Skip to main content
Log in

Molecular biologists, biochemists, and messenger RNA: The birth of a scientific network

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Conclusion

This paper investigated the part played by collaborative practices in chaneling the work of prominent biochemists into the development of molecular biology. The RNA collaborative network that emerged in the 1960s in France encompassed a continuum of activities that linked laboratories to policy-making centers. New institutional frameworks such as the DGRST committees were instrumental in establishing new patterns of funding, and in offering arenas for multidisciplinary debates and boundary assessment. It should be stressed however, that although this collaborative network was based on centralized initiatives aimed at developing molecular biology as a new biological specialty, it operated above all as a nexus of practices. The main argument of this paper is that the central allocation of funds and resources, exemplified by the DGRST operation, actually enhanced the creation of a self-conscious community of biochemists turned molecular biologists by virtue of an increased circulation of tools, skills, and results that took place within the RNA network and a few analogous systems of exchange.

Having hands on “things” viewed as identical for all practical purposes was a potent factor in changing the experimental systems and their meanings. Limited but shared means of doing helped to reduce uncertainties, change representations, and turn contingent decisions into meaningful choices. The collaborative enterprises then resulted in personal contacts and the transfer of skills and materials, which gradually incorporated the biochemical tools into systems producing facts relevant to molecular biology as defined by its early practitioners. In that sense, networking was a regulatory process that stabilized new research objects and acculturated French biochemists.

The mere existence of such a collaborative network also changed the scale of the disciplining process. Collaborations may have been started for contingent motives, but multiple exchanges resulted in the emergence of a new collective, and amplified small displacements. Collaborations, however, worked both ways, and the RNA network may be viewed as an efficient “trading-post.” An unexpected outcome of the development of a conversion zone is the fact that, by the late 1960s, the former biochemists dominated the “new” world of molecular biology — both in terms of research habits, since interests in structural studies dominated the field, and in terms of institutional initiatives such as the creation of laboratories and institutes for molecular biology.

As an example of the cognitive displacements achieved by the network, I have focused here on the stabilization of “messenger RNA” as a new biological entity. This process illustrates the role of “boundary objects” and other mediating innovations in the development of disciplinary structures. Students of science trained in the symbolic interactionism tradition have proposed that “boundary objects” enhance the multiple interactions between heterogeneous social worlds: they are robust enough to enhance unity, but plastic enough to be manipulated in different social and cultural contexts.81 Within the emerging network, messenger RNA was a weakly structured “genetic information carrier” in common use, but it could, at the same time, be a strongly structured “macromolecular structure” adapted to practical and local uses. Consequently, messenger RNA favored the association of groups of heterogeneous scientists with backgrounds and interests in medical biochemistry, genetics, physical chemistry, organic chemistry, and so forth. This contrast between general and local uses was also instrumental in integrating the manipulation of things and the negotiation of aims. In contrast to transfer RNAs, which in the French context remained objects for chemical (and mainly structural) studies, messenger RNA became a key component of the new culture of “genetic information”. Messenger RNA was a loose theoretical entity described as a “genetic information carrier” in the policy-making documents, while operational but tacit and more conflicting definitions prevailed at the bench. In other words, messenger RNA was not only a classical “boundary object” but also a “flag object,” which tightened the collaborative network by mediating between the DGRST offices and the laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. E. Kohler, From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline, (Cambridge: Cambridge University Press, 1982), p. 8.

    Google Scholar 

  2. R. E. Kohler, From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline, (Cambridge: Cambridge University Press, 1982), p. 74

    Google Scholar 

  3. K. Kornberg et al. eds., Reflections on Biochemistry (London: Pergamon Press, 1974); S. Cohen, “The Biochemical Origins of Molecular Biology: Introduction, “Trends Biochem. Sci., 9 (1984), 334–336; R. Olby, The Paths to the Double Helix (London: Macmillan, 1974); S. F. Gilbert, “Intellectual Traditions in the Life Sciences: Molecular Biology and Biochemistry,” Perspect. Biol. Med., 26 (1982), 151–162; R. Olby, “Biochemical Origins of Molecular Biology: A Discussion,” Trends Biochem. Sci.,11 (1986), 303–305.

    Google Scholar 

  4. P. G. Abir-Am, “From Biochemistry to Molecular Biology: DNA and the Acculturated Journey of the Critic of Science Erwin Chargaff,” Hist. Phil. Life Sci., 2 (1980), 3–60; E. Yoxen, “Giving Life a New Meaning: The Rise of the Molecular Biology Establishment,” in Scientific Establishments and Hierarchies, ed. N. Elia, H. Martin, and R. Whitley, Sociology of Science Yearbook, 6 (Dordrecht: Kluwer, 1982), pp. 123–143; J. P. Gaudillière, “Chimie biologique ou biologie moléculaire: La biochimie au CNRS dans les années soixante,” Cah. Hist. CNRS,7 (1989), 91–147; P. G. Abir-Am, “The Politics of Macromolecules: Molecular Biologists, Biochemists, and Rhetoric,” Osiris, 7 (1992), 210–237.

    Google Scholar 

  5. M. Morange, “L'oeuvre scientifique de J. Monod,” Fund. Sci., 3 (1982), 396–404; J. P. Gaudillière, “Jacques Monod, Sol Spiegelman et l'adaptation enzymatique: Programmes de recherche, cultures locales et traditions disciplinaires,” Hist. Phil. Life Sci., 14 (1992), 23–71; H. J. Rheinberger, “Experiment, Difference, and Writing. I. Tracing Protein Synthesis,” Stud. Hist. Phil. Sci., 23 (1992), 305–331; idem, “Experiment, Difference, and Writing. II. The Laboratory Production of Transfer RNA,” ibid., pp. 389–422; L. Kay, “Wer Schrieb das Buch des Lebens? Information und Transformation der Molekularbiologie,” in Objekte, Differenzen und Konjonkturen, Experimentalsysteme in historischen Kontext, ed. M. Hagner, H. J. Rheinberger, and B. Wahrig-Schmidt (Berlin: Akademie Verlag, 1994), pp. 151–180.

    Google Scholar 

  6. R. Kohler, “The Management of Science: The Experience of Warren Weaver and the Rockefeller Foundation Programme in Molecular Biology,” Minerva, 14 (1976), 279–306; P. G. Abir-Am, “The Discourse of Physical Power and Biological Knowledge in the 1930s: A Reappraisal of the Rockefeller Foundation's ‘Policy’ in Molecular Biology,” Soc. Stud. Sci., 12 (1982), 341–382; R. Kohler, Partners in Science (Chicago: University of Chicago Press, 1990); L. Kay, The Molecular Vision of Life (Oxford: Oxford University Press, 1993).

    Google Scholar 

  7. See A. Strauss, “A Social World Perspective,” Stud. Symbolic Interact., 1 (1978), 119–128; idem, “Social Worlds and Legitimation Processes,” ibid., 4 (1982), 171–190.

    Google Scholar 

  8. S. L. Star. “Triangulating Clinical and Basic Research: British Localizationists, 1870–1906,” Hist. Sci., 24 (1986), 29–48.

    Google Scholar 

  9. A. Lwoff and J. Monod, “A European Institute for Molecular Biology,” n.d. (probably December 1958), Monod papers, Pasteur Institute Archives, Paris. The list of disciplines as well as the emphasis on the structure of hereditary material did not match the local interests. On the establishment of the Laboratory of Molecular Biology in Cambridge, see S. de Chadarevian, “Sequences, Conformation, Information: Biochemists and Microbiologists,” J. Hist. Biol., this issue.

  10. J. F. Picard, La République des Savants, la recherche française et le CNRS (Paris: Flammarion, 1990).

    Google Scholar 

  11. J. Monod. “Rapport de la commission recherche et université,” Colloque de Caen 1956, DGRST Archives, (my translation).

  12. “Éditorial,” Rev. Franç. Ét. Biol. Clin., 1 (1956), 1 (my translation).

  13. The budget of the Centre National de la Recherche Scientifique (CNRS), the main research agency in the country, expanded from 600 million francs in 1958 to 1.9 billion in 1964.

  14. J. P. Gaudillière, “Biologie moléculaire et biologistes en France dans les années soixante,” Ph.D. thesis, Université de Paris VII, 1991, chap. 2.

  15. E. Wollman, interview with the author, Pasteur Institute, April 1989.

  16. The two biochemists were J. Monod and P. Desnuelle, both trained in the study of metabolism and both heads of biochemistry departments.

  17. Monod's own count of (would-be) molecular biologists working in the country barely reached 100 persons, whereas the Société de Chimie Biologique totalled 1,200 scientists and engineers.

  18. Comité d'Études Biologie Moléculaire, “Rapport général sur la situation présente et l'action à envisager dans le domaine de la biologie moléculaire,” March 1960, DGRST Archives.

  19. R. Burian, J. Gayon, and D. Zallen, “The Singular Fate of Genetics in the History of French Biology, 1900–1940,” J. Hist. Biol., 21 (1988), 357–402.

    Google Scholar 

  20. J. P. Gaudillière, “Molecular Biology in the French Tradition? Redefining Local Traditions and Disciplinary Patterns,” J. Hist. Biol., 26 (1993), 473–498.

    Google Scholar 

  21. On Monod's work on enzymatic adaptation, see H. Judson, The Eighth Day of Creation: The Makers of the Revolution in Biology (New York: Simon and Schuster, 1979); Gaudillière, “Jacques Monod” (above, n. 5); B. Fantini, ed., J. Monod: Pour une éthique de la connaissance (Paris: La Découverte, 1989).

    Google Scholar 

  22. On Lwoff and the phage work at the Pasteur Institute see R. Burian and J. Gayon, “Un évolutioniste bernardien à l'Institut Pasteur,” in L'Institut Pasteur ed. M. Morange (Paris: La Decouverte, 1991), pp. ; C. Galperin, “Le bactériophage, la lysogénie et son déterminisme génétique,” Hist. Phil. Life Sci., 9 (1987), 175–224.

    Google Scholar 

  23. On this strategy, see J. P. Gaudillière, “Biochimistes et biomédecine après-guerre: Deux itinéraires entre laboratoire et hôpital,” Sci. Soc. Santé, 10 (1992), 107–149.

    Google Scholar 

  24. See de Chadarevian, “Sequences” (above, n. 9).

  25. See the references in n. 3 above. See also H. J. Rheinberger, “Comparing Experimental Systems: Protein Synthesis in Microbes and in Animal Tissue at Cambridge (Ernest F. Gale) and at the Massachusetts General Hospital (Paul C. Zamecnik), 1945–1960,” J. Hist. Biol., this issue.

  26. For a detailed analysis, see Gaudillière, “Biologie moléculaire” (above, n. 14), chap. 5.

  27. For an analogous study of the phage group, see N. C. Mullins, “The Development of a Scientific Speciality: The Phage Group and the Origins of Molecular Biology,” Minerva, 10 (1972), 51–82.

    Google Scholar 

  28. On the international traffic between Cambridge (U.K.), Paris, Pasadena, Cold Spring Harbor, and Cambridge (U.S.), see P. Abir-Am, “From Multidisciplinary Collaboration to Transnational Objectivity: International Space as Constitutive of Molecular Biology, 1930–1970,” in Denationalizing Science, ed. E. Crawford, T. Shinn, and S. Sörlin (Dordrecht: Kluwer, 1993), pp. 153–186. A well-documented exception to the low profile of most collective bench work is the prewar collaboration between Beadle and Ephrussi; see Burian, Gayon, and Zallen, “Singular Fate” (above, n. 19).

    Google Scholar 

  29. On P. Mandel, see Gaudillière, “Chimie biologique” (above, n. 4).

  30. The Rothschild Institute was established in 1929 as one of many exemplars of the Rockefeller Foundation's commitment to enhancing the collaboration between physics, chemistry, and biology.

  31. Accounts by prominent actors in the history of messenger RNA may be found in Judson, Eighth Day (above, n. 21); F. Gros, Les secrets du gène (Paris: Odile Jacob, 1988); idem, “L'histoire du messager,” in Les origines de la biologie moléculaire: Hommage à Jacques Monod, ed. A. Lwoff and A. Ullmann (Montreal: Études Vivantes, 1980), pp. 121–128; F. Jacob, “Le temps des modèles,” in ibid, pp. 101–109; J. D. Watson, “Involvement of RNA in the Synthesis of Proteins,” Science, 140 (1963), 17–25.

  32. H. Judson, The Eighth Day of Creation: The Makers of the Revolution in Biology (New York: Simon and Schuster, 1979), p. 433.

    Google Scholar 

  33. H. J. Rheinberger, 1992 (above, n. 5).

  34. Gros, “L'histoire du messager,” in Les origines de la biologie moléculaire: Hommage à Jacques, Monod, ed. A. Lwoff and A. Ullmann (Montreal: Études Vivantes, 1980), pp. 126–127

    Google Scholar 

  35. H. Collins, “Changing Order (London: Sage, 1980).

    Google Scholar 

  36. Gros, “L'histoire” (above, n. 31).

  37. F. Gros, interview, June 1989. The description of his procedure may be found in F. Gros, 1960.

  38. F. Gros, H. Hiatt, W. Gilbert, C. Kurkland, R. Risebrough, and J. Watson, “Unstable Ribonuclei Acid Revealed by Pulse Labelling of E. coli,” Nature, 190 (1961), 584.

    Google Scholar 

  39. F. Jacob and J. Monod, “Genetic Regulatory Mechanisms in the Synthesis of Proteins,” J. Mol. Biol., 3 (1960), 349–350.

    Google Scholar 

  40. F. Jacob and J. Monod, in “Cellular Regulatory Mechanisms,” Cold Spr. Harbor Symp. Quant. Biol., 26 (1961), 352.

  41. S. Brenner, in “Cellular Regulatory Mechanisms,” Cold Spr. Harbor Symp. Quant. Biol., 26 (1961), 264.

  42. For a detailed analysis of Kruh's research trajectory, see Gaudillière, “Biochimistes et biomédecine” (above, n. 23).

  43. “La proportion de chacune des hémoglobines synthétisées dépend des proportions relatives de microsome et d'enzyme pH 5 de chaque espèce; il ne semble y avoir prédominance ni d'une fraction cellulaire ni d'une espèce. Au contraire, lorsque l'on incube des microsomes de réticulocytes de lapin avec l'enzyme pH 5 de coq, ce sont les microsomes seuls qui impriment leur spécificité à l'hémoglobine synthétisée. Il est cependant remarquable que dans ce cas l'enzyme pH 5 de coq permette aux microsomes de lapin de synthétiser de l'hémoglobine ... En conclusion, ces expériences supposent que dans certains croisements entre microsomes d'une espèce et enzyme pH 5 d'une autre espèce, la fraction soluble oriente la spécificité de la protéine synthétisée par les microsomes. Un tel transfert d'information ne serait possible qu'entre espèces relativement voisines” (J. Kruh et al., “Synthèse d'hémoglobine par des systèmes acellulaires de réticulocytes,” Biochim. Biophys. Acta, 49 [1961], 509).

    Google Scholar 

  44. “L'ADN étant absent des réticulocytes, on peut se demander si l'enzyme pH 5 ne contient pas une fraction particulière d'ARN, distinct de l'ARN soluble, qui serait capable de s'associer aux microsomes d'une autre espèce pour leur imprimer une nouvelle spécificité. L'existence d'une telle fraction paraît avoir été observée récemment dans des cellules normales d'E. coli” (ibid., p. 518).

  45. G. Schapira, J. Kruh, and J. C. Dreyfus, Convention 61 FR 125, February 1961, DGRST Archives.

  46. R. E. Kohler, “Rudolf Schoenheimer, Isotopic Tracers and Biochemistry in the 1930's,” Hist. Stud. Phys. Sci.8 (1977), 257–298; J. L. Heilbron, R. W. Seidel, and B. R. Wheaton, Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory (Berkeley, Calif.: Lawrence Berkeley Laboratory, 1981), chaps. 4–5. There is no historical study of the French case. For preliminary information, see M. Tubiana, Les isotopes radioactifs en médecine et biologie (Paris: Masson, 1950).

    Google Scholar 

  47. F. Gros, interview with the author, June 1989.

  48. Minutes of the “Comité pour l'Action Concertée Biologie Moléculaire,” January 1961, DGRST Archives.

  49. In 1961, grants from the NIH and the U.S. Muscular Dystrophy Association amounted to two-thirds of the research budget; in 1966, 16 percent of the research budget originated in the same institutions, whereas DGRST funds amounted to 45 percent.

  50. For an analysis of the decision, see Gaudillière, “Biologie moléculaire” (above, n. 14), chap. 2.

  51. F. Gros, Convention 62 FR 168, Avant projet, n.d. (presumably spring 1961), DGRST Archives.

  52. F. Gros, Convention 62 FR 168, Rapport 1963, DGRST Archives.

  53. F. Gros, interview with the author, June 1989.

  54. Kruh et al., “Synthèse d'hémoglobine” (above, n. 43), p. 518.

  55. Meanwhile, hybrid systems combining microsomes from one tissue and “pH 5 fraction” from another tissue became a convenient tool for investigating the physiological differentiation of organs.

  56. “Ces expériences nous amènent à penser la présence dans l'enzyme pH 5 d'un composé transportant l'information génétique. Cette substance ne peut être formée des enzymes activateurs d'acides aminés ni de l'ARN de transfert, ces deux groupes de composés ayant leur spécificité axée essentiellement sur les acides aminés. Cette substance serait du type ARN messager, composé décrit à la suite des expériences de Volkin et Astrachan, par Gros et al, Brenner et al, Spiegelman et al, et qui servirait d'intermédiaire entre les gènes et les ribosomes; cette substance précipite pH 5” (J. Kruh et al., “Synthèse de l'hemoglobine par des systèmes acellulaires de réticulocytes,” Biochim. Biophys. Acta, 55 [1962], p. 701).

  57. Convention 61 FR 125, Report 1963, DGRST Archives (presumably written by J. Kruh).

  58. P. A. Marks, C. Wilson, J. Kruh, and F. Gros, “Unstable Ribonucleic Acid in Mammalian Blood Cells,” Biochem. Biophys. Res. Comm.8 (1962), pp. 9–14.

    Google Scholar 

  59. Ibid., p. 12.

  60. Ibid., p. 12.

  61. Ibid., p. 14.

  62. H. Lanfrom, “Factors Determining the Specificity of Hemoglobin synthesized in a Cell Free System,” J. Mol. Biol., 3, (1961), 241–252; K. Scherrer, H. Latham, and J. E. Darnell, “Demonstration of an Unstable RNA and of a Precursor to Ribosomal RNA in HeLa Cells,” Proc. Nat. Acad. Sci., 49 (1963), 240–248.

    Google Scholar 

  63. I.e., 177 percent of the controls, plus or minus 47 percent: J. Kruh, G. Schapira, J. Lareau, and J. C. Dreyfus, “Activation de la synthèse acellulaire de l'hémoglobine par l'acide ribonuclélique. II. Action de fractions d'acide ribonucléique de réticulocytes obtenues par centrifugation en gradient de saccharose,” Biochim. Biophys. Acta, 87, (1964), 669–681.

    Google Scholar 

  64. “Active RNA is neither ribosomal RNA nor soluble RNA. The sedimentation constants range from 4S to 16S. The molecular weight of one hemoglobin subunit is 16,000. If the genetic code is made up of three nucleotide units, messenger RNA coding for a single chain shows a molecular weight of 160,000. This figure is precisely within the boundaries of the active fraction. A rapidly labeled RNA from different cell types, including E. coli, has been localized in the same region. This RNA is viewed to be messenger RNA” (ibid., pp. 679–680; my translation).

  65. J. Kruh and F. Levy, “Inhibition de la synthèse acellulaire de l'hémoglobine par des fractions solubles de diverses espèces cellulaires,” Biochem. Biophys. Acta, 145 (1967), 460–469.

    Google Scholar 

  66. J. Kruh, “L'acide ribonucléique messager chez les animaux supérieurs,” Rev. Franç. Ét. Clin. Biol., 10 (1965), 271–281.

    Google Scholar 

  67. G. Schapira et al., “Information génétique portée par une fraction soluble des réticulocytes et traduite en protéine spécifique sur les ribosomes d'une autre espèce,” J. Mol. Biol., 20 (1966), 427–446.

    Google Scholar 

  68. J.-P. Ebel, Convention 61 FR 166, Report 1963, DGRST Archives.

  69. J. H. Weil, J. Siffre, J.-P. Ebel, and F. Gros, “Contribution à l'étude du RNA messager de levure,” Bull. Soc. Chim. Biol., 45 (1963), 459.

    Google Scholar 

  70. G. Aubel-Sadron, G. Beck, J.-P. Ebel and C. Sadron, “Étude de la précipitation des acides nucléiques par les sels d'ammonium quaternaire,” Biochim. Biophys. Acta, 42 (1960), 542.

    Google Scholar 

  71. Minutes of the “Comité pour l'Action Concertée Biologie Moléculaire,” January 26, 1960, DGRST Archives.

  72. C. Sadron, “La biologie moléculaire à Strasbourg,” January 26, 1960, DGRST Archives.

  73. The listed laboratoires were P. Mandel's center for neurochemistry, L. Hirth's unit for plant viruses, and J.-P. Ebel's group of biochemistry.

  74. L. Hirth, 1961, p. 889.

  75. J.-P. Ebel, Convention 61 FR 166, Avant-projet, July 1961, DGRST Archives.

  76. J. H. Weil, J.-P. Ebel, and R. Monier, “Conservation of the Biological Activity of a Soluble Ribonucleic Acid,” Nature, 192 (1961), 169.

    Google Scholar 

  77. J.-P. Ebel, Convention 61 FR 166, Report 1964, DGRST Archives.

  78. M. Grunberg-Manago, Convention 61 FR 087, Report 1965, DGRST Archives.

  79. Gaudillière, “Chimie biologique” (above, n. 4).

  80. F. Gros, R. Monier, and M. Grunberg-Manago, “Proposition d'amendement au rapport proposé par J. Monod, 25 juin 1965,” Rapport du Comité d'Ètudes Préliminaires à l'Action Concertée Biologie Moléculaire, September 1965, p. 8, DGRST Archives.

  81. S. L. Star and J. Griesemer, “Institutional Ecology, Translations and Boundary objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology,” Soc. Stud. Sci., 19 (1988), 387–420; I. Löwy, “The Strength of Loose Concepts: Boundary Concepts, Federative Experimental Strategies and Disciplinary Growth,” Hist. Sci., 30 (1992), 371–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudillière, JP. Molecular biologists, biochemists, and messenger RNA: The birth of a scientific network. J Hist Biol 29, 417–445 (1996). https://doi.org/10.1007/BF00127382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127382

Keywords

Navigation