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Abstract

No-conspiracy is the requirement that measurement settings should be probabilistically
independent of the elements of reality responsible for the measurement outcomes. In this
paper we investigate what role no-conspiracy generally plays in a physical theory; how it
in�uences the semantical role of the event types of the theory; and how it relates to such
other concepts as separability, compatibility, causality, locality and contextuality.

Keywords: no-conspiracy, separability, compatibility, causality, locality, contextuality

1 Introduction

As the old bon mot has it, in experiment human and nature shake hands. This portrayal of
the experiment as the celebration of a good business pact between two parties highlights two
features of experimentation, namely that both human and nature are equally contributing to
its success and that both parties are being independent. This independence is the topic of the
present paper.

In the foundations of quantum mechanics probably the most signi�cant research project has
been for decades to precisely identify and conceptually analyze those assumptions that go into
the derivation of the Bell inequalities and can be made responsible for their violation in the
EPR scenario. Locality, factorization, Common Cause Principle, determinism�these were the
main concepts and principles on the table. There was, however, one additional premise which,
though being indispensable in the derivation of the Bell inequalities, remained much more obscure
concerning its status, meaning and relation to the other premises.

The palpable evidence for this embarrassment around this assumption is that there has not
even been coined a name for it. It has been referred to by many names such as (no) �conspiratorial
entanglement� (Bell, 1981), �hidden autonomy� (Van Fraassen, 1982), �independence assumption�
(Price 1996), �free will assumption� (Tumulka, 2007), �measurement independence� (Sanpedro,
2013), (no) �superdeterminism� (Price and Wharton, 2015), and�probably in its most well-
known form��no-conspiracy� (Hofer-Szabó, Rédei and Szabó, 1999; Placek and Wro«ski, 2009).
This latter is the phrase we are going to use in this paper.

The fact that no-conspiracy has been used by so many names attests that there is a wide
range of topics which it can be related to. It has been explicitly addressed by Bell in his
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1981 paper and its rejection has been quali�ed as �even more mind boggling than one in which
causal chains go faster than light� (Bell, 1981, p. 57). No-conspiracy made its way into the
philosophy of physics via Van Fraassen's 1982 careful analysis of the assumptions leading to
the Bell inequalities. Ever since these two in�uential papers no-conspiracy has been given some
attention in the philosophy of science. A topic gaining probably the greatest philosophical interest
was that how no-conspiracy is related to free will. The �rst to identify conspiracy as a lack of free
will was Bell (1977, 1981) himself and has been followed by many others (Price 1996; Conway
and Kochen, 2006; Tumulka, 2007, Price and Wharton, 2015).

The present paper does not concern any of the topics mentioned above: neither free will,
nor EPR, nor Bell inequalities. It does not investigate no-conspiracy at the level of the speci�c
scienti�c theories such as quantum mechanics, quantum �eld theory, etc. (For this see (Bell,
1977, 1981), (Butter�eld, 1995), (Sanpedro, 2013, 2014), (Hofer-Szabó, Rédei and Szabó, 2013),
(Price and Wharton, 2015)). Our aim is more general: to investigate what role no-conspiracy
plays in a physical theory. To this aim in Section 2 we will �rst unfold a general scheme of the
ontology of a physical theory. We will discern two event types making the ontology: measurement
event types and elements of reality. Measurement event types can be of two types: measurement
settings and measurement outcomes. We will clarify how measurement settings and measurement
outcomes provide semantics for a physical theory. To illustrate the general scheme we introduce
a toy model in Section 3 which will then be used throughout the paper. No-conspiracy enters in
Section 4. Here we show how the presence of no-conspiracy can deprive measurement settings
and measurement outcomes of their semantical role and directs them into pragmatics. In Section
5 some examples will be given for situations when no-conspiracy is violated. In Sections 6 to
10 we will investigate in turn the relationship of no-conspiracy to such concepts as separability,
compatibility, causality, locality and contextuality. We conclude with a discussion in Section 11.

This paper is written in the down-to-earth physicalist philosophy of László E. Szabó to whom
I dedicate it.

2 The ontology of experiment

In this Section we expose the main philosophical ideas lying behind our approach in a concise
manner. In the following Section all these general considerations will be made concrete on a
simple toy model. The approach we are following here is a strict actualist approach where the
key concepts such as causality, probability, etc. all supervene on particulars instantiating certain
event types in a Humean manner. This framework is certainly not necessary to address the
question of no-conspiracy; I presume that most claims of the paper also hold in other metaphysical
frameworks. I follow this approach simply because the present paper is part of a larger research
project aiming to explore how far one can get in understanding physical theories and especially
quantum mechanics within a Humean framework.

A physical theory can be reconstructed as a formal system plus a semantics connecting the
formal system to the world. The formal system consists of a formal language with some logical
axioms and derivation rules, some mathematical and physical axioms. The semantics provides
an interpretation for the formalism; it connects the formal system to reality. Note that here
'semantics' does not mean a connection between the formal system and some models of the
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system as in model theory; here semantics means a down-to-earth physical interpretation of the
formal system. We stress again that the semantics is an indispensable part of a physical theory.
A formal system in itself is not yet a physical theory (Szabó, 2011).

The semantics settles the ontology of the theory. This can be done in many ways but typically
the semantics �xes the ontological types or categories out there in the world and provides some
means to decide when a certain token falls in the category of a given type making a certain
sentence of the theory true. The types and tokens which we will be interested in here are event

types and token events. The ontology of a physical theory is an event algebra constructed from
these event types. Note that concerning the ontology of the types our approach is not committed
metaphysically either to the realist nor to the nominalist camp.

Physical theories are veri�ed by experiments. The rough picture of an experiment is the
following. An experimenter performs a procedure by setting a measurement apparatus in a cer-
tain way, obtaining a measurement outcome and repeating this procedure many times. The two
essential ontological categories of an experiment are the measurement settings and the measure-

ment outcomes. These categories are event types just as the other ontological types of the theory.
The token events are the instances of these event types in the di�erent runs of the experiment.
Sometimes I will simply refer to these token events as the runs of the experiment.

Measurement settings and measurement outcomes do not appear directly in the textbook
form of a theory but they are indispensable part of the semantics (not of pragmatics!): without
them the theory cannot be linked to reality. More than that, these two types are the only
types an experimenter has direct empirical access to. Everything else posited by the theory
has to ultimately boil down to some relations between these observable categories. To be more
speci�c, any deductive or inductive relation between the ontological types of the theory has to
be accounted for in terms of correlations between the token events falling in the category of
measurement settings and measurement outcomes. As the empiricist thesis teaches, one has no
other access to physical reality than via observation.

Correlations between measurement settings and measurement outcomes can be accounted
for in terms of probabilities. In our actualist framework the probability of an outcome type is
understood as the long-run relative frequency of those runs of the experiment which fall in that
type if the experiment is repeated appropriately many times. Speci�cally, the probability of an
outcome given a certain measurement setting is simply the number of those runs which fall in
both the type of the outcome and the setting divided by the number of those runs which fall in
the type of the setting. More importantly, any probability assignment to any ontological type to
which we have no direct empirical access must be based on type assignments to the individual
runs of the experiment in the long-run frequency sense: the probability of a given type is p only
if the relative frequency of the individual runs (instances) falling in the type in question is p.
Probability supervenes on the Humean mosaic of token events.

In order to account for the observable measurement outcomes physical theories typically
introduce a further, not directly accessible event type, which we will call elements of reality.
In this sense our approach is scienti�cally realist. Elements of reality come in two sorts: they
can either determine the measurement outcomes for a given measurement setting for sure, or
they can �x only the probability of the measurement outcomes. We will call the �rst event
type property and the second event type propensity. Whereas measurement outcomes are clearly
causally in�uenced by and therefore probabilistically dependent on the elements of reality, it is
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not a priori clear what the relation between the measurement settings and the elements of reality
should be. This is what we are going to analyze in what comes.

3 A toy model

Let us make these abstract considerations more concrete on a simple model. (For a general
scheme of a physical theory see the Appendix.) Consider a box containing colored dice (Szabó,
2008). Let us try to develop a physical theory of this system. Whatever theory we develop, the
semantics of the theory has to minimally specify the measurement settings and measurement
outcomes. These are the categories which are directly accessible for an experimenter. Suppose
that the measurement settings are the following:

a1: drawing a die from the box and checking its color
a2: drawing a die from the box, throwing it and checking the number on its upper face

Suppose furthermore that the measurement outcomes are

Ai
1: the color of the die is black (A1

1) or white (A2
1)

Aj
2: the number on the upper face of the die is j (j = 1 . . . 6)

So the semantics of the theory posits the following event types: the measurement settings a
with two subcategories a1 and a2, and the measurement outcomes A with two plus six sub-
subcategories Ai

1 and A
j
2.

As the experimenter is repeating the experiment, the token events, that is the runs falling
in the di�erent event types, are accumulating giving rise to a probabilistic description of the
experiment. She can calculate for example the conditional probability of obtaining a black die
on the condition that she had performed the color measurement:

p(A1
1|a1) =

#(A1
1 ∧ a1)

#(a1)

This probability is empirically accessible: one just reads o� from the relative frequency of the
measurement outcomes and measurement settings. (Here we set aside problems concerning the
convergence of the relative frequencies.)

The experimenter can of course try to enrich her theory and introduce a new ontological
category into her theory. The motivation behind this move is to obtain an answer to the question:
�Why was the outcome of the color measurement black in a certain run of the experiment?� A
natural answer to this question is to say: �Because the die itself was black.� This answer
amounts to introducing a third event type into our ontology, which we will call property. What
is a property?

The de�ning feature of the property black is the following: whenever a die with the property
black is subjected to a color measurement, the outcome will always be black. Denote the property
black by α1

1 and the property white by α2
1. (So our notation is the following: we use lower case

Latin letter for the measurement settings (a); capital Latin letters for the measurement outcomes
(A); and Greek letters for the elements of reality (α).) The property black is an event type and
each token event that is each run of the experiment can be characterized by either falling into
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this event type or not. Therefore, one can also meaningfully speak about the probability of
the property black, p(α1

1), as the long-run relative frequency of those runs of the experiment
which fall into the event type α1

1. Consequently, one can also express the de�ning feature of the
property black and white in terms of probabilities as follows:

p(Ai
1|a1 ∧ αk

1) = δik i, k = 1, 2 (1)

That is in each run of the experiment when the die was black and the color has been measured,
the outcome was black and never white; and in each run of the experiment when the die was
white and the color has been measured, the outcome was white and never black. A property is
nothing but an event type which, if instantiated and measured in a certain run of experiment,
brings with it a de�nite outcome.

Let us now go over to the case of throwing the dice and ask a similar question to that of
the color measurement: �Why does the outcome six come up with a certain probability in the
experiment?� Here the natural answer is this: �Because the die has a certain mass distribution.�
This leads us to introducing another event type which we will call propensity.

Suppose that the box is containing dice with two di�erent mass distributions. Denote them by
α1
2 and α

2
2. Here the lower index 2 indicates that the measurement setting is of the second type,

namely checking the upper face of the die (and not the color), and the upper index discerns the
two mass distributions. The mass distribution α1

2 is again an event type just as α1
1, the property

black was. In every single run of the experiment it is either instantiated or not that is each die
has either the mass distribution α1

2 or not. Hence one can speak about the probability p(α1
2)

as the relative frequency of those runs which fall into the event type α1
2. If a die with mass

distribution α1
2 is drawn from the box and thrown, then let the probability of its coming up j be

denoted by qj1. Similarly, if a die with mass distribution α2
2 is drawn from the box and thrown,

then the probability of coming up j is qj2. This means that the mass distribution of a given
die �xes the probability of the die coming up with a certain face upon throwing. In terms of
probabilities this can be expressed as follows:

p(Aj
2|a2 ∧ α

l
2) = qjl j = 1 . . . 6, l = 1, 2 (2)

where
∑

j q
jl = 1 for l = 1, 2.

Metaphysically, the new event type α2 is the propensity of the die to come up with a certain
face in the second type of measurement setting. Note that the propensity here is not something
which the notion of probability should be reduced to as in the literature on the interpretations
of probability. Here propensity is an event type and probability is simply long-run relative
frequency. Moreover, one can meaningfully speak about the �probability of a given propensity�
as the long-run frequency of those token events which instantiate the event type of the propensity
in question.

Also observe that a property mathematically di�ers from a propensity only in that the qjl-s
�xing the conditional probabilities are all either 0 or 1 for the properties, whereas they can be
any number between 0 and 1 for the propensities. Being black �xes the measurement outcomes
for the color measurement, whereas having mass distribution α1

2 �xes only the probability of
obtaining a six. The de�ning equation (1) of properties is a special case of the de�ning equation
(2) of propensities. Still, it is worth discerning these two event types. If in a given theory
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the probabilities, correlations, etc. of the measurement outcomes can all be accounted for by
postulating purely properties then the theory can rightly be called deterministic, whereas if
propensities are also needed then the theory is indeterministic.

To sum up, in our �theory of dice� we have two measurement event types, the event type
of measurement settings and the event type of measurement outcomes. Beyond these we can
introduce into our ontology two elements of reality for explanatory purposes, the event type of
properties, α1, with two subcategories α1

1 (black) and α
2
1 (white); and the event type of propen-

sities, α2, with two subcategories α1
2 (�rst mass distribution) and α2

2 (second mass distribution).
From now on we will coin the term measurement event type for measurement settings and mea-
surement outcomes and element of reality for properties and propensities. The event algebra of
the theory will be composed as the Boolean combination of the measurement event types and
elements of reality. This algebra will be built up from 2 · (2 · 6) · (2 · 2) atomic events associated
to the di�erent combinations of measurement settings, measurement outcomes, properties and
propensities. Each run of the experiment will instantiate an element of this algebra. Probabili-
ties enter the theory by simply counting how many runs are instantiating certain elements of the
algebra.

4 No-conspiracy

So far, so good. But physics is a procedure to move from the observable to the unobservable.
Do we have any means to infer from the �rst two event types to the second two? Can we say
something about properties and propensities based on measurement settings and measurement
outcomes?

Here is a su�cient condition which entitles us to such an inference. Suppose that the elements
of reality are probabilistically independent of the measurement settings. In case of the properties
this means that

p(a1 ∧ αk
1) = p(a1) p(α

k
1) k = 1, 2 (3)

in case of the propensities:

p(a2 ∧ αl
2) = p(a2) p(α

l
2) l = 1, 2 (4)

Taking the conjunctions we obtain:

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (5)

Now, consider all those other equations which arise from (5) by substituting one or more event
types by their complements; for example:

p(∼a1 ∧ a2 ∧ αk
1∧ ∼αl

2) = p(∼a1 ∧ a2) p(αk
1∧ ∼αl

2) k, l = 1, 2 (6)

Including (5) one obtains thus altogether 2 · 2 · 4 · 4 = 64 equations. Let us refer to this set of 64
equations as no-conspiracy. No-conspiracy expresses a probabilistic independence between the
various Boolean combinations of measurement settings and the various Boolean combinations of
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elements of reality. To make reference easier we will sometimes refer solely to (5) as no-conspiracy
requirement without mentioning the other 63 equations arising from complementation.

No-conspiracy does us a great service: we can reproduce the observable probabilities of the
theory in terms of the probabilities of the elements of reality. For example the conditional
probability p(A1

1|a1) of obtaining a black die upon color measurement turns out to be just the
probability p(α1

1) of the property black:

p(A1
1|a1) =

p(A1
1 ∧ a1)
p(a1)

=

∑
k p(A

1
1 ∧ a1 ∧ αk

1)

p(a1)
=

∑
k p(A

1
1|a1 ∧ αk

1)p(a1 ∧ αk
1)

p(a1)

=

∑
k p(A

1
1|a1 ∧ αk

1)p(a1)p(α
k
1)

p(a1)
=

∑
k

p(A1
1|a1 ∧ αk

1)p(α
k
1)

=
∑
k

δ1kp(α
k
1) = p(α1

1) (7)

where we used only the theorem of total probability, the de�ning feature (1) of a property and
no-conspiracy (3).

By similar reasoning we can reproduce the conditional probability p(A6
2|a2) of obtaining the

outcome six upon �upper face� measurement in terms of weighted averages of the probability of
propensities p(αl

2):

p(A6
2|a2) = q61 p(α1

2) + q62 p(α2
2) (8)

Equations (7) and (8) are of central importance. They explain why in the text book form
of a physical theory one need not speak about measurement settings and measurement out-
comes. If no-conspiracy holds, then the conditional probabilities of the measurement outcomes
on measurement settings simply mirror the (unconditional) probabilities of the elements of reality
(properties and propensities). Consequently, the deductive and inductive relations between the
measurement event types simply reveal deductive and inductive relations between the elements
of reality. For example, observing the relation that the probability of a die coming up six is
higher than that of being black

p(A6
2|a2) > p(A1

1|a1) (9)

reveals the unobservable fact that

q61 p(α1
2) + q62 p(α2

2) > p(α1
1) (10)

More than that, the relations between measurement settings and measurement outcomes do
not just reveal the hidden relations between the unobservable categories but by the same move
they also seem to make measurement event types super�uous. If the role of these �surface�
relations is simply to re�ect the deep structural relationships of the unobservable categories with
which real physics is concerned�then why one would care about them? Why one would care
about measurement settings and measurement outcomes if one can also speak about the �real
stu�� directly? In short, no-conspiracy can contribute to delegating measurement settings and
measurement outcomes from semantics to mere pragmatics.
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May this rationale be as fruitful in displaying textbook theories as it is, in a philosophical
re�ection, I think, one should not concede that no-conspiracy blurs the general semantical role
of measurement settings and measurement outcomes. Just recall the general frame: a physical
theory is a formal system plus a semantics connecting the formal system to the world. The very
two categories which lend empirical meaning to a physical theory are the measurement settings
and the measurement outcomes. They are the only event types which an observer have direct
access to. Consequently, they cannot be eliminated from a physical theory�neither by appealing
to no-conspiracy, nor by appealing to anything else. Otherwise the whole theory would lose its
empirical content. It would turn into an uninterpreted formalism. No consideration can deprive
a physical theory of those constituents which make up its semantics.

But let us return now to no-conspiracy. What if no-conspiracy does not hold? In this case
the inference from the measurement event types to the elements of reality via (7) and (8) is
not possible. But does it make the knowledge of the unobservable categories impossible? Is
no-conspiracy a kind of Kantian �condition of the possibility of experience�?

Some seem to think so. In his famous 'cat' paper Schrödinger (1935) likens the free measure-
ment choice of the EPR experiment to a situation when a class of students are asked a set of
question such that each student may be asked any of questions. If the answer to the questions are
all correct, then one can conclude that all students know all answers. Analyzing Schrödinger's
example Maudlin (2014) writes the following:

�Recall Schrödinger's class of identically prepared students. We are told they can all
answer any of a set of questions correctly, but each can only answer one, and then
forgets the answers to the rest. It's an odd idea, but we can still test it: we ask
the questions at random, and �nd that we always get the right answer. Of course it
is possible that each student only knows the answer to one question, which always
happens to be the very one we ask! But that would require a massive coincidence,
on a scale that would undercut the whole scienti�c method.� (Maudlin, 2014 p. 23)

In short, the independence of the measurement choices and the elements of reality is a precon-
dition of pursuing science per se. But is it really so?

5 When no-conspiracy does not hold

Consider the following examples:

Example 1. Suppose that the black painting on the dice is not durable enough: if you just touch
the dice, the black color is wearing o� it and it turns white.

Example 2. Suppose that each die is �lled with a high viscosity �uid which can stream and swirl
inside the die. By every throw the �uid is put in motion which changes the mass distribution of
the die and hence the propensity of the outcome at that very throw.

Example 3 is special case of Example 2. Suppose again that the dice are �lled with a �uid which
can stream inside them before tossing. But by tossing the dice (due to the heavy shaking, say)
the �uid �freezes out� in such a biased way that the dice can come up with only one de�nite face.
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The above three examples are all illustrating a situation when no-conspiracy is violated. In the
�rst example the property α1

1 (black) has turned into another property α2
1 (white) as a result of

the measurement setting a1 (drawing a die from the box). In the second example the propensity
α1
2 (�rst mass distribution) has turned into another propensity α2

2 (second mass distribution)
as a result of the measurement setting a2 (tossing a die). Finally, in the third example we
�nd a change of category. Recall that properties and propensities di�ered only in whether they
determined the outcome for sure or only up to a certain probability. In the third example there
was some non-trivial probability for the di�erent faces of the dice to come up before the throw.
After the tossing, however, the die could come up only with a given face. That means that
here a propensity (one sort of mass distribution) has been turned into a property (a special mass
distribution exactly �xing the outcome) as a result of the measurement setting a2 (tossing a die).
In each case no-conspiracy is violated. (For the relevance of these examples to the interpretations
of quantum mechanics see (Gömöri and Hofer-Szabó, 2016).)

In the above three examples no-conspiracy was violated due to the causal in�uence of the
measurement settings on the elements of reality. But it can also fail due to an opposite causal
connection when the elements of reality have causal in�uence on the measurement settings:

Example 4. Suppose that touching the dice of the second mass distribution is unpleasant for
your hand; so you toss them hastily rather then keep them in hand and check the color.

Yet another example for the violation of no-conspiracy is a common causal connection between
the elements of reality and the measurement settings. It is a combination of example 1 and 4.

Example 5. Suppose that the dice of the second mass distribution are too heavy to be tossed; so
you rather perform a color measurement on them. Suppose furthermore that being heavy and
having a second mass distribution have a common cause�say, these dice are being made in the
same factory.

In all the above examples no-conspiracy was violated due to a causal connection between the
measurement settings and the elements of reality. But is causal connection the only way to
violate no-conspiracy? We come back to this question in Section 8.

Now, we go over to our central question: Under what circumstances can we adopt no-
conspiracy in our physical theory, and when are we forced to abandon it? In the upcoming
�ve Sections we investigate �ve concepts in turn which can qualify the decision. They are sepa-
rability, compatibility, causality, locality and contextuality.

6 Separability

Niels Bohr's notorious insistence on the use of classical concepts in the description of quantum
phenomena is one of the hallmarks of his philosophy. In his contribution to the 1949 Einstein
Festschrift Bohr writes:

It is decisive to recognize that, however far the phenomena transcend the scope
of classical physical explanation, the account of all evidence must be expressed in
classical terms. The argument is simply that by the word �experiment� we refer to a
situation where we can tell others what we have done and what we have learned and
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that, therefore, the account of the experimental arrangement and of the results of the
observations must be expressed in unambiguous language with suitable application
of the terminology of classical physics. (Bohr 1949, p. 209).

Many Bohr scholars have made signi�cant e�orts to understand the meaning and role of Bohr's
doctrine on the primacy of classical concepts. Camilleri and Schlosshauer (2015) argue that
Bohr's doctrine is primarily a general epistemological thesis articulating the epistemology of
experiment rather than a special interpretation of quantum mechanics (for this see also (Zinker-
nagel, 2015)). The epistemological problem according to Bohr is that whereas the very notion
of experiment presupposes that the measured objects possess a de�nite state which is indepen-
dent from the state of the measurement apparatus, quantum mechanics makes this distinction
between object and apparatus ambiguous by treating the two as a single, composite, entangled
system:

. . . the impossibility of subdividing the individual quantum e�ects and of separating
the behaviour of the objects from their interaction with the measuring instruments
serving to de�ne the conditions under which the phenomena appear implies an am-
biguity in assigning conventional attributes to atomic objects which calls for a recon-
sideration of our attitude towards the problem of physical explanation. (Bohr 1948,
p. 317).

If entanglement between object and apparatus is the obstacle to an unambiguous description
of quantum phenomena, then such a description in classical terms can be realized when the
subsystems are not entangled, that is when they are separable. This is exactly Don Howard's
(1994) suggestion for the reconstruction of Bohr's doctrine on classical concepts:

. . . for Bohr, classical concepts are necessary because they embody the assumption of
instrument-object separability, and that such separability must be assumed, in spite
of its denial by quantum mechanics, in order to secure an unambiguous and thus
objective description of quantum phenomena. (Howard 1994, p. 209).

Howard's suggestion to analyze classical description in terms of separability boils down to the
requirement to reproduce the statistical predictions of a given quantum phenomenon in terms
of an �appropriate mixture.� The state of a composite system is called separable, if it is a mix-

ture that is a convex sum of product states of the components. Since product states represent
probabilistically independent components, a mixture is simply a convex combination of these
states which expresses a classical probabilistic correlation between the components. Mixtures
give rise to a classical, ignorance interpretation of the statistics of the phenomenon under inves-
tigation. This analysis via the notion of an �appropriate mixture� has been picked up for example
by Halvorson and Clifton (2002) who provide an elegant analysis of the EPR experiment from
Bohr's perspective along the lines suggested by Howard.

But how separability as a reconstruction of Bohr's demand on classicality relates to no-
conspiracy as a kind of independence principle between measurement settings and the elements
of reality attributed to the system? Clearly, separability is a broader concept than no-conspiracy:
separability simply requires that the relation between the measurement settings and elements of
reality should be expressed as a mixture of probabilistic independences; whereas no-conspiracy
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requires that the two should be probabilistically independent. In our toy model for example
separability requires the probability of the color measuring and the system's possessing the
property black to be the following:

p(a1 ∧ α1
1) = λ1 p(a1) p(α

1
1) + λ2 p(a1) p(∼α1

1) + λ3 p(∼a1) p(α1
1) + λ4 p(∼a1) p(∼α1

1) (11)

with any λi ∈ [0, 1] and
∑4

i=1 λi = 1; whereas no-conspiracy requires that

p(a1 ∧ α1
1) = p(a1) p(α

1
1) (12)

Observe that separability (11) does not give any restriction in our case; it simply means that
p is a classical probability which we already knew since we took probabilities to be relative
frequencies.

All the �ve examples in the previous Section, though violating no-conspiracy, are completely
classical; they provide an unambiguous description of how the unobservable properties or propen-
sities change upon throwing the dice. They even provide a mechanism for the causal dependence.
In Example 1 for instance when upon drawing the black color is wearing o� the dice, obviously

p(a2 ∧ α1
1) 6= p(a2) p(α

1
1) (13)

Throwing the dice and being black will not be probabilistically independent due to the causal
relation between the two event types.

Thus, the �unambiguous language� requires only to attribute some properties to the system
which stand in some classical probabilistic relation to the measurement settings but it does not
require them to be probabilistically independent of one another. Hence, separability as a weaker
requirement than no-conspiracy cannot be used to back the latter. (In addition, according to
Howard even the demand on classicality as separability is too restrictive from perspective of a
general epistemology of experiment.)

7 Compatibility

Now, let us go over to our second concept which is compatibility of the measurement settings. Up
to now we have considered measurement settings only separately. Let us see now what happens
when we perform a joint measurement.

Again, consider our toy model and suppose that we perform the measurement a1 ∧ a2 that
is we are drawing a die from the box, throwing it and checking its color and also the number on
its upper face. Suppose that after performing both measurements we disregard the upper face
and consider only the color. Suppose that we observe that the probability of the outcome black
in this joint measurement is not the same as in the measurement a1. That is we �nd that

p(A1
1|a1 ∧ a2) 6= p(A1

1|a1) (14)

Let us call (14) incompatibility of the two measurements. Note that incompatibility does not
mean here that a1∧a2 cannot be performed; it means that a1 and a2 are disturbing one another.

What is incompatibility a sign of?
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First, observe that the condition a1 on the right hand side of (14) does not mean that we
performed only a1�this would be a1∧∼ a2. The condition a1 means that we consider all the
runs in which a1 has been performed, irrespectively whether a2 has been performed or not�that
is a1 = (a1 ∧ a2)∨ (a1∧∼a2). So what (14) expresses is that whether we perform a2 or not does
count in measuring a1 and producing outcome A1

1.
Generally, one can take two positions towards incompatibility. I will call the �rst the purist

or Bridgmanian strategy and the second the stubborn strategy.
According to the purist strategy if the probability of the outcome of a given measurement

can vary depending whether another measurement is performed or not, then this measurement
is not yet well de�ned. Consider the following example. In a regiment two tests are performed:
it is tested how good shots are the soldiers (a1) and how much alcohol they can drink (a2).
Obviously, whether the second test is performed or not, crucially in�uences the outcome of the
�rst. So the two tests are incompatible in the above sense (and not in the sense that they cannot
be performed at the same time: they can�although it is not recommended). So the correct
de�nition of the �rst test is this: let the soldiers shoot but do not give them alcohol (a1∧∼a2).

So the purist attitude towards (14) is that a1 in itself is not yet a well de�ned measurement
procedure since the probability of the outcomes depends on whether a2 is performed or not.
So instead of taking two measurement settings, a1 and a2, we should rather take four, a1 ∧ a2,
a1∧ ∼ a2, ∼ a1 ∧ a2 and ∼ a1∧ ∼ a2 (in this latter case we do nothing). By this move we can
eliminate incompatibility since the four new measurements are logically mutually exclusive. They
cannot be co-performed and hence cannot disturb one another. Generally, the purist strategy is
to take the conjunctions of incompatible measurements until they become either compatible or
logically exclusive.

We call this strategy Bridgmanian since it is in tune with Bridgman's ideas on the correct
de�nition of measurement unfolded for example in The Logic of Modern Physics:

Implied in this recognition of the possibility of new experience beyond our present
range, is the recognition that no element of a physical situation, no matter how
apparently irrelevant or trivial, may be dismissed as without e�ect on the �nal result
until proved to be without e�ect by actual experiment. (Bridgman 1958, p. 3)

Returning to no-conspiracy, the Bridgmanian strategy renders all co-measurable measure-
ments compatible with one another. Therefore, the problem of incompatibility disappears and
we are back to our single case measurement scenario. The purist strategy teaches nothing new
about no-conspiracy.

Let us go over to the stubborn strategy. I call it stubborn since it takes a1 and a2 to be correct
measurement settings in spite of their incompatibility (14)? What does then (14) say about
no-conspiracy?

This is a point where we need to go one step further concerning the relation between measure-
ment event types and elements of reality. We need to specify how the elements of reality behave
when jointly measured. Therefore suppose that the following relation also holds (in addition to
(1) and (2)):

p(Ai
1 ∧A

j
2|a1 ∧ a2 ∧ α

k
1 ∧ αl

2) = δik q
jl i, k, l = 1, 2; j = 1 . . . 6 (15)
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Requirement (15) expresses a kind of non-disturbance relation between the measurements which
can be better seen if we sum up �rst for i then for j:

p(Ai
1|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = δik = p(Ai

1|a1 ∧ αk
1) (16)

p(Aj
2|a1 ∧ a2 ∧ α

k
1 ∧ αl

2) = qjl = p(Aj
2|a2 ∧ α

l
2) (17)

(Here the second equation in both rows are due to the de�ning equation (1) of the property and
(2) of the propensity, respectively.) (16) and (17) express that the probability of an outcome
conditioned on an element of reality and a measurement setting does not change by further
conditioning it on other elements of reality or measurement settings. From (16) (where the
element of reality is a property) it also follows that

p(Ai
1|a1 ∧ a2 ∧ αk

1) = p(Ai
1|a1 ∧ αk

1 ∧ αl
2) = p(Ai

1|a1 ∧ αk
1) (18)

Now, suppose that no-conspiracy also holds that is

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (19)

From (15) and (19) it is easy to show (via a derivation similar to (7)) that

p(A1
1|a1 ∧ a2) = p(A1

1|a1) (20)

in contradiction to incompatibility (14). This means that incompatibility between the measure-
ments implies that we have to abandon either the non-disturbance of the measurement procedures
(15) or no-conspiracy (19).

Thus, in case of the stubborn strategy compatibility of the measurement settings is a good
sign of that both non-disturbance and no-conspiracy hold; and incompatibility is a good sign of
that either the one or the other is violated. Whether to blame the one or the other is a question
for further investigation.

8 Causality

Our third concept in the row is causality. In Section 5 we saw several examples for causal
connections between the measurement settings and the elements of reality. In Example 1 for
instance we supposed that the black painting on the dice is not durable enough and if one
touches the dice, the color black is wearing o�. Causal connection between elements of reality
and measurement settings is a prime source of no-conspiracy.

Causal connection comes in two sorts. It can be either a direct causal connection as in
Examples 1 to 4; or it can be a common causal connection as in Example 5. Reichenbach's
Common Cause Principle states that all correlations should be accounted for by one of the two
causal connections. On the other hand, probabilistic independence between the measurement
settings and the elements of reality is a sign of causal independence (assuming that causal e�ects
do not cancel one another). Hence, no-conspiracy can be ensured if any causal connection between
the measurement settings and the elements of reality can be excluded.

Before turning to this point, �rst we need to clarify what we mean by a causal connection
between two event types, say, the color measurement, a1, and the property black, α1

1. By that
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we mean that the color measurement and the property black are causally related in a tokenwise

manner. In other words, there is a pairing of token events instantiating these two types such that
for each pair the token events of the pair stand in either a direct or a common causal connection
to one another. But how to create pairs?

Consider a certain run of the experiment which instantiates a1 ∧ α1
1. Up to now we treated

this run of the experiment as one single run in which one performed a color measurement and the
property of the dice which has been drawn was black. How can the color measurement cause the
property black in this single run? If this run of the experiment is taken as one single token event,
then there can be no tokenwise causal connection; simply because we have only one token. In
order to have a causal connection, one needs to decompose this one single run of the experiment
instantiating a1 ∧ α1

1 into a pair of token events such that the one token event instantiates a1
and the other token event instantiates α1

1. In order to speak about a tokenwise causal relation,
one token event is not enough. One possibility to perform this decomposition is to say that the
�rst token event occurred here and the other token event occurred over there. Localization is
a typical method for individuation. We come back to the question of localization in the next
Section.

Now, suppose that we can separately individuate the token events of the color measurement
and the token events of the property black. Then a causal connection between a1 and α

1
1 means

that for each pair either the token instantiating a1 is the cause of the token instantiating α1
1; or

vice versa; or there is a third token instantiating a third event type which is the common cause
of both. Is there a way to exclude both a direct and also a common causal connection between
the token events and by this to ensure no-conspiracy? What might come to mind �rst is to rely
on some locality consideration. This is the topic of the next Section.

9 Locality

Is there a spatiotemporal arrangement of the event types a1 and α
1
1 such that one can safely say

that all possible causal connections between the measurement settings and the elements of reality
are shielded o�? Suppose that we take a snapshot of the world and it turns out that the pairs of
token events instantiating the color measurement and the property black are localized in spacelike
separated regions. Thus, in the �rst run of the experiment the token event instantiating a1 is
spacelike separated from the token event instantiating α1

1; and similarly for the second, third,
etc. run. This is the best scenario a spacetime localization can provide for causal independence.
Does it guarantee that there is no causal and hence probabilistic dependence between a1 and
α1
1? As one expects, the answer to this question is no.
Even if the token events of each pair are spacelike separated, they can still be causally related

to one another both in a direct and also in a common causal way. As for direct causal connection,
just note that in order to produce a measurement outcome these two token events need to interact
somewhere in spacetime. Hence even if they are spacelike separated at a certain moment, they
will not be so at the moment of bringing about the outcome black. Therefore their direct causal
e�ect on one another at the time of their interaction cannot be excluded based on the fact that
at a previous time they were localized in a spacelike separated way. The situation is similar or
even worse in case of a common cause. Even if the two token events are spacelike separated,
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there well can be a common cause in their common past causally in�uencing both.
To sum up, locality considerations do not help us in excluding causal connections and hence

to ensure no-conspiracy. Thus, we have fallen back to the situation in the previous Section: to
guarantee no-conspiracy we need to exclude causal connection in some way without making use
of spatiotemporal considerations.

10 Contextuality

Up to now it may have appeared that the only source for the violation of no-conspiracy is a
causal connection between the elements of reality and the measurement settings. However, there
is a further way to violate no-conspiracy which is not related to causality. Two events can be
correlated even if they are not causally related; namely if they logically depend on one another.
This leads us to the problem of contextuality.

A little re�ection on the de�nition of property and propensity can convince us that (1) and
(2) say nothing about whether the elements of reality and the measurement settings are logically
independent or not. It can well be the case that by specifying the measurement setting we partly
specify also the elements of reality. Consider the following example:

Example 6. Let α1
2(x) denote the following property of the dice: the mass distribution of the dice

is of the �rst type and the initial conditions (position plus momentum) of its toss is x. α1
2(x) is

obviously a property since together with the toss a2 it determines the upper face for sure; that
is

p(Aj
2|a2 ∧ α

1
2(x))

is either 0 or 1 for any j and x.

However, a2 and α1
2(x) are not logically independent. If you tossed the die, then the initial

velocity is surely not zero and the die must have been located somewhere around the table.
That is the measurement setting partly speci�es the initial conditions. This logical dependence
between the element of reality and the measurement setting is called contextuality.

How contextuality leads to the failure of no-conspiracy? First, consider an initial condition
x which can reasonably be regarded as �tossing the dice� (that is for the tossing of the die with
x, it will land on the table and after a couple of rolls it will stop on the table, etc.). For such an
x, α1

2(x) is algebraically contained in a2, therefore

p(a2 ∧ α1
2(x)) = p(α1

2(x)) 6= p(a2) p(α
1
2(x)) (21)

if p(a2) 6= 1 and hence no-conspiracy is violated. Second, suppose that x does not count as
�tossing the dice� (the die �ies over the table, say). Then a2 and α

1
2(x) are algebraically disjoint

and hence

p(a2 ∧ α1
2(x)) = 0 6= p(a2) p(α

1
2(x)) (22)

if p(a2) 6= 0 and no-conspiracy is again violated. In short, the logical dependence between the
measurement settings and the elements of reality directly implies (for non-extremal probabilities,
that is typically) a probabilistic dependence between them; that is a violation of no-conspiracy.
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To sum up, even if the elements of reality and the measurement settings are causally detached,
they can still violate no-conspiracy if the measurement settings wholly or partially contribute to
the de�nition of the elements of reality. Such a situation cannot be excluded a priori; at least the
de�nitions of the property and the propensity do not exclude it. The logical dependence between
elements of reality and measurement settings su�ces to establish conspiracy. Contextuality is
the other main source for the violation of no-conspiracy.

11 Discussion

In this paper we have adopted the following empiricist philosophical position. A physical theory
was reconstructed as a formal system plus a semantics connecting the formal system to the world.
The semantics has to minimally specify what event types inhabit the world. Event types can be
of two sorts: measurement event types and elements of reality. Typically we have direct access to
the former but not to the latter. There are two measurement event types: measurement settings
and measurement outcomes and there are also two types of elements of reality: properties and
propensities. The probability of an event type is understood as simply the long-run relative
frequency of the token events instantiating the event type in question. In an experiment the
token events are the runs of the experiment.

Adopting the above philosophical position we have argued for the following. No-conspiracy
is the requirement that elements of reality should be probabilistically independent of the mea-
surement settings. There is no a priori guarantee that no-conspiracy does hold. If it does,
probabilistic relations between the measurement event types will mirror probabilistic relations
between the elements of reality. This licenses physics to forget about measurement settings and
measurement outcomes and to talk directly about elements of reality. The temptation to delete
measurement event types from the semantics of the theory, however, should be resisted.

No-conspiracy is a concept situated within a web of related concepts such as separability,
compatibility, causality, locality and contextuality. In the paper I concentrated only on those
threads of the web which connected these notions to no-conspiracy. But certainly there are
many other interconnections. Causality and contextuality are complementary terms: the more
the measurement settings and elements of reality are logically depend on one another, the less
room there is for causal connection between them. Separability and spacetime localization do
not orient us about causal connections between measurement settings and elements of reality;
whereas incompatibility is often due to a direct causal link between them; as in case of the
soldiers' shooting and drinking.

Going back to no-conspiracy, the following can be said. Three of the �ve concepts, namely
separability, compatibility and locality do not bring us closer to no-conspiracy. Separability is a
weaker concept than no-conspiracy, so one cannot back the latter by the former. Compatibility
of measurement settings is empty in case of a purist strategy and only a partial motivation in
case of the stubborn strategy. Finally, locality cannot be used to support no-conspiracy at all.
However, the remaining two concepts, namely causality and contextuality, are closely linked to
no-conspiracy. No-conspiracy can be guaranteed if both causal and logical dependence between
the measurement settings and the elements of reality can be excluded. In the �rst case one needs
to ensure that there is no direct or common causal connection between the individual runs of
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the experiment. In the second case that measurement settings should not contribute to the very
de�nition of the elements of reality.

Whether this can be done and hence a non-conspiratorial physical theory can be provided
for a given phenomena is a question that can be answered only by a thorough scrutiny of the
phenomena in question. Whether any conspiratorial description of a physical scenario can be
replaced by a �better� non-conspiratorial one; whether adopting no-conspiracy can be in con�ict,
as in the EPR-Bell scenario, with other principles such as local causality, Common Cause Princi-
ple, etc.�well, these questions cannot be decided at a general metaphysical level. No-conspiracy
is neither an analytic nor a transcendental truth; it is an extra constraint on theory construction
the success of which can be decided only on a case-by-case basis.

Appendix

Throughout the paper we used a simple toy model for a physical theory. Here we provide a
general mathematical picture of a physical theory.

Let ai (i = 1 . . . I) be the measurement settings in a given theory and let Aji
i (ji = 1 . . . Ji)

denote the jth outcome of the ith measurement. Suppose furthermore that there is an element
of reality αki

i (ki = 1 . . .Ki) (either a property or a propensity) associated to each measurement
setting ai such that

p(Aji
i |ai ∧ α

ki
i ) = qjikii (23)

where
∑Ji

ji=1 q
jiki
i = 1 for any i = 1 . . . I and ki = 1 . . .Ki. For a given i ∈ I the element of

reality αki
i is a property i� Ji = Ki and q

jiki
i = δjiki . Otherwise α

ki
i is a propensity.

Suppose that the elements of reality are related nicely to the measurement event types not
only in case of a single measurement but also in case of a joint measurement. (Note the word
�single� does not mean that the other measurements are not performed; it means rather that
it is not taken into consideration whether they are performed or not.) Therefore, select I ′

measurement settings out of the possible I and let now the index i run from 1 to I ′. What we
require is that for any such selection (among them the no-selection) the following should hold:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′ ∧ α

k1
1 ∧ . . . ∧ α

kI′
I′ ) = qj1k11 × · · · × qjI′kI′I′ (24)

Now, the elements of reality {αki
i } are said to satisfy no-conspiracy i�

p(a1 ∧ . . . ∧ aI ∧ αk1
1 ∧ . . . ∧ α

kI
I ) = p(a1 ∧ . . . ∧ aI) p(αk1

1 ∧ . . . ∧ α
kI
I ) (25)

holds together with those �complemented� variants of (25) where one or more event types are
substituted by their complements. From no-conspiracy it follows that they also satisfy no-
conspiracy for all selections, among them

p(ai ∧ αki
i ) = p(ai) p(α

ki
i ) (26)

By means of (24) and no-conspiracy (25) one can transform for any selection the probabilistic
relations among the measurement event types into probabilistic relations among elements of
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reality as follows:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) =

∑
k1...kI′

qj1k11 × · · · × qjI′kI′I′ p(αk1
1 ∧ . . . ∧ α

kI′
I′ ) (27)

Speci�cally, if all the event types {αki
i } are properties, then (27) reads as

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) = p(αj1

1 ∧ . . . ∧ α
jI′
I′ ) (28)

and in the special case of a single measurement as

p(Aji
i |ai) = p(αji

i ) (29)

for all i = 1 . . . I. Equation (27) shows that the probability of the outcomes conditioned on the
measurement settings is mirrored in the probability of the properties.
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