

with α-independent nmax and coefficients cn, the time-evolved wave function ψt = e−iHt/~ψ
is close, on the plateau, to

∑
n cn ψn,t, at least up to time min(τ1, . . . , τnmax), where

τn = −~/2ImZn. That is,
∫ a

−a

∣∣ψt(x) −
∑

n

cn ψn,t(x)
∣∣2dx≪ 1 . (49)

This means that any such wave packet ψ will have a long decay time on the plateau,
namely at least min(τ1, . . . , τnmax) (with each τn given by the quantum formula (31) and
not by the classical formula (30)!); indeed, (49) suggests that the decay time of ψ is
of the order of the largest τn with 1 ≤ n ≤ nmax and significant |cn|2. The proof of
Corollary 1 is simple; it is included in Appendix C.

As another remark, the proof in Appendix B actually shows more than just Propo-
sition 2, namely the following. Considering the eigenfunction ψn, we introduce the
abbreviation

v =
~

m
Re k̃ , (50)

18



which equals the speed at which an escaping particle moves away from the plateau. The
maximal region in which we can expect a wave packet originally on the plateau to agree
with an eigenfunction is the neighborhood of the plateau growing at speed v; that is, the
region at time t is the interval [−a− vt, a+ vt]. And indeed, the wave function initially
as in (45) stays close to (a factor times) the eigenfunction in this growing region:

∫ a+vt

−a−vt

|φn,t(x) − Anψn,t(x)|2dx≪ 1 (51)

for 0 ≤ t ≤ τ . Moreover, in the same way in which Corollary 1 is obtained from
Proposition 2, one obtains the following from (51): For ψ as in Corollary 1, v =
min(v1, . . . , vnmax), vn given by (50) for ψn, and 0 < t < min(τ1, . . . , τnmax),

∫ a+vt

−a−vt

∣∣ψt(x) −
∑

n

cn ψn,t(x)
∣∣2dx≪ 1 . (52)

This justifies the qualitative description in the beginning of this section.
As a final remark we note that the decay results described here, both qualitative and

quantitative, presumably apply as well to the standard tunnelling situation in which a
particle is confined inside a region by a potential barrier (a wall) that is high but not
infinitely high, separating the inside from the outside. For this situation, more detailed
results were obtained in [10] by other methods based on analytic continuation.

10 Conclusions

We have argued that paradoxical reflection and paradoxical confinement, the phe-
nomenon that a quantum particle tends not to fall off a table, are real phenomena
and not artifacts of the stationary analysis. We have pointed out that the effect is a
robust prediction of the Schrödinger equation, as it persists when the potential step is
not assumed to be rectangular but soft, and when the incoming wave is a packet of fi-
nite width. We have provided numerical evidence and identified the relevant conditions
on the parameters. We have explained why it is not a counter-argument to note that
paradoxical reflection is classically impossible. We conclude that paradoxical reflection
is a fact, not an artifact. Finally, we have computed that a state (of sufficiently low
energy) on a potential plateau as in Figure 6 has a long decay time, no less than τqu

given by (31). We conclude from this that a plateau potential can, for suitable param-
eters, effectively be confining. Thus, the effect could indeed be used for constructing a
(metastable) particle trap.
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A Solving the Plateau Eigenvalue Equation

We now prove Proposition 1; that is, we determine all decay eigenfunctions of (33), as
defined after (40). The continuity of ψ requires that

A+eika + A−e−ika = B+eik̃a , (53)

A+e−ika + A−eika = B−eik̃a , (54)

and continuity of ψ′ that also

k
(
A+eika − A−e−ika

)
= k̃B+eik̃a, (55)

k
(
A+e−ika − A−eika

)
= −k̃B−eik̃a. (56)

Recall that both k and k̃ can be complex. Since we assume ∆E > 0, and since, by (33),
k̃2 = k2 + 2m∆E/~2, we have that k ± k̃ 6= 0, and these equations are readily solved.
First, we find the relations

A− = ei2ak k − k̃

k + k̃
A+, (57)

B+ = eia(k−k̃) 2k

k + k̃
A+, (58)

B− = e−ia(k+k̃) 2k

k − k̃
A+, (59)

with the additional requirement that, since A+ 6= 0 for decay eigenfunctions,

(
k + k̃

k − k̃

)2

= ei4ak. (60)

Let λ0 and α be defined by (41), and, in order to express k in natural units, let

κ :=
λ0k

2π
. (61)

Then

k =
2π

λ0

κ , k̃ =
2π

λ0

√
1 + κ2 , (62)

and we have that

k + k̃

k − k̃
=
κ+

√
1 + κ2

κ−
√

1 + κ2
= −

(
κ+

√
1 + κ2

)2

. (63)

Thus (60) is equivalent to

(
κ+

√
1 + κ2

)4

= ei4πκα. (64)
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The solutions of this equation coincide with those of the equation

ln
(
κ+

√
1 + κ2

)
= iπκα− i

πn

2
(65)

where n ∈ Z is arbitrary and ln denotes the principal branch of the complex logarithm.3

Thus, with every decay eigenfunction ψ is associated a solution κ of (65) (with
Reκ > 0, since Re k > 0 by definition of k) and an integer n. Furthermore, n ≥ −1,
because Reκ > 0 and the imaginary part of the left hand side of (65) must lie between
−π and π. Conversely, with every solution κ of (65) with Reκ > 0 there is associated
a decay eigenvalue

Z = κ2∆E (66)

and an eigenfunction ψ that is unique up to a factor: Indeed, (61) and (62) provide the
values of k and k̃ and imply (66) and (60); Reκ > 0 implies Z /∈ (−∞, 0], as well as
Re k > 0, so that indeed k =

√
2mZ/~; k ± k̃ 6= 0; A+ can be chosen arbitrarily in

C \ {0}, and if A− and B± are chosen according to (57)–(59) then ψ is nonzero (as, e.g.,
B+ 6= 0 when k 6= 0 and A+ 6= 0) and a decay eigenfunction. We note that the condition
Reκ > 0 is automatically satisfied when n ≥ 2, as we can read off from the imaginary
part of (65) using that ln has imaginary part in (−π, π].

To determine ψ explicitly, note that ei2ak k−k̃
k+k̃

= (−1)n+1, and thus A− = (−1)n+1A+,

B− = (−1)n+1B+; setting A+ = 1
2

and introducing the notation

B := B+eiak̃ = eiak k

k + k̃
= eiπκα κ√

1 + κ2 + κ
= inκ , (67)

we obtain that for odd n

ψ(x) = B
[
χ(x > a)eik̃(x−a) + χ(x < −a)e−ik̃(x+a)

]
+ χ(−a ≤ x ≤ a) cos (kx) , (68)

and for even n

ψ(x) = B
[
χ(x > a)eik̃(x−a) − χ(x < −a)e−ik̃(x+a)

]
+ χ(−a ≤ x ≤ a) sin (kx) . (69)

We have used here the notation χ(Q) to denote the characteristic function of a condition
Q:

χ(Q) =

{
1 when Q is true,

0 otherwise.
(70)

To sum up what we have so far, the decay eigenvalues are characterized, via (66),
through the solutions κ of (65) with Reκ > 0. In order to study existence, uniqueness,
and the asymptotics for α→ ∞ of these solutions, let us now assume, as in Proposition 1,

3For ζ ∈ C \ {0}, the equation ez = ζ has infinitely many solutions z, all of which have real part
ln |ζ|, and the imaginary parts of which differ by integer multiples of 2π; by ln ζ we denote that z which
has −π < Im z ≤ π.
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that α ≥ 10 and |Z| ≤ ∆E/4. By virtue of (66), the latter assumption is equivalent to
|κ| ≤ 1/2. We first show that solutions with |κ| ≤ 1/2 must have |n| ≤ α + 2: Since ln
has imaginary part in (−π, π], (65) implies that Reκ ∈ (n−2

2α
, n+2

2α
], and hence

1

2
≥ |κ| ≥ |Reκ| ≥ |n| − 2

2α
, (71)

or |n| ≤ α+2. Next recall that for decay eigenvalues, n ≥ −1, so we obtain at this stage
that the number of values that n can assume is at most α+4, as the possible values are
−1, 0, 1, 2, . . . ≤ α+ 2. We will later exclude n = 0 and n = −1.

We now show that there exists a unique solution κ of (65) for every n with |n| ≤ α+2.
Let

F (κ) =
n

2α
− i

πα
ln
(
κ+

√
1 + κ2

)
, (72)

so that (65) can equivalently be rewritten as the fixed point equation

F (κ) = κ . (73)

We use the Banach fixed point theorem [11] to conclude the existence and uniqueness
of κ. Since

F ′(κ) = − i

πα

1√
1 + κ2

, (74)

we have, by the triangle inequality, that

|F ′(κ)| =
1

πα|1 + κ2|1/2
≤ 1

πα|1 − |κ|2|1/2
. (75)

Let us consider for a moment, instead of |κ| ≤ 1/2, the disk |κ| ≤ r for any radius
0 < r <

√
1 − 1/π2α2. There we have that |F ′(κ)| ≤ 1/(πα

√
1 − r2) =: K < 1. Thus,

for any κ, κ′ in the closed disk of radius r, |F (κ′) − F (κ)| ≤ K|κ′ − κ|, and, using

|F (0)| = |n|
2α

,

|F (κ)| ≤ |F (κ) − F (0)| + |F (0)| ≤ rK +
|n|
2α

≤ r , (76)

provided that
|n| ≤ 2αr(1 −K) . (77)

Thus, in this case, F is a contraction in the ball of radius r, with a contraction constant
of at most K. By the Banach fixed point theorem there is then a unique solution to the
equation F (κ) = κ in the ball |κ| ≤ r. Even though we are ultimately interested in the
radius 1/2, let us set r = 1/

√
2, which satisfies r <

√
1 − 1/π2α2 as α ≥ 10; also (77)

is satisfied because |n| ≤ α + 2 and α ≥ 10 > 2(1 + 1/π)/(
√

2 − 1) = 6.37. Hence, for
every n with |n| ≤ α+ 2, there is a unique solution κn with |κn| ≤ 1/

√
2.

Getting back to the ball of radius 1/2, while some of the κn may have modulus greater
than 1/2, we can at least conclude that there is at most one solution with modulus ≤ 1/2
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for every n with |n| ≤ α + 2. In addition, by setting r = 1/2, we obtain from (77) that
|κn| ≤ 1/2 for every n with |n| ≤ α−1. If n = 0, then F (0) = 0 and κ0 = 0 is the unique
solution, which would lead to ψ = 0. This excludes n = 0. Which of the solutions have
Reκn > 0, as required for decay eigenvalues? For any n with |n| ≤ α + 2, let κ

(j)
n be

defined recursively by κ
(j+1)
n = F (κ

(j)
n ) with κ

(0)
n = 0. Then, again by the Banach fixed

point theorem for r = 1/
√

2, κ
(j)
n → κn as j → ∞, and

|κn − κ(j)
n | ≤ Kj

1 −K
|κ(1)

n − κ(0)
n | ≤ |n|α−(j+1) . (78)

For n = −1 and j = 1, this gives us that |κ−1 − κ
(1)
−1| ≤ α−2, and with κ

(1)
−1 = −1/2α

and α ≥ 10, we can conclude that Reκ−1 < 0. This excludes n = −1. For n > 0,

in contrast, the fact that |κn − κ
(1)
n | ≤ |n|α−2 allows us to conclude, with κ

(1)
n = n/2α

and α ≥ 10, that Reκn > 0. Hence, the decay eigenvalues with |Z| ≤ ∆E/4 are in
one-to-one correspondence with those κn, 0 < n ≤ α + 2, that have |κn| ≤ 1/2; the
number of these κn must, as we have shown, be greater than α − 2 and less than or
equal to α+ 2.

Furthermore, for these κn, Imκn < 0: Computing κ
(2)
n explicitly yields

κ(2)
n = ν − i

1

πα
ln
(
ν +

√
1 + ν2

)
with ν =

n

2α
. (79)

Using (78) as before, the claim follows if we can show that Imκ
(2)
n < −nα−3, which is

equivalent to
2π

α
ν < ln(ν +

√
1 + ν2) . (80)

Note that 0 < ν ≤ (α + 2)/2α ≤ 0.6 since α ≥ 10. In fact, (80) holds for all 0 < ν < 1
and α ≥ 10 because

√
1 + ν2 > 1 and ln(ν + 1)/ν for ν > 0 is a decreasing function4

whose value at ν = 1 is ln 2 = 0.693 > 0.628 = 2π/10 ≥ 2π/α. As a consequence
of Imκn < 0 (and Reκn > 0), also Im k̃ < 0, so that |ψ(x)| grows exponentially as
x→ ±∞.

Now let us consider the asymptotics for n≪ α. From (78) we have that κn is given
by the right hand side of (79) up to an error of order O(nα−3). Therefore, for integers
n with 0 < n≪ α we have that

k ≈ πn

2a
− i

n

2aα
, k̃ ≈ πα

a
− i

n2

4aα2
, Zn = κ2

n∆E ≈ n2∆E

4α2

(
1 − i

2

πα

)
. (81)

B Derivation of the Lifetime Estimates for the Meta-

stable States on the Plateau

We now prove Proposition 2. What remains to be shown is property (iii); we will
establish the stronger statement (51). We will do this by constructing a function f(x, t)

4To see this, note that its derivative is of the form f(ν)/g(ν) with f(ν) = ν − (1 + ν) ln(1 + ν) and
g(ν) = ν2(1 + ν). Since g(ν) > 0 for ν > 0, it suffices to show that f(ν) < 0 for ν > 0. This follows
from f(0) = 0 and f ′(ν) = − ln(1 + ν) < 0 for ν > 0.
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which remains close to the time-evolved eigenfunction in a growing region around the
plateau. We then prove that this function forms an excellent approximation of φn,t(x).
f(x, t) will be defined by multiplying the time-evolved eigenfunction e−itZn/~ψn again by
Gaussians, but now with time-dependent parameters.

To define f(x, t) we first introduce the abbreviation

β = −Im k̃ ≈ n2

4aα2
(82)

and recall

v =
~

m
Re k̃ ≈ ~πα

ma
, (83)

whence k̃ = m
~
v − iβ with v, β > 0. We define further

R(t) = a+ vt, b(t) = σ2 + i
~

2m
t. (84)

The Gaussians will be attached symmetrically to x = ±R(t) with a “variance” b(t),
which yields explicitly

f(x, t) = Ane−itZn/~ ×






±Beik̃(−x−a)− 1
4b(t)

(−x−R(t))2 , when x < −R(t),

Beik̃(x−a)− 1
4b(t)

(x−R(t))2 , when x > R(t),

ψn(x), when |x| ≤ R(t).

(85)

Clearly, f(x, 0) = φn(x). Also f(x, t) is continuously differentiable in x for all t > 0
because ψn is, and because the unnormalized Gaussian exp(−(x − µ)2/4b) has, at its
mean µ, value 1 and derivative 0. It is a short computation5 to check that for all t > 0

(H − Z)f(x, t) = − ~
2

2m
∂2

xf(x, t) + (V (x) − Z)f(x, t)

= − ~
2

2m
[g1(x−R(t), t) ± g1(−x−R(t), t)] f(x, t), (86)

with

g1(y, t) = χ(y > 0)

(
y2

4b(t)2
− 1

2b(t)
− ik̃

y

b(t)

)
. (87)

In addition, we have

i~∂tf(x, t) = Zf(x, t) − ~
2

2m
[g2(x−R(t), t) ± g2(−x−R(t), t)] f(x, t), (88)

5The computation can be given the following mathematical justification: Since the potential V is
bounded, by an application of the Kato–Rellich theorem [12, Theorem X.15], the Hamiltonian H =

− ~
2

2m
∂2

x
+ V is self-adjoint on the domain of −∂2

x
. It can be easily checked that for any t the derivative

∂xf(x, t) is absolutely continuous in x, and thus the function f(·, t) belongs to the domain of H. This
can be used to justify all the manipulations made here. Let us also use the opportunity to stress that, if
we had not chosen the constants A± and B± in (38) so that the function is continuously differentiable,
then the addition of the Gaussian cut-off would have resulted in functions which are in L2(R) but which
do not belong to the domain of H. Thus our estimates are not valid for such initial states. For more
sophisticated mathematical methods to study such problems, see for instance [13].
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with g2 = g1 + g3 where

g3(y, t) = χ(y > 0)
1 + 2βy

2b(t)
. (89)

As for a fixed t, the function f(x, t) is square integrable, we can define a mapping

t 7→ F (t) = eitH/~f(·, t) − φn. (90)

with F (t) ∈ L2 for all t ≥ 0 and F (0) = 0. F is differentiable and by the above estimates
for all t > 0,

∂tF (t) = eitH/~

[
i

~
Hf(·, t) + ∂tf(·, t)

]
= eitH/~g(·, t) (91)

where

g(x, t) = i ~

2m
[g3(x−R(t), t) ± g3(−x−R(t), t)] f(x, t). (92)

As the derivative is continuous (in the L2-norm) in t, it can be integrated to yield
F (t) =

∫ t

0
ds ∂sF (s). Then, by the unitarity of the time evolution, we find

‖f(·, t) − φn,t‖ = ‖F (t)‖ ≤
∫ t

0

ds ‖∂sF (s)‖ =

∫ t

0

ds ‖g(·, s)‖ . (93)

Thus we only need to estimate the magnitude of
∫ t

0
ds ‖g(·, s)‖. Let us first point

out that for all |x| > R(t), with y = |x| −R(t),

|f(x, t)|2 = |An|2|B|2 exp

(
2 Re

[
−i
t

~
Z + ik̃(y + vt) − 1

4b(t)2
y2

])
. (94)

Here the argument of the exponential can be simplified using Z = ~
2

2m
k̃2 − ∆E to

2βy − σ2

4|bt|2
y2 =

1

2
c2t −

1

2

[
2β

ct
y − ct

]2

, with ct = 2β|b(t)|σ−1. (95)

Therefore,

‖g(·, t)‖2 =

(
~

2m

)2

2

∫ ∞

0

dy |f(y +R(t), t)|2|g3(y, t)|2

=

(
~|An||B|
2m|bt|

)2
1

2

∫ ∞

0

dy (1 + 2βy)2 exp
(
2βy − σ2

4|bt|2
y2
)

=

(
~β|An||B|
mσct

)2
ct
4β

e
1
2
c2
t

∫ ∞

−ct

dx (1 + c2t + ctx)
2e−

1
2
x2

≤
(

~β|An||B|
mσct

)2
ct
4β

e
1
2
c2
t

∫ ∞

−∞

dx ((1 + c2t )
2 + c2tx

2)e−
1
2
x2

=

(
~
√
β|An||B|
2mσ

)2
1

ct
e

1
2
c2
t

√
2π((1 + c2t )

2 + c2t ). (96)
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For sufficiently large α and all 0 ≤ t ≤ τ ≈ (2ma2/~πn2)α,

ct ≤ cτ = 2β|b(τ)|σ−1 =
2

σ
β

√
σ4 +

(
~

2m

)2

τ 2

≈ 2

σ

n2

4aα2

√
σ4 +

( a2

πn2

)2

α2 ≤ a

πσ

1

α
, (97)

and therefore

‖g(·, t)‖ ≤ ~
√
β|An||B|
2mσ

2√
ct
. (98)

Since

cs =
√

(2βσ)2 + (sβ~/(mσ))2 ≥ s
β~

mσ
, (99)

we can estimate the integral over s by

∫ t

0

ds
1√
cs

≤
∫ t

0

ds

√
mσ

β~s
= 2

√
mσt

β~
. (100)

This proves that for all 0 ≤ t ≤ τ ,

‖f(·, t) − φn,t‖2 ≤ 4|An|2|B|2 ~

mσ
t ≈ 2a

πσ

t

τ

1

α
≪ 1 . (101)

Since on the interval [−a− vt, a+ vt], f(x, t) = Anψn,t(x), we have that

∫ a+vt

−a−vt

|φn,t(x) − Anψn,t(x)|2dx ≤
∫ ∞

−∞

|φn,t(x) − f(x, t)|2dx = ‖f(·, t) − φn,t‖2 ≪ 1 ,

(102)
which is what we wanted to show.

C Longevity of Wave Packets on the Plateau

We now prove Corollary 1. Define

φ(x) :=
nmax∑

n=1

cn
An

φn(x)

and note that, since φ(x) = ψ(x) for −a ≤ x ≤ a, and by virtue of property (ii) in
Proposition 2,

‖ψ − φ‖ =
∥∥φχ(x < −a or x > a)

∥∥ ≤
∑

n

∣∣∣
cn
An

∣∣∣
∥∥φn χ(x < −a or x > a)

∥∥≪ 1 .
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As a consequence, also ψt will be close to

φt = e−iHt/~φ =
∑

n

cn
An

φn,t ,

so that, provided 0 < t < τn for each n,
∥∥∥
(
ψt −

∑

n

cnψn,t

)
χ(−a ≤ x ≤ a)

∥∥∥ (103)

≤
∥∥∥
(
ψt − φt

)
χ(−a ≤ x ≤ a)

∥∥∥+
∥∥∥
(
φt −

∑

n

cnψn,t

)
χ(−a ≤ x ≤ a)

∥∥∥ (104)

≤
∥∥ψt − φt

∥∥+
∑

n

∣∣∣
cn
An

∣∣∣
∥∥∥
(
φn,t − Anψn,t

)
χ(−a ≤ x ≤ a)

∥∥∥≪ 1 (105)

by virtue of property (iii) of Proposition 2.
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