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Two Axioms for Implication Algebras

A. Gareau and R. Padmanabhan

Abstract It is well-known that the implicational fragment of the clas-
sical propositional calculus has a single axiom. By contrast, here we
show that the corresponding equational class defined by the implica-
tional reduct of Boolean algebra cannot be defined by a single axiom.
However, it can be defined by two identities. By a deep theorem of
Alfred Tarski, it follows that this variety has an independent basis with
n identities for all n > 1. Furthermore, it follows that no equational
theory defined by any of the six well-known orthomodular implications
is one-based.

The implicational fragment of the 2-element Boolean algebra is the class of all
algebras of type 〈2〉 having a single binary operation → with the interpretation
that x → y = x′∨y. Abbott [1] first defined these implication algebras by the
following three identities:

(x → y) → x = x (1)
(x → y) → y = (y → x) → x (2)
x → (y → z) = y → (x → z) (3)

In 1948,  Lukasiewicz [4] proved that the implicational fragment of 2-valued
logic is one-based, that is, it can be defined by a single axiom. The shortest
single axiom is thanks to Tursman [8]:

i(i(i(x, y), z), i(i(z, x), i(u, x))).

It is natural to ask whether this is also possible for the implicational reduct
of Boolean algebras. In Appendix 4 of Grätzer [2], W. Taylor claims D.H.
Potts proved the following result in Potts [6], however, Potts’ paper makes no
mention of implication algebras and is focused entirely on semilattices.
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Theorem 1 Implication algebras are not one-based.

Proof If the variety of implication algebras has a single axiom, then it must
be of the form f(x1, . . . , xn) = xi for some 1 ≤ i ≤ n. Otherwise, the zero
algebra x → y = 0 for all x, y will be a model and (x → y) → x = x
would never be a consequence. Here are some examples of such “absorption
laws” valid in all implication algebras (generated by the program Prover9 by
McCune [5]):

(((x → y) → z) → z) → x = x

(x → (y → (z → u))) → z = z

((x → y) → (z → (((x → u) → v) → (w → y)))) → v = v

(((x → (y → z)) → u) → u) → y = y

(x → (((y → z) → u) → u)) → y = y

(x → (y → (z → (u → v)))) → u = u

Notice that in all these examples, the last variable of the left side is exactly
the same as the single variable on the right side. This is no accident. In fact,
f → g = f ′ ∨ g ≥ g, since the basic operation x → y = x′ ∨ y is always ≥ y.
We have, by induction, f(x1, . . . , xn) ≥ xn. Hence if f(x1, . . . , xn) = xi is an
identity valid in all implication algebras then we must have that i = n. Now
the right projection, x → y = y for all x and y, is always a model for such an
identity. However, then (2) can never follow. �

Corollary 1 Let L be an orthomodular lattice and let → be any one of the
six well-known orthomodular implications (see p. 239 in Kalmbach [3]). Then
the equational theory of (L;→) has no single axiom.

Proof Such a potential single axiom must be a consequence of the strongest
Boolean implication, namely, x → y = x′ ∨ y and hence it must be of the
form f(x1, . . . , xn) = xn. Thus x → y = y will be a model. In particular,
no identity of the form h = g where h and g have different last variables will
be a consequence of f(x1, . . . , xn) = xn. However, in all such implication
algebras, the join operation x∨ y is a derived term, say j(x, y). For example,
(x → y) → y = x ∨ y in the Boolean case. However, x ∨ y = y ∨ x is
true in every OML. This means that the identity j(x, y) = j(y, x) must be a
consequence of the potential single axiom f(x1, . . . , xn) = xn, which is clearly
impossible. �

So, it is not possible to define implication algebras by a single identity, but
in the following theorem we show that it is possible to reduce the number of
axioms to two.

Theorem 2 The identities (1) and

x → (y → ((z → u) → u)) = y → (x → ((u → z) → z)) (4)

are a basis for the equational theory of implication algebras.
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Proof The following is based on an automated proof generated by the pro-
gram Prover9, which is given in Appendix A. Setting u = z in (4) yields

x → (y → ((z → z) → z) = y → (x → ((z → z) → z)

and since (z → z) → z = z by (1), we may write the above as

x → (y → z) = y → (x → z)

which is (3). Now we show that (2) can be derived from (1), (3), and (4). We
will make use of the fact that

x → (x → y) = ((x → y) → x) → (x → y)

= x → y. (5)

First, apply (4) to obtain the following identity

(((y → x) → x) → z) → (u → ((x → y) → y))

= u → ((((y → x) → x) → z) → ((y → x) → x))

= u → ((y → x) → x). (6)

Then, using (3),

(x → y) → ((((y → x) → x) → z) → y)

= (((y → x) → x) → z) → ((x → y) → y)

= (((y → x) → x) → z) → ((((x → y) → y) → u) → ((x → y) → y))

= (((x → y) → y) → u) → ((y → x) → x) by (6)

= (y → x) → ((((x → y) → y) → u) → x). (7)

Setting u = (((y → x) → x) → z) in (6) and applying (5),

(((y → x) → x) → z) → ((x → y) → y)
= (((y → x) → x) → z) → ((y → x) → x)
= (y → x) → x.

Using (3), rewrite the left side of the above to obtain

(x → y) → ((((y → x) → x) → z) → y) = (y → x) → x. (8)

Combining the above and (7), we have

(y → x) → x = (y → x) → ((((x → y) → y) → u) → x).

Finally, by applying (8),

(y → x) → ((((x → y) → y) → u) → x) = (x → y) → y

and so we have (x → y) → y = (y → x) → x. Thus (2) and (3) follow from
(1) and (4) and the proof is complete. �

Corollary 2 By a theorem of Alfred Tarksi [7], the complete equational spec-
trum for this variety is (2, ω), i.e. for all n ≥ 2, there exists an independent
n basis for implication algebras.
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Appendix A

The following proof was discovered by the automated theorem prover Prover9.
The program generated 787 identities, but only those necessary to the proof
are displayed below. Note that 1 and 2 are (4) and (1) respectively. The first
generated identity, 4, is (3), while the final identity, 10, is (2). Simplified
justifications are given after each step.

1 x → (y → ((z → u) → u)) = y → (x → ((u → z) → z)). [input]
2 (x → y) → x = x. [input]
3 (c2 → c1) → c1! = (c1 → c2) → c2. [input]
4 x → (y → z) = y → (x → z). [2,1,2]
5 (((x → y) → y) → z) → (u → ((y → x) → x))

= u → ((x → y) → y). [2,1]
6 x → (x → y) = x → y. [2,2]
7 x → (((x → y) → z) → y) = x → y. [4,2]
8 (x → y) → ((((y → x) → x) → z) → y)

= (y → x) → ((((x → y) → y) → u) → x). [2,5,4,4]
9 (x → y) → ((((y → x) → x) → z) → y) = (y → x) → x. [5,6,4,7,4]
10 (x → y) → y = (y → x) → x. [8,9,9]
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