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Abstrat

In this paper the relation between the standard probabilisti haraterization of the ommon ause

(used for the derivation of the Bell inequalities) and Bell's notion of loal ausality will be investigated

in the isotone net framework borrowed from algebrai quantum �eld theory. The logial role of two

omponents in Bell's de�nition will be srutinized; namely that the ommon ause is loalized in the

intersetion of the past of the orrelated events; and that it provides a omplete spei�ation of the

`beables' of this intersetion.
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1 Introdution

Standard derivations of the Bell inequalities start from a set of equations representing a probabilisti

ommon ausal explanation of orrelations. This ommon ausal explanation has three omponents: a

sreening-o� ondition, going bak to Reihenbah's (1956) original haraterization of the ommon ause,

a loality ondition, expressing probabilisti independenes between spaelike separated measurement

outomes and measurement settings, and a no-onspiray ondition representing another independeny

between the ommon ause and the measurement settings. If one is asked what justi�es these probabilisti

onstraints in representing a proper ommon ausal explanation, the ommon answer is this: one obtains

these equations immediately if one endorses speial relativity and looks at the spaetime loalization of

the events in question. The aim of this paper is to understand more thoroughly this quik answer.

In order to see more learly how the spatiotemporal and probabilisti haraterization of the ommon

ause relate to one another, one has to be lear �rst of all on three points:

1. To address the problem at all, we need to have a mathematially well-de�ned and physially well-

motivated framework onneting events understood as elements of a probability spae and regions

understood as subsets of a spaetime.

2. Having suh a �rm framework onneting spatiotemporal and probabilisti entities, we need to

loalize events, among them ommon auses, in the spaetime.

3. Finally, we have to be lear on what we mean under �justi�ation of the probabilisti ommon

ausal explanation on spatiotemporal grounds�.
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Here we brie�y omment on the above three points in turn.

Ad 1. Conerning the framework, interestingly enough, there is not a wide hoie of mathematial stru-

tures representing this highly important onnetion between probabilisti and spatiotemporal entities.

Disounting one approah (Henson, 2005; ommented on in the Conlusion and disussion), we are aware

of only one suh struture, the isotone net struture used in algebrai quantum �eld theory (AQFT). In

AQFT observables are represented by (C∗
-)algebras assoiated to bounded regions of a spaetime. This

assoiation is alled a net. A state φ is de�ned as a normalized positive linear funtional on the quasiloal

algebra A whih is the indutive limit of the net. From our perspetive, the two important axioms of

the net are isotony and loal primitive ausality. Isotony requires that if a region V1 is ontained in

another region V2, then the loal algebra A(V1) assoiated to V1 is a (unital C∗
-)subalgebra of A(V2).

Loal primitive ausality is the requirement that for any region V , A(V ) = A(V ′′), where V ′′
is the

ausal ompletion (shadow) of V . The framework of isotone nets seems to be �exible enough to be used

also for our purposes. The nets whih we will use in this paper will be lassial nets generated by loal

σ-subalgebras of a Boolean σ-algebra Σ. Thus we borrow a useful mathematial tehnique from AQFT

without endorsing the operational ontology thereof.

Ad 2. Having a neat framework in hand, next we have to loalize events. The loalization of measurement

outomes and measurement settings is fairly straightforward, but where should we loalize ommon

auses? Obviously, the ommon ause is an event C happening somewhere in the past of two orrelated

events, say A and B. But in whih past? Relativistially two spaelike separated events an have (at

least) two di�erent pasts. Let VA and VB denote the regions where A and B, respetively are loalized.

One an then de�ne the weak past of A and B as PW (VA, VB) := I−(VA) ∪ I−(VB) and the strong past

of A and B as PS(VA, VB) := I−(VA)∩ I−(VB) where I−(V ) denotes the union of the ausal pasts I−(x)
of every point x in V . Let us all the appropriate ommon auses weak and strong ommon auses,

respetively (see Fig. 1).
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Figure 1: Weak and the strong past of the orrelated events A and B.

Now, one might onsider the strong past as a more natural andidate for the loalization of the

ommon ause, and indeed plenty of lassial examples attest that the strong past is a reasonable hoie.

The orrelation between two fans' shouting at the same time at a football math is explained by the goals

sored, that is by events loalized in the strong past of the shouts. Curiously enough, however, in AQFT

ommon auses are typially understood as weak ommon auses. It is not di�ult to see why.

Consider an isotone net representing a system in AQFT. Suppose that there is a (superluminal)

orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈ A(VA) and B ∈ A(VB) suh that VA and VB are

spaelike separated. Consider the loal algebra A((VA ∪ VB)
′′) assoiated to the ausal ompletion of

VA∪VB and suppose that we �nd a ommon ause C of the orrelation in A((VA∪VB)
′′). In whih past of

VA and VB an C be loated? Consider a region V in the weak past PW (VA, VB) whih is `wide' enough

to ensure that (VA ∪VB) ⊂ V ′′
. Due to isotony, A(VA ∪ VB) will be a subalgebra of A(V ′′) whih, due to

loal primitive ausality, is idential to A(V ). Thus, C will be loated in V and hene in the weak past

of VA and VB . To sum up, isotony and loal primitive ausality together ensures that if a superluminal

orrelation has a ommon ause, then it an be loalized in the weak past.

2



Can the ommon ause be loalized also in the strong past? It might, but if so, this will not be simply

due to the axioms of AQFT. If V is in PS(VA, VB), then isotony and loal primitive ausality does not

help to relate A(V ) to A((VA ∪ VB)
′′). One also needs to know about the dynamis of the system. The

axioms of AQFT are ompletely silent about whether one an loate the ommon ause in the strong

past. As a onsequene, weak ommon auses annot be exluded a priori from our explanatory arsenal.

Thus, we had better open leave the question regarding the apt spaetime loalization of the ommon

ause.

Ad 3. Finally, we have to pin down the meaning of the term �justi�ation of the probabilisti ommon

ausal explanation on spatiotemporal grounds�. What we mean here is this: we need to have a priniple

regulating the probabilisti independenes of events on the basis of their possible ausal onnetedness

in tune with speial relativity. An analogy for suh a regulating priniple might help. The theory of

Bayesian nets involves two parts: a ausal graph representing the ausal relations among ertain events

and a probability spae with random variables. How are these two parts of the theory related to one

another? The bridge relating the two omponents is alled the Causal Markov Condition. It says that if

the nodes on the graph are related to one another in suh-and-suh a way, then the variables pertaining

to the nodes should satisfy suh-and-suh probabilisti independenes. So the role of the Causal Markov

Condition in the theory of Bayesian nets is to oordinate the probabilisti and the graphial desription

of ausal relations.

A priniple playing a similar oordinating role in the ausal explanation of orrelations has been in-

trodued into the literature by John S. Bell (1975/2004) and alled loal ausality. Loal ausality is

a relativisti priniple tailor-made to study probabilisti relations between events loalized in di�erent

spaetime regions, among them the relation between the ommon ause and the orrelated events. Thus,

we will understand the term �justi�ation of the probabilisti ommon ausal explanation on spatiotem-

poral grounds� similarly to the Bayesian net theorist: loal ausality implies just those probabilisti

independenes whih haraterize the standard ommon ausal explanation.

Putting Points 1-3 together we are faed with the following

Projet. Given the isotone net framework onneting events and spaetime regions (Point 1), and given

the spatiotemporal loalization of the various measurement outomes, measurement settings and ommon

auses (Point 2), one is to de�ne loal ausality in the isotone net framework suh that the probabilisti

independenes implied by loal ausality (Point 3) are just the ones used in the standard probabilisti

haraterization of the ommon ausal explanation.

In brief, the aommodation of a set of orrelations within a loally ausal net implies that for any

orrelations there exist ommon auses satisfying ertain probabilisti onstraints.

This, however, is only the oarse-grained story of the paper. Reading Bell's areful formulation of loal

ausality, two requirements will stand out in the de�nition: one is atomiity representing the �omplete

spei�ation� of the ausal past of the orrelated events, the other is the loalization of the ommon

ause in the strong past. Our �ne-grained story will be to analyze the signi�ane of these ingredients

in the de�nition of loal ausality. It will turn out that the link between the spatiotemporal and the

probabilisti haraterization of the ommon ause is very sensitive to these omponents of the de�nition

of loal ausality, as was rightly emphasized by Bell himself. In detail, we would like to address the

following questions:

(i) What is the exat role of atomiity in the justi�ation of the probabilisti haraterization of the

ommon ause by loal ausality?

(ii) Do the probabilisti onstraints imposed on the notion of ommon ause restrit the possible spae-

time loalization of the ommon ause? Do we need to hoose, for example, between weak and

strong ommon auses?
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(iii) How do atomiity and loalization relate to one another; whih of the ommon auses loalized in

di�erent pasts need to be atomi?

Our paper follows a researh line whih has been followed by many. To our knowledge, the �rst to

�survey the ways in whih one ould assoiate regions� with events suh that it makes �plausible not

only ompleteness and loality, but other assumptions of the Bell inequality� was Butter�eld (1989, p.

135). Also, the neessity to introdue spatiotemporal onepts so as to understand the Common Cause

Priniple was pointed out by U�nk (1999). Common Cause Priniple and its role in the EPR-Bell senario

has been thoroughly investigated by The Bern group (Grassho�, Portmann and Wüthrih, 2005), The

Craow group (Plaek and Wronski, 2009), and The Budapest group (Hofer-Szabó, Rédei and Szabó,

2013, espeially in Chapter 8 and 9). The status of the Common Cause Priniple in AQFT was �rst

investigated by Rédei (1997), and further analyzed in Poinaré ovariant AQFT by Rédei and Summers

(2002) and in lattie AQFT by Hofer-Szabó and Vesernyés (2012a, 2013a). Butter�eld analysed the

assumptions leading to the Bell inequalities in AQFT in (Butter�eld, 1995), and the relation of the

Common Cause Prinipe to the Bell inequalities and to various forms of Stohasti Einstein Loality in

(Butter�eld, 2007). For an earlier disussion on the relation of Stohasti Einstein Loality to the axioms

of AQFT, see (Rédei 1991) and (Muller and Butter�eld 1994). Hofer-Szabó and Vesernyés (2012b,

2013b) reassessed the assumptions of the Bell inequalities in AQFT with respet to non-ommuting

ommon auses. In a formalism very lose or maybe idential to our isotone net formalism, Henson

(2013b) treated an important topi, namely that giving up separability does not blok the derivation

of the Bell inequalities. An interesting debate between Henson, Rédei and San Pedro (Henson, 2005;

Rédei and San Pedro, 2012; Henson, 2013a) has been taking plae reently in this Journal. We will

omment on this debate in the Conlusion and disussions. For a parallel approah to ours, where the

assumptions of the Bell inequalities are baked not by spatiotemporal onsiderations but by the Causal

Markov Condition, see (Glymour 2006). For the relation of Causal Markov Condition to EPR orrelations

see (Suárez, 2013). For a general treatment of Bell's loal ausality in loal physial theories see the

more tehnial (Hofer-Szabó and Vesernyés 2014a) or its philosopher-friendly version (Hofer-Szabó and

Vesernyés 2014b).

Our paper is strutured as follows. In Setion 2 the standard requirements of the probabilisti ommon

ausal explanation will be realled. In Setion 3 Bell's original idea of loal ausality will be delineated

and rede�ned in the isotone net formalism. Setion 4 will be devoted to the �rst ingredient of Bell's

de�nition, namely atomiity; Setion 5 to the seond one, namely loalization. In order to proeed in

a more pituresque way, both in Setion 4 and 5 lassial toy models will be introdued helping us to

expliate the more abstrat results. We onlude the paper in Setion 6. Some tehnialities are put in

the Appendies.

2 Common ausal explanation

As mentioned above, the �rst probabilisti haraterization of the ommon ause is due to Reihenbah.

There is a long route leading from Reihenbah's original idea of the ommon ause to the sophistiated

probabilisti requirements used today in the philosophy of quantum physis. Here we will not detail the

steps of how the notion of ommon ause evolved and beame more and more suitable for ausal expla-

nation of the EPR-Bell senario (for this see (Hofer-Szabó, Rédei and Szabó, 2013), or for a short version

(Hofer-Szabó and Vesernyés, 2012a)). Instead we will jump diretly to the full-�edged probabilisti

haraterization of the ommon ause and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement proedures (thought of as happening

in two spaelike separated spaetime regions). Suppose that eah measurement an have two outomes and

denote the `positive' outomes by Am and Bn and the `negative' outomes by Am and Bn, respetively.

Let all these events be aommodated in a lassial probability spae (Σ, p). Suppose that there is a
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onditional orrelation between the measurement outomes in the sense that for any m ∈ M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (1)

representing that if we measure the pair am and bn, the appropriate outomes will be orrelated.

The standard probabilisti haraterization of a ommon ausal explanation of the orrelations (1) is

the following. A partition {Ck} in Σ (that is a set of mutually exlusive events adding up to the unit) is

said to be a loal, non-onspiratorial joint ommon ausal explanation of the orrelations (1) if for any

m,m′ ∈ M and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (sreening-o�) (2)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧ Ck) (loality) (3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (loality) (4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-onspiray) (5)

The motivation behind requirements (2)-(5) is the following. Sreening-o� (2) (also alled as outome

independene (Shimony, 1986), ompleteness (Jarrett, 1984) and ausality (Van Fraassen, 1982)) is sim-

ply the appliation of Reihenbah's original haraterization of the ommon ause as a sreener-o� to

onditional orrelations: although Am and Bn are orrelated when onditioned on am and bn, they will

ease to be so, if we further ondition on Ck. Loality (3)-(4) (also alled as parameter independene

(Shimony, 1986), loality (Jarrett, 1984) and hidden loality (Van Fraassen, 1982)) is the onstraints that

the measurement outome on the one side an depend only on the measurement hoie on the same side

and the value of the ommon ause, but not on the measurement hoie on the opposite side (for more

on this, see below). Finally, no-onspiray (5) is the requirement that the ommon ause system and the

measurement settings should not in�uene eah other: they should be probabilistially independent.

Now, it is a well known fat that if a set of orrelations has a loal, non-onspiratorial joint ommon

ausal explanation in the above sense, then the set of orrelations has to satisfy various Bell inequalities.

1

If quantum orrelations are interpreted as lassial onditional orrelations á la (1), these Bell inequalities

are violated, exluding a loal, non-onspiratorial joint ommon ausal explanation of the EPR senario.

Our aim, however, is not to follow the route leading from the ommon ausal explanation (2)-(5) to the

Bell inequalities, but rather the route leading to the ommon ausal explanation itself. At any rate, in

the EPR-Bell literature (2)-(5) is regarded as the orret probabilisti haraterization of the ommon

ause. But observe that the above motivations for the probabilisti independene relations (2)-(5) are

ompletely meaningless unless we �rst deide on Points 1 and 2 of the Introdution: that is unless we

have a prinipled way to assoiate events understood as elements of the probability spae (Σ, p) to regions
of a given spaetime (Point 1), and unless we loalize the events in question somewhere in the spaetime

(Point 2).

So suppose that we do have suh an assoiation in form of an isotone netN assoiating bounded regions

of the Minkowski spaetime to σ-subalgebras of Σ. Suppose furthermore that we loalize ommon auses

in one of the two above mentioned ways, that is ommon auses are either weak or strong ommon auses.

To address Point 3 of the Introdution, namely the `bridge law' between the spaetime and probabilisti

onsiderations, we have to introdue one more notion, namely loal ausality. We do this in Setion 3.

3 Loal ausality

As mentioned in the Introdution, there is an in�uential tradition aording to whih equations (2)-(5)

are onsequenes of the requirement that a ertain set of orrelations are to be aommodated in a loally

ausal theory. The learest formulation of suh a theory is due to Bell himself:

1

For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality, see Appendix A.
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�Consider a theory in whih the assignment of values to some beables Λ implies, not neessarily

a partiular value, but a probability distribution, for another beable A. Let p(A|Λ) denote2

the probability of a partiular value A given partiular values Λ. Let A be loalized in a

spae-time region A. Let B be a seond beable loalized in a seond region B separated from

A in a spaelike way. (Fig. 2.) Now my intuitive notion of loal ausality is that events in B

A B

Λ

Figure 2: Loal ausality I.

should not be `auses' of events in A, and vie versa. But this does not mean that the two

sets of events should be unorrelated, for they ould have ommon auses in the overlap of

their bakward light ones. It is perfetly intelligible then that if Λ in (6) does not ontain

a omplete reord of events in that overlap, it an be usefully supplemented by information

from region B. So in general it is expeted that

p(A|Λ, B) 6= p(A|Λ) (6)

However, in the partiular ase that Λ ontains already a omplete spei�ation of beables in

the overlap of the light ones, supplementary information from region B ould reasonably be

expeted to be redundant.�

And here omes the de�nition of a loally ausal theory.

�Let C denote a spei�ation of all beables, of some theory, belonging to the overlap of the

bakward light ones of spaelike regions A and B. Let a be a spei�ation of some beables

A B

Ca b

Figure 3: Loal ausality II.

2

For the sake of uniformity throughout the paper, I slightly hanged Bell's notation and �gures.
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from the remainder of the bakward light one of A, and B of some beables in the region B.

(See Fig. 3.) Then in a loally ausal theory

p(A|a, C,B) = p(A|a, C) (7)

whenever both probabilities are given by the theory.� (Bell, 1975/2004, p. 54)

Now, let us spell out Bell's haraterization of loal ausality in our isotone net framework. To this end

we need to `translate' a number of terms Bell uses in his formulation into our language.

First, we need to translate Bell's language using random variables in (7) into a language using events.

This is straightforward sine events are speial random variables, namely harateristi funtions.

Seond, we are to interpret the term `beable'. `Beable' is Bell's neologism and is ontrasted to the

term `observable' used in quantum theory. �The beables of the theory are those entities in it whih are,

at least tentatively, to be taken seriously, as orresponding to something real� (Bell, 1990/2004, p. 234).

Without the lari�ation of what the �beables� of a given theory really are, one annot even formulate

loal theory sine �there are things whih do go faster than light. British sovereignty is the lassial

example. When the Queen dies in London (long may it be delayed) the Prine of Wales, leturing on

modern arhiteture in Australia, beomes instantaneously King� (Bell, 1990/2004, p. 236). In order to

vitiate suh `violation' of loal ausality, the lari�ation of the �beables� of a theory is indispensable.

(Cf. Norsen 2011.) What are the beables in the isotone net struture? Sine these nets are lassial and

hene they represent objetive physial events, any element of any loal algebra will be regarded here as

a beable.

Third, translating `beable' simply as `elements of an algebra' naturally brings with it the translation

of the term `omplete spei�ation of beables' as an `atom of the algebra in question'. Here of ourse it

is assumed that the loal algebras of the net are atomi (whih is typially not the ase in AQFT). (For

the translation of `omplete spei�ation' into atomiity see (Henson, 2013a, p. 1015).)

Finally, an important point. Both in his wording and also in his �gures Bell seems to take into

aount the whole ausal past of the events in question. In the formulation of loal ausality he does

not assume some kind of Markovian ondition rendering super�uous the in�nite tail of the past regions

below a ertain Cauhy surfae. Other parts of Bell's text, however, speak for a more loal interpretation

of beable.

3

Moreover, Bell's La nouvelle uisine (Bell, 1990/2004), a posthumous paper on the same

subjet provides another de�nition of loal ausality where the sreener-o� regions are de�nitely �nite.

This de�nition is loser in spirit to the formalism of isotone nets sine here only bounded regions are

assoiated to loal algebras. Therefore, we will here endorse this ��nite� reading of loal ausality. (We

will ome bak to this point in the Conlusion and disussion.)

With this `translation manual' in hand, Bell's notion of loal ausality an be paraphrased as follows.

De�nition 1. An isotone netN assoiating bounded regions of the Minkowski spaetime to σ-subalgebras

of Σ is alled loally ausal, if for any lassial probability measure p on Σ4

, and for any two events

Am ∈ A(VA) and Bn ∈ A(VB) loalized in the spaelike separated regions VA and VB and orrelating in

the probability measure p, the following holds.

Let Va, Vb and VC be three spaetime regions (see Fig. 4) suh that

3

Cf. �We will be partiularly onerned with loal beables, those whih (unlike for example the total energy) an be

assigned to some bounded [my italis℄ spae-time region.� (Bell, 1975/2004, p. 53)

4

Or, in the more general AQFT ase (whih we do not need now): for any state φ on the quasiloal algebra A. (Cf.

Setion 1 above.)
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V VA B

V VV Ca b

Figure 4: Loal ausality in isotone nets

Va ⊂ (I−(VA) \ I−(VB)) (8)

Vb ⊂ (I−(VB) \ I−(VA)) (9)

VC ⊂ PS(VA, VB) (10)

VC ⊂ PS(Va, Vb) (11)

VA ⊂ (Va ∪ VC)
′′

(12)

VB ⊂ (VC ∪ Vb)
′′

(13)

Let am, bn and Ck be any three atoms of the algebras A(Va), A(Vb) and A(VC), respetively, assoiated
to the appropriate regions. Then the following onditional probabilisti independenes hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧Ck) (14)

p(Bn|Am ∧ Ck ∧ bn) = p(Bn|bn ∧ Ck) (15)

p(Am|am ∧ Ck ∧ bn) = p(Am|am ∧Ck) (16)

p(Bn|am ∧ Ck ∧ bn) = p(Bn|bn ∧ Ck) (17)

Why four equations instead of Bell's single (7)? Observe that (15) is just the symmetri version

of (14) where Am and am are interhanged with Bn and bn. Equations (16)-(17), however, are slight

extensions of Bell's formulation. Observe that VA is spaelike separated not only from VB but also from

Vb; moreover, VC is in the strong past of A and B, PS(VA, Vb). Therefore, onditioned on the omplete

spei�ation of Va ∪VC , the same independene should hold between Am and bn as between Am and Bn.

Thus (16) is the appliation of Bell's idea to algebras A(VA) and A(Vb), and (17) to algebras A(Vb) and
A(VA). There are no more spaelike separated regions in Fig. 4 to whih loal ausality ould be applied.

How do the above onsiderations relate to the probabilisti haraterization (2)-(5) of the ommon ause

delineated in the previous Setion?

First observe that (16)-(17) are equivalent to loality (3)-(4) and from (14)-(17) sreening-o� (2)

follows diretly. This proves that the probabilisti haraterization of the ommon ause by the require-

ments of sreening-o� and loality an be `derived' from Bell's notion of loal ausality imposed on an

isotone net assoiating spaetime regions and loal algebras.

There is, however, an important proviso. The third requirement in the de�nition of a ommon ausal

explanation, namely no-onspiray (5) annot be `derived' from Bell's notion of loal ausality in a

similar way. No-onspiray is an independent assumption stating that the events am ∧ bn and Ck are

probabilistially independent.
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Let us ome bak for a moment to the de�nition of a loally ausal net. In De�nition 1 we required

(14)-(17) and hene (2)-(4) to hold only for the atoms am and Ck of the algebras A(Va) and A(VC),
respetively. Bell's original de�nition, however, seems to be more stringent; here (7) is required not only

for the atoms of A(Va) but for any element. This might suggest that our de�nition is weaker than that

of Bell. This, however, is not the ase. In Proposition 3 at the end of the paper we will show that in a

loally ausal net (2)-(4) hold not only for the atomi events am, bn and Ck, but (given some independene

ondition) also for any Boolean ombination a := ∨m∈M ′am, b := ∨n∈N ′am (M ′ ⊆ M,N ′ ⊆ N) of the

measurement onditions. Note, however, that the ommon ause system Ck annot be `aggregated' in

this way: (2)-(4) will not neessarily hold for the Boolean ombination C := ∨k∈K′Ck (K ′ ⊆ K). This

is why it is neessary to demand atomiity (�omplete spei�ation�) in the strong past of the orrelated

events and su�ient to demand it outside it. We will ome bak to this point later.

An interesting question with respet to AQFT is the following. What is the relation between loal

primitive ausality as standardly used in AQFT and our de�nition of loal ausality? The answer is

given in the following proposition:

Proposition 1. A lassial, atomi isotone net whih satis�es loal primitive ausality (A(V ) = A(V ′′)
for any region V ), automatially satis�es also loal ausality (14)-(17) for events in regions as shown in

Fig. 4.

Proof. Consider �rst (14). Due to isotony and loal primitive ausality A(VA) ⊂ A((Va ∪ VC)
′′) =

A(Va ∪ VC) and hene for any atom am ∧ Ck of A(Va ∪ VC): either (i) Am ∧ am ∧ Ck = 0 or (ii)

Am ∧ am ∧Ck = am ∧Ck. In ase (i) both sides of (14) is zero, in ase (ii) both sides of (14) is one. One

obtains (15)-(17) in a similar fashion.

Intuitively, isotony and loal primitive ausality together ensure that the atoms of A(Va ∪ VC) will also
be atoms of A(VA), hene sreening o� every orrelation. For a more general proposition stating that in

any atomi lassial or quantum isotone net satisfying loal primitive ausality loal ausality also holds,

see (Hofer-Szabó and Vesernyés 2014a, Prop. 1) and (Hofer-Szabó and Vesernyés 2014b, Se. 3). For

relating loal ausality (Stohasti Einstein Loality) to the axioms of AQFT (treated in the tradition of

the so-alled syntatial view of sienti� theories), see (Rédei 1991) and (Muller and Butter�eld 1994).

Reading Bell's formulation of loal ausality arefully, two ingredients of the de�nition stand out

learly. The one is that (i) the ommon ause system provides �a omplete spei�ation of beables�,

and (ii) it is loated in the �overlap of the light ones�. In our terminology, (i) Ck is an atom of the

appropriate algebra, (ii) it is loated in the strong past of the orrelated events. Bell expliitly stresses

both points, and in all the subsequent papers of Van Fraassen (1982), Jarrett (1984), Shimony (1986)

et. trying to turn spaetime onsiderations into probabilisti independenes these two requirements have

been (expliitly or impliitly) made.

However, neither requirements are a priori onerning the idea of a ommon ause. One an easily

make up ommon auses whih are either non-atomi or not loated in the strong past of the orrelated

events. How do these ommon auses relate to Bell's notion of loal ausality? In the following two

Setions the relation between loal ausality and probabilisti haraterization of the ommon ause will

be studied �rst in the ase of non-atomi ommon auses, then in ase of weak ommon auses. In eah

Setion toy models will be introdued �rst, then the formal results will be gathered.

4 Non-atomi ommon auses

Example 1. Consider the following toy model. There are �ve lighthouses on the oean in a line at equal

distanes from one another. (See Fig. 5.) Let us ount them from left to right. In the middle one, that is

in lighthouse 3 the lighthouse keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy

for turning the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three lamps, or

9



A BC

1 2 3 4 5

Figure 5: Lighthouses I.

none. He never turns on the lamps in any other ombination. He hooses between these four options

with equal probability (say, by tossing two oins). Let us denote that a given lamp is turned on and o�

by C and C, respetively. Using this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C
′′

∧ C
′′′

(18)

C2 ≡ C
′

∧ C
′′

∧ C′′′
(19)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(20)

C4 ≡ C
′

∧ C
′′

∧ C
′′′

(21)

eah with probability

p(Ck) =
1

4
(22)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another lighthouse keeper,

A; and his role is simply to wath the light signals arriving from either the left or from the right, that

is from either lighthouse 1 or lighthouse 3. He does not know that lighthouse 1 is empty, therefore he

spends equal time wathing both neighboring lighthouses. Suppose furthermore that if he is wathing

to the left, he will miss the light signals oming from the right. This means that with probability

1
2 he

observes the signals oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the

event that the lighthouse keeper A is wathing to the left and to the right by aL and aR, respetively

and denoting by A the event that he observes a light signal (disregarding from whih lamp it omes), one

obtains the following onditional probabilities:

p(A|am ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise.

(23)

In other words, the lighthouse keeper A observes the light signal only if he is wathing right and there is

a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse keeper B is wathing in

both diretions with equal probability, but sine lighthouse 5 is empty, he misses the light signal oming

from lighthouse 3 with probability

1
2 . Denoting again the events that the lighthouse keeper B is wathing

to the left and to the right by bL and bR, respetively and denoting by B the event that he observes a

signal, one obtains the following onditional probabilities for B's observing a light signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise.

(24)

This situation ompletely haraterizes a probability spae. The event algebra is generated by the

following events:

A, A, B, B, am, bn, Ck

10



withm,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whih have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the atoms one an easily

alulate the probability of any events of the algebra.

Now, it is easy to see that there is a orrelation between events A and B that is between the lighthouse

keepers' observing a light signal, both in the non-onditional and onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(25)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
·
3

4
if m = R, n = L (26)

As one expets, the orrelation is due to C's signaling: Ck is a loal, (non-onspiratorial) joint ommon

ausal explanation of the orrelation (26) in the sense of (2)-(5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧Ck) = p(A|am ∧ bn′ ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Example 2. Suppose we take a oarser lustering of the swithing of the lamps, say D1 ≡ C1 ∨ C2 ∨ C3

and D2 ≡ C4. Physially, D1 is the event that any light is on in lighthouse 3, and D2 is the event that

no light is on. As one expets, for this oarser partition the ommon ause equations (2)-(5) will hold

just as well as for the partition {Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 3

4 if n = L, k = 1
1
4 · 1

4 otherwise

Thus, {Dk} is also a loal, (non-onspiratorial) joint ommon ausal explanation of the orrelation (26).
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Example 3. Now, onsider a oarser lustering of the swithings `in the wrong way': D′

1 ≡ C1 ∨ C2 ∨ C4

and D′

2 ≡ C3 mixing together lights being on with lights being o�. Contrary to the previous ase, for

this oarser partition the requirement of sreening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′

1) p(B|aR ∧ bL ∧D′

1) =
2

3
·
2

3

(Loality and no-onspiray will hold even in this ase.) Hene {D′

k} is not a loal, (non-onspiratorial)

joint ommon ausal explanation of the orrelation (26).

Now, let us onsider the spaetime diagram of the above examples depited in Fig. 6. Let N be a loally

V VA B

V VbVa C

Figure 6: Spaetime diagram of Examples 1, 2 and 3.

ausal net assoiating bounded spaetime regions to loal algebras suh that A ∈ A(VA), B ∈ A(VB),
am ∈ A(Va), bn ∈ A(Vb) and Ck, Dk, D

′

k ∈ A(VC) for all m, n and k. As shown in Setion 2, loal

ausality of the net implies that the set {Ck}�being an atomi partition loalized in the strong past

PS(VA, VB)�satis�es (2)-(4), hene providing a loal, joint ommon ausal explanation of the orrelation

(26). (No-onspiray (5), as already stressed in Setion 2, is not a onsequene of loal ausality but

is assumed in the toy model.) Thus, {Ck} is an atomi, strong, loal, non-onspiratorial joint ommon

ause system.

What about non-atomi partitions loalized in the strong past? Again, both {Dk} and {D′

k} are

loalized in PS(VA, VB), but whereas {Dk} is a ommon ause system of the orrelation (26), {D′

k} is

not. Thus, loal ausality is ompletely silent about whether a oarse-grained partition of a loal algebra

in the strong past is a ommon ause system of the orrelated events or not. This `non-aggregable'

harater of the atomi ommon ause relies heavily on the fat that it is loalized in the strong past�as

will be seen in Proposition 3 in the next Setion when ontrasted with the opposite harater of weak

ommon auses. Moreover, the satisfation of equations (2)-(5) for a given partition also does not ensure

that �ner-grained partitions will also do so (this is Simpson's paradox; see e.g. (U�nk 1999)). In this

sense the existene of a ommon ause system haraterized by the probabilisti onstraints (2)-(5) for

a given orrelation is a weaker requirement than the aommodation of the same orrelation in a loally

ausal theory. There are many more loal, non-onspiratorial joint ommon ause systems than the

atomi ones required by loally ausal theories.

Obviously, from the perspetive of the EPR-Bell senario this di�erene is not of entral importane,

sine the violation of the Bell inequalities derived from (2)-(5) also exludes atomi ommon ause systems

and hene the possibility of a loally ausal theory. But fousing simply on the logial relation between

Bell's loal ausality and the probabilisti equations (2)-(5), it is fair to say that loal ausality `justi�es'

only one of the multiple ommon ausal explanations, namely the atomi one. The oarse-grained ommon

ause system {Dk}, however, is an entirely salient physial explanation of the the orrelation (�Observers

see light signals only if some lamps are swithed on�), even if the existene of suh a ommon ausal
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explanation is not a onsequene of the aommodation of the physial senario into a loally ausal

theory.

Now we turn to the role of the other ingredient in Bell's formulation, namely the loalization of the

ommon ause in the strong past.

5 Weak ommon auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B remain in their plaes,

that is in lighthouse 2 and 4, respetively: but suppose that lighthouses 1, 3 and 5 are inhabited by

three lighthouse keepers C′
, C′′

and C′′′
, respetively, eah having the orresponding one of the three

lamps introdued in the previous Setion. (See Fig. 7.) That is suppose that now lighthouse keeper C′

A BC

1 2 3 4 5

C C

Figure 7: Lighthouses II.

in lighthouse 1 operates lamp C′
, lighthouse keeper C′′

in lighthouse 3 operates lamp C′′
and lighthouse

keeper C′′′
in lighthouse 5 operates lamp C′′′

. Suppose furthermore that the ons and o�s of the di�erent

lamps follow just the same statistis as de�ned in (18)-(22), that is p(Ck) = 1
4 for every k = 1, 2, 3, 4

(only lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).

Now, the role of lighthouse keepers A and B is just as in Setion 4: to wath the light signals arriving

at lighthouse 2 and 4, respetively. But now both an obtain a signal from both diretions. Suppose that

both A and B an only see the light signal sent from a neighboring lighthouse. That is, A annot see the

signal sent from C′′′
(say, beause it is too far or the lighthouses hide eah other); and B annot see the

signal sent from C′
. Now, again the event algebra has 16 atoms with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a onditional and non-onditional orrelation between event A and B, the detetions of light

signals in lighthouse 2 and 4, respetively, both in the non-onditional and onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(27)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 1

4 if m = R, n = L,
1
4 · 1

2 if m,n = R,
1
2 · 1

4 if m,n = L.

(28)
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As one expets, {Ck} is a loal, (non-onspiratorial) joint ommon ausal explanation of the orrelation:

p(A ∧B|am ∧ bn ∧Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Now, onsider again the spaetime diagram of Example 4 depited in Fig. 8. Here {Ck} is loalized not

V VA B

VV VC’’C’ C’’’VbVa

Figure 8: Spaetime diagram of Example 4.

in the strong past but in the weak past of the orrelated events. How do these weak ommon auses

relate to Bell's loal ausality? This question is answered in the following

Proposition 2. Let N be again a loally ausal net assoiating bounded spaetime regions to loal

algebras and let A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb), C
′

i ∈ A(VC′), C′′

j ∈ A(VC′′ ) and
C′′′

l ∈ A(VC′′′ ) for all m,n, i, j, l be atoms of the appropriate algebras with the regions as shown in Fig.

8. (In Example 4 C′

1 ≡ C′
, C′

2 ≡ C
′

and similarly for C′′

j and C′′′

l .) Then

{Cijl} ≡ {C′

i ∧ C′′

j ∧ C′′′

l }

is a weak, loal, joint ommon ause of the onditional orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (29)

in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijl) = p(A|am ∧ bn ∧ Cijl) p(B|am ∧ bn ∧Cijl) (30)

p(A|am ∧ bn ∧ Cijl) = p(A|am ∧ bn′ ∧ Cijl) (31)

p(B|am ∧ bn ∧ Cijl) = p(B|am′ ∧ bn ∧ Cijl) (32)
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Proof. The proof is straightforward. Loal ausality of the net implies that for the atoms a′im ≡
C′

i ∧ am ∈ A(VC′ ∪ Va), b
′

nl ≡ bn ∧ C′′′

l ∈ A(Vb ∪ VC′′′) and C′′

j ∈ A(VC′′ ) the following equations hold

(being analogous to loal ausality (14)-(17)):

p(A ∧Bn|a
′

im ∧ b′nl ∧ C′′

j ) = p(A|a′im ∧ b′nl ∧ C′′

j ) p(B|a′im ∧ b′nl ∧ C′′

j ) (33)

p(A|a′im ∧ b′nl ∧ C′′

j ) = p(A|a′im ∧ b′n′l′ ∧ C′′

j ) (34)

p(B|a′im ∧ b′nl ∧ C′′

j ) = p(B|a′i′m′ ∧ b′nl ∧C′′

j ) (35)

In other words, {C′′

j } is a strong, loal, joint ommon ause of the onditional orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (36)

with the new onditions a′im and b′nl. (Again, no-onspiray

p(a′im ∧ b′nl ∧ C′′

j ) = p(a′im ∧ b′nl) p(C
′′

j ) (37)

does not follow from loal ausality of the net.) But (33)-(35) are just equivalent to (30)-(32) proving

that {Cijl} is a weak, loal, joint ommon ause of the onditional orrelations (29).

As we saw before, the orrelated events A ∈ A(VA), B ∈ A(VB) in a loally ausal net always have an

atomi, strong ommon ause system C′′

j ∈ A(VC′′). Now, Proposition 2 states that this strong ommon

ause system an always be spatially extended into a weak ommon ause system by simply adding some

elements C′

i and C′′′

l from the spaelike separated regions VC′
and VC′′′

, respetively. These extra terms

will not spoil the sreening-o�: they an be freely added to the strong ommon ause. Moreover, as

will turn out from Proposition 3, these extra terms need not be atomi either: any Boolean ombination

C′ = ∨iC
′

i and C′′′ = ∨lC
′′′

l an also be added without violating the probabilisti onstraints (2)-(4).

Thus, loal ausality does not determine the loalization of the ommon ause, it is ompatible both with

strong and weak ommon auses.

But what is the exat relation between the weak and the strong ommon ause systems arising from

the loal ausality of a given net?

In Example 4 one might �nd it peuliar that even though the ommon ause {Cijl} was non-

onspiratorial (it was probabilistially independent of am and bn), still there was a `onspiray' within the

ommon ause: C′

i, C
′′

j and C′′′

l were not probabilistially independent. For example it never happened

that only lamp C′′
was swithed on. This fat does not raise any problem until one asks whether the

ommon ause is loalized at one plae: for example, as in Example 1, where all the three lamps were

loalized in lighthouse 3. But in Example 4 the ommon ause was sattered around in three di�erent

loations. It was loated in three di�erent lighthouses. The problem with suh a ommon ause that it

may well question our whole projet to provide a ommon ausal explanation for a orrelation. If the

explanans itself has a built-in orrelation, then what is the point in using it for explaining orrelations?

Can we not ome up with a ommon ausal model in whih C′

i, C
′′

j and C′′′

l are spaelike separated but

still independent, say, regulated by three independent oin tossings in lighthouse 1, 3 and 5, respetively.

Can one obtain a weak ommon ause for a given orrelation without a built-in orrelation? In the next

proposition we will answer this question in the negative.

Let {Cijl} ≡ {C′

i ∧ C′′

j ∧C′′′

l } be a weak ommon ause of a given orrelation. (Here {C′

i}, {C
′′

j } and

{C′′′

l } are general partitions of A(VC′), A(VC′′ ) and A(VC′′′ ), respetively, and not those speial ones

spei�ed in the above Examples.) Let us all {Cijl} a genuine weak ommon ause, i� {C′′

j }�the `middle

part' of {Cijl}�is not a strong ommon ause. In what follows we will show that the above mentioned

`built-in orrelation' is a neessary ondition to explain a orrelation by a genuine weak ommon ause.

In other words, we will show that if {Cijl} ≡ {C′

i ∧ C′′

j ∧C′′′

l } is a ommon ause of the orrelation (29)

and C′

i, C
′′

j and C′′′

l are probabilistially independent, then also {C′′

j } will be a ommon ause of the

orrelation.

15



Proposition 3. Suppose that {C′

i ∧ C′′

j ∧ C′′′

l } is a ommon ause of the orrelation between Am and

Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )(38)

p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Am|am ∧ bn′ ∧C′

i ∧ C′′

j ∧ C′′′

l ) (39)

p(Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (40)

p(am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(am ∧ bn) p(C
′

i ∧ C′′

j ∧ C′′′

l ) (41)

and suppose that C′

i, C
′′

j and C′′′

l are independent, that is

p(C′

i ∧ C′′

j ∧ C′′′

l ) = p(C′

i) p(C
′′

j ) p(C
′′′

l ) (42)

then {C′′

j } is also a ommon ause of the orrelation:

p(Am ∧Bn|am ∧ C′′

j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j ) (43)

p(Am|am ∧ bn ∧ C′′

j ) = p(Am|am ∧ bn′ ∧ C′′

j ) (44)

p(Bn|am ∧ bn ∧ C′′

j ) = p(Bn|am′ ∧ bn ∧ C′′

j ) (45)

p(am ∧ bn ∧ C′′

j ) = p(am ∧ bn) p(C
′′

j ) (46)

For the proof see Appendix B. Sine in Example 4 {Cijl} ≡ {C′

i ∧C′′

j ∧C′′′

l } was loalized in the weak

past and {C′′

j } was loalized in the strong past, we an interpret Proposition 3 as follows: a weak ommon

ause without a `built-in orrelation' is always `parasiti' on a strong ommon ause in the sense that

there is no other way to provide a genuine weak ommon ause for a given orrelation than to make the

spaelike separated parts of the ommon ause probabilistially dependent. In brief, there is no genuine

weak ommon ause without `built-in orrelation'.

Proposition 3 niely explains why we are ompelled to use strong ommon auses in lassial ommon

ausal explanations. If we want to avoid explaining orrelations in terms of other orrelations, we annot

apply genuine weak ommon auses. So instead of appealing to non-genuine ('parasiti') weak ommon

auses, it is more informative to use simply strong ommon auses.

The type of the ommon ause, however, is not always a matter of what we might want. As was

mentioned in the Introdution, the ommon auses that naturally arise in AQFT are weak and not

strong ommon auses. Why is that? The mathematial answer, namely that only (the possibility of)

weak ommon auses follows from the axioms of the theory (see (Rédei 1997) and also (Hofer-Szabó and

Vesernyés 2012a, b)), is not very intuitive. In searh of a more intuitive explanation, we onlude this

paper with a highly speulative question:

Question: Is the fat that ommon auses in AQFT are weak ommon auses somehow related to or a

onsequene of the following two fats? (If these latter are fats at all.)

1. In AQFT quantum states establishing a superluminal orrelation between two spaelike separated

events also establish (or `typially' establish) a `built-in orrelation' between the spaelike separated

parts of the weak ommon auses of this orrelation.

2. An analogue of Proposition 3 holds in AQFT: stating that, roughly speaking, a `built-in orrelation'

is a neessary ondition to explain a orrelation by a genuine weak ommon ause.

Were these two fats to hold, one ould understand why weak ommon auses in AQFT are genuine

ommon auses, that is why they do not redue to strong ommon auses. (For more on this see (Hofer-

Szabó and Vesernyés 2014a, b).)
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6 Conlusion and disussion

In this paper, we gave a framework onneting stohasti events and spaetime regions, the isotone net

framework of AQFT (Point 1) suh that, on a ertain spei�ation and loalization of the events in

question (Point 2), loal ausality, de�ned in this framework in an appropriate way, implies (up to no-

onspiray) the standard probabilisti haraterization of the ommon ausal explanation (Point 3). The

subtle roles of the hoie of spei�ation (atomi vs. non-atomi) and loalization (strong vs. weak)

were analyzed with respet to the relations of the spatiotemporal and probabilisti haraterizations of

the ommon ause. Spei�ally, it was shown that (i) the existene of non-atomi probabilisti ommon

auses does not follow from the aommodation of the orrelations in question into a loally ausal net; (ii)

the probabilisti haraterization of the ommon ause is also ompatible with weak ommon auses; and

(iii) genuine weak ommon auses an be provided for a given orrelation only at the ost of introduing a

`built-in orrelation' between the spaelike separated parts of the ommon ause. We also asked whether

this latter fat an help us understand how weak ommon auses arise naturally in AQFT.

Finally, we would like to brie�y omment on an ongoing debate between Henson, Rédei and San Pedro

on �omparing-distinguishing-onfounding ausality priniples� (Henson, 2005; Rédei and San Pedro,

2012; Henson, 2013a). The debate is about the status of a proposition proved in Henson (2005) laiming

that the Strong and Weak Common Cause Priniples are equivalent. Here Strong/Weak Common Cause

Priniples say that any atom of the algebra pertaining to the strong/weak past of a pair of orrelated events

is a sreener-o�. The use of atoms (there alled "full spei�ations") in the Common Cause Priniples

is inspired�just as in this paper�by Bell's work (see also Norsen, 2011), and further motivated as a

means to evade Simpson paradoxes (see also U�nk, 1999). The �rst point to make is that sine Henson's

framework onneting spaetime regions and probability spaes is not the isotone net formalism used in

this paper, and his Common Cause Priniples are not the non-onspiratorial, loal, joint ommon ausal

explanation (2)-(5) (used to explain onditional orrelations!), it is not easy to see how Henson's result

exatly relates to ours. In the isotone net formalism only bounded regions are assoiated to loal algebras,

whereas Henson's "least domains of deidability" formalism is not restrited to suh regions. Rédei and

San Pedro (2012) hallenge Henson's result on the basis of its inompatibility with some propositions in

AQFT (Rédei and Summers, 2002, Proposition 3). They laim that Henson's proof ruially depends

on the regions being allowed to be in�nite; and they question the validity of a similar proof for �nite

regions.

5

For �nite regions, suh as the regions in our approah, Henson aknowledges that his proof

"annot be modi�ed so that" the two Common Cause Priniples are equivalent; "at least not assuming

that there are no orrelations between events on spaelike setions of initial hypersurfae" (Henson, 2005,

532). In the light of our results and disussion above, we would like to interpret: (i) the �rst part of this

quote as laiming that (provided the two formalisms are equivalent) there is no ontradition between

Henson's proof and our sharp distintion between weak and strong ommon auses; and (ii) the seond

half of the quote as stating something parallel to Proposition 3. Nonetheless, it would be highly desirable

to investigate the relation between the two approahes more thoroughly.
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5

Their haraterization of "�nite", however, is defetive, sine the region they want to have as in�nite turns out to be

�nite; whih fat is revealed in Henson's (2013a) reply. Here is a better haraterization: V is �nite i�

(

I−(V ′′) \ (V ′′)
)

′′

⊇
V ′′

.
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Appendix A

Here we will show that if a set of orrelations {(Am, Bn)|m,n = 1, 2} has a loal, non-onspiratorial joint
ommon ausal explanation in the sense of (2)-(5), then the following Clauser�Horne inequalities have to

hold for any m,m′, n, n′ = 1, 2; m 6= m′, n 6= n′
:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0 (47)

The derivation of (47) from (2)-(5) is simple. It is an elementary fat of arithmeti that for any

α, α‘, β, β‘ ∈ [0, 1] the number

αβ + αβ‘ + α‘β − α‘β‘ − α− β (48)

lies in the interval [−1, 0]. Now let α, α‘, β, β‘ be the following onditional probabilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (49)

α‘ ≡ p(Am′ |am′ ∧ bn′ ∧ Ck) (50)

β ≡ p(Bn|am ∧ bn ∧ Ck) (51)

β‘ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (52)

Plugging (49)-(52) into (48) and using loality (3)-(4) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am′ ∧ bn ∧ Ck)p(Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ |am′ ∧ bn ∧ Ck)p(Bn|am′ ∧ bn ∧Ck)− p(Am′ |am′ ∧ bn′ ∧Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (53)

Using sreening-o� (2) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (54)

Finally, multiplying the above inequality by p(Ck), then summing up for the indies k and using no-

onspiray (5) one arrives at (47).

Appendix B

Here we prove Proposition 2. Suppose that {C′

i∧C′′

j ∧C′′′

l } is a ommon ause of the orrelation between

Am and Bn in the sense of (38)-(41) and suppose that C′

i, C
′′

j and C′′′

l are independent in the sense of

(42). First, observe that (41) and (42) together entail that:

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) = p(am ∧ bn) p(C
′

i)p(C
′′

j )p(C
′′′

l ) (55)
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Then C′′

j is a strong ommon ause. That is (43)-(46) hold:

p(Am ∧Bn|am ∧ bn ∧ C′′

j ) =
p(Am ∧Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Am ∧Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(38)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

(39)(40)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j )p(Bn|am ∧ bn ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

(55)
= p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j )

p(Am|am ∧ bn ∧ C′′

j ) =
p(Am ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(39)
=

∑

il

p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Am|am ∧ bn′ ∧C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn′)p(C′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn′)p(C′′

j )

(55)
=

p(Am ∧ am ∧ bn′ ∧ C′′

j )

p(am ∧ bn′ ∧C′′

j )
= p(Am|am ∧ bn′ ∧ C′′

j )

p(Bn|am ∧ bn ∧ C′′

j ) =
p(Bn ∧ am ∧ bn ∧C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(40)
=

∑

il

p(Bn|am′ ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am′ ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am′ ∧ bn)p(C′′

j )

(55)
=

p(Bn ∧ am′ ∧ bn ∧ C′′

j )

p(am′ ∧ bn ∧ C′′

j )
= p(Bn|am′ ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j ) =
∑

il

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )

(55)
=

∑

il

p(am ∧ bn ∧ C′

i ∧ C′′′

l )p(C′′

j ) = p(am ∧ bn) p(C
′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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