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Abstra
t

In this paper the relation between the standard probabilisti
 
hara
terization of the 
ommon 
ause

(used for the derivation of the Bell inequalities) and Bell's notion of lo
al 
ausality will be investigated

in the isotone net framework borrowed from algebrai
 quantum �eld theory. The logi
al role of two


omponents in Bell's de�nition will be s
rutinized; namely that the 
ommon 
ause is lo
alized in the

interse
tion of the past of the 
orrelated events; and that it provides a 
omplete spe
i�
ation of the

`beables' of this interse
tion.
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1 Introdu
tion

Standard derivations of the Bell inequalities start from a set of equations representing a probabilisti



ommon 
ausal explanation of 
orrelations. This 
ommon 
ausal explanation has three 
omponents: a

s
reening-o� 
ondition, going ba
k to Rei
henba
h's (1956) original 
hara
terization of the 
ommon 
ause,

a lo
ality 
ondition, expressing probabilisti
 independen
es between spa
elike separated measurement

out
omes and measurement settings, and a no-
onspira
y 
ondition representing another independen
y

between the 
ommon 
ause and the measurement settings. If one is asked what justi�es these probabilisti



onstraints in representing a proper 
ommon 
ausal explanation, the 
ommon answer is this: one obtains

these equations immediately if one endorses spe
ial relativity and looks at the spa
etime lo
alization of

the events in question. The aim of this paper is to understand more thoroughly this qui
k answer.

In order to see more 
learly how the spatiotemporal and probabilisti
 
hara
terization of the 
ommon


ause relate to one another, one has to be 
lear �rst of all on three points:

1. To address the problem at all, we need to have a mathemati
ally well-de�ned and physi
ally well-

motivated framework 
onne
ting events understood as elements of a probability spa
e and regions

understood as subsets of a spa
etime.

2. Having su
h a �rm framework 
onne
ting spatiotemporal and probabilisti
 entities, we need to

lo
alize events, among them 
ommon 
auses, in the spa
etime.

3. Finally, we have to be 
lear on what we mean under �justi�
ation of the probabilisti
 
ommon


ausal explanation on spatiotemporal grounds�.
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Here we brie�y 
omment on the above three points in turn.

Ad 1. Con
erning the framework, interestingly enough, there is not a wide 
hoi
e of mathemati
al stru
-

tures representing this highly important 
onne
tion between probabilisti
 and spatiotemporal entities.

Dis
ounting one approa
h (Henson, 2005; 
ommented on in the Con
lusion and dis
ussion), we are aware

of only one su
h stru
ture, the isotone net stru
ture used in algebrai
 quantum �eld theory (AQFT). In

AQFT observables are represented by (C∗
-)algebras asso
iated to bounded regions of a spa
etime. This

asso
iation is 
alled a net. A state φ is de�ned as a normalized positive linear fun
tional on the quasilo
al

algebra A whi
h is the indu
tive limit of the net. From our perspe
tive, the two important axioms of

the net are isotony and lo
al primitive 
ausality. Isotony requires that if a region V1 is 
ontained in

another region V2, then the lo
al algebra A(V1) asso
iated to V1 is a (unital C∗
-)subalgebra of A(V2).

Lo
al primitive 
ausality is the requirement that for any region V , A(V ) = A(V ′′), where V ′′
is the


ausal 
ompletion (shadow) of V . The framework of isotone nets seems to be �exible enough to be used

also for our purposes. The nets whi
h we will use in this paper will be 
lassi
al nets generated by lo
al

σ-subalgebras of a Boolean σ-algebra Σ. Thus we borrow a useful mathemati
al te
hnique from AQFT

without endorsing the operational ontology thereof.

Ad 2. Having a neat framework in hand, next we have to lo
alize events. The lo
alization of measurement

out
omes and measurement settings is fairly straightforward, but where should we lo
alize 
ommon


auses? Obviously, the 
ommon 
ause is an event C happening somewhere in the past of two 
orrelated

events, say A and B. But in whi
h past? Relativisti
ally two spa
elike separated events 
an have (at

least) two di�erent pasts. Let VA and VB denote the regions where A and B, respe
tively are lo
alized.

One 
an then de�ne the weak past of A and B as PW (VA, VB) := I−(VA) ∪ I−(VB) and the strong past

of A and B as PS(VA, VB) := I−(VA)∩ I−(VB) where I−(V ) denotes the union of the 
ausal pasts I−(x)
of every point x in V . Let us 
all the appropriate 
ommon 
auses weak and strong 
ommon 
auses,

respe
tively (see Fig. 1).
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Figure 1: Weak and the strong past of the 
orrelated events A and B.

Now, one might 
onsider the strong past as a more natural 
andidate for the lo
alization of the


ommon 
ause, and indeed plenty of 
lassi
al examples attest that the strong past is a reasonable 
hoi
e.

The 
orrelation between two fans' shouting at the same time at a football mat
h is explained by the goals

s
ored, that is by events lo
alized in the strong past of the shouts. Curiously enough, however, in AQFT


ommon 
auses are typi
ally understood as weak 
ommon 
auses. It is not di�
ult to see why.

Consider an isotone net representing a system in AQFT. Suppose that there is a (superluminal)


orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈ A(VA) and B ∈ A(VB) su
h that VA and VB are

spa
elike separated. Consider the lo
al algebra A((VA ∪ VB)
′′) asso
iated to the 
ausal 
ompletion of

VA∪VB and suppose that we �nd a 
ommon 
ause C of the 
orrelation in A((VA∪VB)
′′). In whi
h past of

VA and VB 
an C be lo
ated? Consider a region V in the weak past PW (VA, VB) whi
h is `wide' enough

to ensure that (VA ∪VB) ⊂ V ′′
. Due to isotony, A(VA ∪ VB) will be a subalgebra of A(V ′′) whi
h, due to

lo
al primitive 
ausality, is identi
al to A(V ). Thus, C will be lo
ated in V and hen
e in the weak past

of VA and VB . To sum up, isotony and lo
al primitive 
ausality together ensures that if a superluminal


orrelation has a 
ommon 
ause, then it 
an be lo
alized in the weak past.
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Can the 
ommon 
ause be lo
alized also in the strong past? It might, but if so, this will not be simply

due to the axioms of AQFT. If V is in PS(VA, VB), then isotony and lo
al primitive 
ausality does not

help to relate A(V ) to A((VA ∪ VB)
′′). One also needs to know about the dynami
s of the system. The

axioms of AQFT are 
ompletely silent about whether one 
an lo
ate the 
ommon 
ause in the strong

past. As a 
onsequen
e, weak 
ommon 
auses 
annot be ex
luded a priori from our explanatory arsenal.

Thus, we had better open leave the question regarding the apt spa
etime lo
alization of the 
ommon


ause.

Ad 3. Finally, we have to pin down the meaning of the term �justi�
ation of the probabilisti
 
ommon


ausal explanation on spatiotemporal grounds�. What we mean here is this: we need to have a prin
iple

regulating the probabilisti
 independen
es of events on the basis of their possible 
ausal 
onne
tedness

in tune with spe
ial relativity. An analogy for su
h a regulating prin
iple might help. The theory of

Bayesian nets involves two parts: a 
ausal graph representing the 
ausal relations among 
ertain events

and a probability spa
e with random variables. How are these two parts of the theory related to one

another? The bridge relating the two 
omponents is 
alled the Causal Markov Condition. It says that if

the nodes on the graph are related to one another in su
h-and-su
h a way, then the variables pertaining

to the nodes should satisfy su
h-and-su
h probabilisti
 independen
es. So the role of the Causal Markov

Condition in the theory of Bayesian nets is to 
oordinate the probabilisti
 and the graphi
al des
ription

of 
ausal relations.

A prin
iple playing a similar 
oordinating role in the 
ausal explanation of 
orrelations has been in-

trodu
ed into the literature by John S. Bell (1975/2004) and 
alled lo
al 
ausality. Lo
al 
ausality is

a relativisti
 prin
iple tailor-made to study probabilisti
 relations between events lo
alized in di�erent

spa
etime regions, among them the relation between the 
ommon 
ause and the 
orrelated events. Thus,

we will understand the term �justi�
ation of the probabilisti
 
ommon 
ausal explanation on spatiotem-

poral grounds� similarly to the Bayesian net theorist: lo
al 
ausality implies just those probabilisti


independen
es whi
h 
hara
terize the standard 
ommon 
ausal explanation.

Putting Points 1-3 together we are fa
ed with the following

Proje
t. Given the isotone net framework 
onne
ting events and spa
etime regions (Point 1), and given

the spatiotemporal lo
alization of the various measurement out
omes, measurement settings and 
ommon


auses (Point 2), one is to de�ne lo
al 
ausality in the isotone net framework su
h that the probabilisti


independen
es implied by lo
al 
ausality (Point 3) are just the ones used in the standard probabilisti



hara
terization of the 
ommon 
ausal explanation.

In brief, the a

ommodation of a set of 
orrelations within a lo
ally 
ausal net implies that for any


orrelations there exist 
ommon 
auses satisfying 
ertain probabilisti
 
onstraints.

This, however, is only the 
oarse-grained story of the paper. Reading Bell's 
areful formulation of lo
al


ausality, two requirements will stand out in the de�nition: one is atomi
ity representing the �
omplete

spe
i�
ation� of the 
ausal past of the 
orrelated events, the other is the lo
alization of the 
ommon


ause in the strong past. Our �ne-grained story will be to analyze the signi�
an
e of these ingredients

in the de�nition of lo
al 
ausality. It will turn out that the link between the spatiotemporal and the

probabilisti
 
hara
terization of the 
ommon 
ause is very sensitive to these 
omponents of the de�nition

of lo
al 
ausality, as was rightly emphasized by Bell himself. In detail, we would like to address the

following questions:

(i) What is the exa
t role of atomi
ity in the justi�
ation of the probabilisti
 
hara
terization of the


ommon 
ause by lo
al 
ausality?

(ii) Do the probabilisti
 
onstraints imposed on the notion of 
ommon 
ause restri
t the possible spa
e-

time lo
alization of the 
ommon 
ause? Do we need to 
hoose, for example, between weak and

strong 
ommon 
auses?
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(iii) How do atomi
ity and lo
alization relate to one another; whi
h of the 
ommon 
auses lo
alized in

di�erent pasts need to be atomi
?

Our paper follows a resear
h line whi
h has been followed by many. To our knowledge, the �rst to

�survey the ways in whi
h one 
ould asso
iate regions� with events su
h that it makes �plausible not

only 
ompleteness and lo
ality, but other assumptions of the Bell inequality� was Butter�eld (1989, p.

135). Also, the ne
essity to introdu
e spatiotemporal 
on
epts so as to understand the Common Cause

Prin
iple was pointed out by U�nk (1999). Common Cause Prin
iple and its role in the EPR-Bell s
enario

has been thoroughly investigated by The Bern group (Grassho�, Portmann and Wüthri
h, 2005), The

Cra
ow group (Pla
ek and Wronski, 2009), and The Budapest group (Hofer-Szabó, Rédei and Szabó,

2013, espe
ially in Chapter 8 and 9). The status of the Common Cause Prin
iple in AQFT was �rst

investigated by Rédei (1997), and further analyzed in Poin
aré 
ovariant AQFT by Rédei and Summers

(2002) and in latti
e AQFT by Hofer-Szabó and Ve
sernyés (2012a, 2013a). Butter�eld analysed the

assumptions leading to the Bell inequalities in AQFT in (Butter�eld, 1995), and the relation of the

Common Cause Prin
ipe to the Bell inequalities and to various forms of Sto
hasti
 Einstein Lo
ality in

(Butter�eld, 2007). For an earlier dis
ussion on the relation of Sto
hasti
 Einstein Lo
ality to the axioms

of AQFT, see (Rédei 1991) and (Muller and Butter�eld 1994). Hofer-Szabó and Ve
sernyés (2012b,

2013b) reassessed the assumptions of the Bell inequalities in AQFT with respe
t to non-
ommuting


ommon 
auses. In a formalism very 
lose or maybe identi
al to our isotone net formalism, Henson

(2013b) treated an important topi
, namely that giving up separability does not blo
k the derivation

of the Bell inequalities. An interesting debate between Henson, Rédei and San Pedro (Henson, 2005;

Rédei and San Pedro, 2012; Henson, 2013a) has been taking pla
e re
ently in this Journal. We will


omment on this debate in the Con
lusion and dis
ussions. For a parallel approa
h to ours, where the

assumptions of the Bell inequalities are ba
ked not by spatiotemporal 
onsiderations but by the Causal

Markov Condition, see (Glymour 2006). For the relation of Causal Markov Condition to EPR 
orrelations

see (Suárez, 2013). For a general treatment of Bell's lo
al 
ausality in lo
al physi
al theories see the

more te
hni
al (Hofer-Szabó and Ve
sernyés 2014a) or its philosopher-friendly version (Hofer-Szabó and

Ve
sernyés 2014b).

Our paper is stru
tured as follows. In Se
tion 2 the standard requirements of the probabilisti
 
ommon


ausal explanation will be re
alled. In Se
tion 3 Bell's original idea of lo
al 
ausality will be delineated

and rede�ned in the isotone net formalism. Se
tion 4 will be devoted to the �rst ingredient of Bell's

de�nition, namely atomi
ity; Se
tion 5 to the se
ond one, namely lo
alization. In order to pro
eed in

a more pi
turesque way, both in Se
tion 4 and 5 
lassi
al toy models will be introdu
ed helping us to

expli
ate the more abstra
t results. We 
on
lude the paper in Se
tion 6. Some te
hni
alities are put in

the Appendi
es.

2 Common 
ausal explanation

As mentioned above, the �rst probabilisti
 
hara
terization of the 
ommon 
ause is due to Rei
henba
h.

There is a long route leading from Rei
henba
h's original idea of the 
ommon 
ause to the sophisti
ated

probabilisti
 requirements used today in the philosophy of quantum physi
s. Here we will not detail the

steps of how the notion of 
ommon 
ause evolved and be
ame more and more suitable for 
ausal expla-

nation of the EPR-Bell s
enario (for this see (Hofer-Szabó, Rédei and Szabó, 2013), or for a short version

(Hofer-Szabó and Ve
sernyés, 2012a)). Instead we will jump dire
tly to the full-�edged probabilisti



hara
terization of the 
ommon 
ause and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement pro
edures (thought of as happening

in two spa
elike separated spa
etime regions). Suppose that ea
h measurement 
an have two out
omes and

denote the `positive' out
omes by Am and Bn and the `negative' out
omes by Am and Bn, respe
tively.

Let all these events be a

ommodated in a 
lassi
al probability spa
e (Σ, p). Suppose that there is a

4




onditional 
orrelation between the measurement out
omes in the sense that for any m ∈ M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (1)

representing that if we measure the pair am and bn, the appropriate out
omes will be 
orrelated.

The standard probabilisti
 
hara
terization of a 
ommon 
ausal explanation of the 
orrelations (1) is

the following. A partition {Ck} in Σ (that is a set of mutually ex
lusive events adding up to the unit) is

said to be a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of the 
orrelations (1) if for any

m,m′ ∈ M and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (s
reening-o�) (2)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧ Ck) (lo
ality) (3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (lo
ality) (4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-
onspira
y) (5)

The motivation behind requirements (2)-(5) is the following. S
reening-o� (2) (also 
alled as out
ome

independen
e (Shimony, 1986), 
ompleteness (Jarrett, 1984) and 
ausality (Van Fraassen, 1982)) is sim-

ply the appli
ation of Rei
henba
h's original 
hara
terization of the 
ommon 
ause as a s
reener-o� to


onditional 
orrelations: although Am and Bn are 
orrelated when 
onditioned on am and bn, they will


ease to be so, if we further 
ondition on Ck. Lo
ality (3)-(4) (also 
alled as parameter independen
e

(Shimony, 1986), lo
ality (Jarrett, 1984) and hidden lo
ality (Van Fraassen, 1982)) is the 
onstraints that

the measurement out
ome on the one side 
an depend only on the measurement 
hoi
e on the same side

and the value of the 
ommon 
ause, but not on the measurement 
hoi
e on the opposite side (for more

on this, see below). Finally, no-
onspira
y (5) is the requirement that the 
ommon 
ause system and the

measurement settings should not in�uen
e ea
h other: they should be probabilisti
ally independent.

Now, it is a well known fa
t that if a set of 
orrelations has a lo
al, non-
onspiratorial joint 
ommon


ausal explanation in the above sense, then the set of 
orrelations has to satisfy various Bell inequalities.

1

If quantum 
orrelations are interpreted as 
lassi
al 
onditional 
orrelations á la (1), these Bell inequalities

are violated, ex
luding a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of the EPR s
enario.

Our aim, however, is not to follow the route leading from the 
ommon 
ausal explanation (2)-(5) to the

Bell inequalities, but rather the route leading to the 
ommon 
ausal explanation itself. At any rate, in

the EPR-Bell literature (2)-(5) is regarded as the 
orre
t probabilisti
 
hara
terization of the 
ommon


ause. But observe that the above motivations for the probabilisti
 independen
e relations (2)-(5) are


ompletely meaningless unless we �rst de
ide on Points 1 and 2 of the Introdu
tion: that is unless we

have a prin
ipled way to asso
iate events understood as elements of the probability spa
e (Σ, p) to regions
of a given spa
etime (Point 1), and unless we lo
alize the events in question somewhere in the spa
etime

(Point 2).

So suppose that we do have su
h an asso
iation in form of an isotone netN asso
iating bounded regions

of the Minkowski spa
etime to σ-subalgebras of Σ. Suppose furthermore that we lo
alize 
ommon 
auses

in one of the two above mentioned ways, that is 
ommon 
auses are either weak or strong 
ommon 
auses.

To address Point 3 of the Introdu
tion, namely the `bridge law' between the spa
etime and probabilisti



onsiderations, we have to introdu
e one more notion, namely lo
al 
ausality. We do this in Se
tion 3.

3 Lo
al 
ausality

As mentioned in the Introdu
tion, there is an in�uential tradition a

ording to whi
h equations (2)-(5)

are 
onsequen
es of the requirement that a 
ertain set of 
orrelations are to be a

ommodated in a lo
ally


ausal theory. The 
learest formulation of su
h a theory is due to Bell himself:

1

For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality, see Appendix A.
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�Consider a theory in whi
h the assignment of values to some beables Λ implies, not ne
essarily

a parti
ular value, but a probability distribution, for another beable A. Let p(A|Λ) denote2

the probability of a parti
ular value A given parti
ular values Λ. Let A be lo
alized in a

spa
e-time region A. Let B be a se
ond beable lo
alized in a se
ond region B separated from

A in a spa
elike way. (Fig. 2.) Now my intuitive notion of lo
al 
ausality is that events in B

A B

Λ

Figure 2: Lo
al 
ausality I.

should not be `
auses' of events in A, and vi
e versa. But this does not mean that the two

sets of events should be un
orrelated, for they 
ould have 
ommon 
auses in the overlap of

their ba
kward light 
ones. It is perfe
tly intelligible then that if Λ in (6) does not 
ontain

a 
omplete re
ord of events in that overlap, it 
an be usefully supplemented by information

from region B. So in general it is expe
ted that

p(A|Λ, B) 6= p(A|Λ) (6)

However, in the parti
ular 
ase that Λ 
ontains already a 
omplete spe
i�
ation of beables in

the overlap of the light 
ones, supplementary information from region B 
ould reasonably be

expe
ted to be redundant.�

And here 
omes the de�nition of a lo
ally 
ausal theory.

�Let C denote a spe
i�
ation of all beables, of some theory, belonging to the overlap of the

ba
kward light 
ones of spa
elike regions A and B. Let a be a spe
i�
ation of some beables

A B

Ca b

Figure 3: Lo
al 
ausality II.

2

For the sake of uniformity throughout the paper, I slightly 
hanged Bell's notation and �gures.

6



from the remainder of the ba
kward light 
one of A, and B of some beables in the region B.

(See Fig. 3.) Then in a lo
ally 
ausal theory

p(A|a, C,B) = p(A|a, C) (7)

whenever both probabilities are given by the theory.� (Bell, 1975/2004, p. 54)

Now, let us spell out Bell's 
hara
terization of lo
al 
ausality in our isotone net framework. To this end

we need to `translate' a number of terms Bell uses in his formulation into our language.

First, we need to translate Bell's language using random variables in (7) into a language using events.

This is straightforward sin
e events are spe
ial random variables, namely 
hara
teristi
 fun
tions.

Se
ond, we are to interpret the term `beable'. `Beable' is Bell's neologism and is 
ontrasted to the

term `observable' used in quantum theory. �The beables of the theory are those entities in it whi
h are,

at least tentatively, to be taken seriously, as 
orresponding to something real� (Bell, 1990/2004, p. 234).

Without the 
lari�
ation of what the �beables� of a given theory really are, one 
annot even formulate

lo
al theory sin
e �there are things whi
h do go faster than light. British sovereignty is the 
lassi
al

example. When the Queen dies in London (long may it be delayed) the Prin
e of Wales, le
turing on

modern ar
hite
ture in Australia, be
omes instantaneously King� (Bell, 1990/2004, p. 236). In order to

vitiate su
h `violation' of lo
al 
ausality, the 
lari�
ation of the �beables� of a theory is indispensable.

(Cf. Norsen 2011.) What are the beables in the isotone net stru
ture? Sin
e these nets are 
lassi
al and

hen
e they represent obje
tive physi
al events, any element of any lo
al algebra will be regarded here as

a beable.

Third, translating `beable' simply as `elements of an algebra' naturally brings with it the translation

of the term `
omplete spe
i�
ation of beables' as an `atom of the algebra in question'. Here of 
ourse it

is assumed that the lo
al algebras of the net are atomi
 (whi
h is typi
ally not the 
ase in AQFT). (For

the translation of `
omplete spe
i�
ation' into atomi
ity see (Henson, 2013a, p. 1015).)

Finally, an important point. Both in his wording and also in his �gures Bell seems to take into

a

ount the whole 
ausal past of the events in question. In the formulation of lo
al 
ausality he does

not assume some kind of Markovian 
ondition rendering super�uous the in�nite tail of the past regions

below a 
ertain Cau
hy surfa
e. Other parts of Bell's text, however, speak for a more lo
al interpretation

of beable.

3

Moreover, Bell's La nouvelle 
uisine (Bell, 1990/2004), a posthumous paper on the same

subje
t provides another de�nition of lo
al 
ausality where the s
reener-o� regions are de�nitely �nite.

This de�nition is 
loser in spirit to the formalism of isotone nets sin
e here only bounded regions are

asso
iated to lo
al algebras. Therefore, we will here endorse this ��nite� reading of lo
al 
ausality. (We

will 
ome ba
k to this point in the Con
lusion and dis
ussion.)

With this `translation manual' in hand, Bell's notion of lo
al 
ausality 
an be paraphrased as follows.

De�nition 1. An isotone netN asso
iating bounded regions of the Minkowski spa
etime to σ-subalgebras

of Σ is 
alled lo
ally 
ausal, if for any 
lassi
al probability measure p on Σ4

, and for any two events

Am ∈ A(VA) and Bn ∈ A(VB) lo
alized in the spa
elike separated regions VA and VB and 
orrelating in

the probability measure p, the following holds.

Let Va, Vb and VC be three spa
etime regions (see Fig. 4) su
h that

3

Cf. �We will be parti
ularly 
on
erned with lo
al beables, those whi
h (unlike for example the total energy) 
an be

assigned to some bounded [my itali
s℄ spa
e-time region.� (Bell, 1975/2004, p. 53)

4

Or, in the more general AQFT 
ase (whi
h we do not need now): for any state φ on the quasilo
al algebra A. (Cf.

Se
tion 1 above.)
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V VA B

V VV Ca b

Figure 4: Lo
al 
ausality in isotone nets

Va ⊂ (I−(VA) \ I−(VB)) (8)

Vb ⊂ (I−(VB) \ I−(VA)) (9)

VC ⊂ PS(VA, VB) (10)

VC ⊂ PS(Va, Vb) (11)

VA ⊂ (Va ∪ VC)
′′

(12)

VB ⊂ (VC ∪ Vb)
′′

(13)

Let am, bn and Ck be any three atoms of the algebras A(Va), A(Vb) and A(VC), respe
tively, asso
iated
to the appropriate regions. Then the following 
onditional probabilisti
 independen
es hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧Ck) (14)

p(Bn|Am ∧ Ck ∧ bn) = p(Bn|bn ∧ Ck) (15)

p(Am|am ∧ Ck ∧ bn) = p(Am|am ∧Ck) (16)

p(Bn|am ∧ Ck ∧ bn) = p(Bn|bn ∧ Ck) (17)

Why four equations instead of Bell's single (7)? Observe that (15) is just the symmetri
 version

of (14) where Am and am are inter
hanged with Bn and bn. Equations (16)-(17), however, are slight

extensions of Bell's formulation. Observe that VA is spa
elike separated not only from VB but also from

Vb; moreover, VC is in the strong past of A and B, PS(VA, Vb). Therefore, 
onditioned on the 
omplete

spe
i�
ation of Va ∪VC , the same independen
e should hold between Am and bn as between Am and Bn.

Thus (16) is the appli
ation of Bell's idea to algebras A(VA) and A(Vb), and (17) to algebras A(Vb) and
A(VA). There are no more spa
elike separated regions in Fig. 4 to whi
h lo
al 
ausality 
ould be applied.

How do the above 
onsiderations relate to the probabilisti
 
hara
terization (2)-(5) of the 
ommon 
ause

delineated in the previous Se
tion?

First observe that (16)-(17) are equivalent to lo
ality (3)-(4) and from (14)-(17) s
reening-o� (2)

follows dire
tly. This proves that the probabilisti
 
hara
terization of the 
ommon 
ause by the require-

ments of s
reening-o� and lo
ality 
an be `derived' from Bell's notion of lo
al 
ausality imposed on an

isotone net asso
iating spa
etime regions and lo
al algebras.

There is, however, an important proviso. The third requirement in the de�nition of a 
ommon 
ausal

explanation, namely no-
onspira
y (5) 
annot be `derived' from Bell's notion of lo
al 
ausality in a

similar way. No-
onspira
y is an independent assumption stating that the events am ∧ bn and Ck are

probabilisti
ally independent.

8



Let us 
ome ba
k for a moment to the de�nition of a lo
ally 
ausal net. In De�nition 1 we required

(14)-(17) and hen
e (2)-(4) to hold only for the atoms am and Ck of the algebras A(Va) and A(VC),
respe
tively. Bell's original de�nition, however, seems to be more stringent; here (7) is required not only

for the atoms of A(Va) but for any element. This might suggest that our de�nition is weaker than that

of Bell. This, however, is not the 
ase. In Proposition 3 at the end of the paper we will show that in a

lo
ally 
ausal net (2)-(4) hold not only for the atomi
 events am, bn and Ck, but (given some independen
e


ondition) also for any Boolean 
ombination a := ∨m∈M ′am, b := ∨n∈N ′am (M ′ ⊆ M,N ′ ⊆ N) of the

measurement 
onditions. Note, however, that the 
ommon 
ause system Ck 
annot be `aggregated' in

this way: (2)-(4) will not ne
essarily hold for the Boolean 
ombination C := ∨k∈K′Ck (K ′ ⊆ K). This

is why it is ne
essary to demand atomi
ity (�
omplete spe
i�
ation�) in the strong past of the 
orrelated

events and su�
ient to demand it outside it. We will 
ome ba
k to this point later.

An interesting question with respe
t to AQFT is the following. What is the relation between lo
al

primitive 
ausality as standardly used in AQFT and our de�nition of lo
al 
ausality? The answer is

given in the following proposition:

Proposition 1. A 
lassi
al, atomi
 isotone net whi
h satis�es lo
al primitive 
ausality (A(V ) = A(V ′′)
for any region V ), automati
ally satis�es also lo
al 
ausality (14)-(17) for events in regions as shown in

Fig. 4.

Proof. Consider �rst (14). Due to isotony and lo
al primitive 
ausality A(VA) ⊂ A((Va ∪ VC)
′′) =

A(Va ∪ VC) and hen
e for any atom am ∧ Ck of A(Va ∪ VC): either (i) Am ∧ am ∧ Ck = 0 or (ii)

Am ∧ am ∧Ck = am ∧Ck. In 
ase (i) both sides of (14) is zero, in 
ase (ii) both sides of (14) is one. One

obtains (15)-(17) in a similar fashion.

Intuitively, isotony and lo
al primitive 
ausality together ensure that the atoms of A(Va ∪ VC) will also
be atoms of A(VA), hen
e s
reening o� every 
orrelation. For a more general proposition stating that in

any atomi
 
lassi
al or quantum isotone net satisfying lo
al primitive 
ausality lo
al 
ausality also holds,

see (Hofer-Szabó and Ve
sernyés 2014a, Prop. 1) and (Hofer-Szabó and Ve
sernyés 2014b, Se
. 3). For

relating lo
al 
ausality (Sto
hasti
 Einstein Lo
ality) to the axioms of AQFT (treated in the tradition of

the so-
alled synta
ti
al view of s
ienti�
 theories), see (Rédei 1991) and (Muller and Butter�eld 1994).

Reading Bell's formulation of lo
al 
ausality 
arefully, two ingredients of the de�nition stand out


learly. The one is that (i) the 
ommon 
ause system provides �a 
omplete spe
i�
ation of beables�,

and (ii) it is lo
ated in the �overlap of the light 
ones�. In our terminology, (i) Ck is an atom of the

appropriate algebra, (ii) it is lo
ated in the strong past of the 
orrelated events. Bell expli
itly stresses

both points, and in all the subsequent papers of Van Fraassen (1982), Jarrett (1984), Shimony (1986)

et
. trying to turn spa
etime 
onsiderations into probabilisti
 independen
es these two requirements have

been (expli
itly or impli
itly) made.

However, neither requirements are a priori 
on
erning the idea of a 
ommon 
ause. One 
an easily

make up 
ommon 
auses whi
h are either non-atomi
 or not lo
ated in the strong past of the 
orrelated

events. How do these 
ommon 
auses relate to Bell's notion of lo
al 
ausality? In the following two

Se
tions the relation between lo
al 
ausality and probabilisti
 
hara
terization of the 
ommon 
ause will

be studied �rst in the 
ase of non-atomi
 
ommon 
auses, then in 
ase of weak 
ommon 
auses. In ea
h

Se
tion toy models will be introdu
ed �rst, then the formal results will be gathered.

4 Non-atomi
 
ommon 
auses

Example 1. Consider the following toy model. There are �ve lighthouses on the o
ean in a line at equal

distan
es from one another. (See Fig. 5.) Let us 
ount them from left to right. In the middle one, that is

in lighthouse 3 the lighthouse keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy

for turning the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three lamps, or

9



A BC

1 2 3 4 5

Figure 5: Lighthouses I.

none. He never turns on the lamps in any other 
ombination. He 
hooses between these four options

with equal probability (say, by tossing two 
oins). Let us denote that a given lamp is turned on and o�

by C and C, respe
tively. Using this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C
′′

∧ C
′′′

(18)

C2 ≡ C
′

∧ C
′′

∧ C′′′
(19)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(20)

C4 ≡ C
′

∧ C
′′

∧ C
′′′

(21)

ea
h with probability

p(Ck) =
1

4
(22)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another lighthouse keeper,

A; and his role is simply to wat
h the light signals arriving from either the left or from the right, that

is from either lighthouse 1 or lighthouse 3. He does not know that lighthouse 1 is empty, therefore he

spends equal time wat
hing both neighboring lighthouses. Suppose furthermore that if he is wat
hing

to the left, he will miss the light signals 
oming from the right. This means that with probability

1
2 he

observes the signals 
oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the

event that the lighthouse keeper A is wat
hing to the left and to the right by aL and aR, respe
tively

and denoting by A the event that he observes a light signal (disregarding from whi
h lamp it 
omes), one

obtains the following 
onditional probabilities:

p(A|am ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise.

(23)

In other words, the lighthouse keeper A observes the light signal only if he is wat
hing right and there is

a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse keeper B is wat
hing in

both dire
tions with equal probability, but sin
e lighthouse 5 is empty, he misses the light signal 
oming

from lighthouse 3 with probability

1
2 . Denoting again the events that the lighthouse keeper B is wat
hing

to the left and to the right by bL and bR, respe
tively and denoting by B the event that he observes a

signal, one obtains the following 
onditional probabilities for B's observing a light signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise.

(24)

This situation 
ompletely 
hara
terizes a probability spa
e. The event algebra is generated by the

following events:

A, A, B, B, am, bn, Ck

10



withm,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whi
h have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the atoms one 
an easily


al
ulate the probability of any events of the algebra.

Now, it is easy to see that there is a 
orrelation between events A and B that is between the lighthouse

keepers' observing a light signal, both in the non-
onditional and 
onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(25)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
·
3

4
if m = R, n = L (26)

As one expe
ts, the 
orrelation is due to C's signaling: Ck is a lo
al, (non-
onspiratorial) joint 
ommon


ausal explanation of the 
orrelation (26) in the sense of (2)-(5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧Ck) = p(A|am ∧ bn′ ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Example 2. Suppose we take a 
oarser 
lustering of the swit
hing of the lamps, say D1 ≡ C1 ∨ C2 ∨ C3

and D2 ≡ C4. Physi
ally, D1 is the event that any light is on in lighthouse 3, and D2 is the event that

no light is on. As one expe
ts, for this 
oarser partition the 
ommon 
ause equations (2)-(5) will hold

just as well as for the partition {Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 3

4 if n = L, k = 1
1
4 · 1

4 otherwise

Thus, {Dk} is also a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explanation of the 
orrelation (26).
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Example 3. Now, 
onsider a 
oarser 
lustering of the swit
hings `in the wrong way': D′

1 ≡ C1 ∨ C2 ∨ C4

and D′

2 ≡ C3 mixing together lights being on with lights being o�. Contrary to the previous 
ase, for

this 
oarser partition the requirement of s
reening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′

1) p(B|aR ∧ bL ∧D′

1) =
2

3
·
2

3

(Lo
ality and no-
onspira
y will hold even in this 
ase.) Hen
e {D′

k} is not a lo
al, (non-
onspiratorial)

joint 
ommon 
ausal explanation of the 
orrelation (26).

Now, let us 
onsider the spa
etime diagram of the above examples depi
ted in Fig. 6. Let N be a lo
ally

V VA B

V VbVa C

Figure 6: Spa
etime diagram of Examples 1, 2 and 3.


ausal net asso
iating bounded spa
etime regions to lo
al algebras su
h that A ∈ A(VA), B ∈ A(VB),
am ∈ A(Va), bn ∈ A(Vb) and Ck, Dk, D

′

k ∈ A(VC) for all m, n and k. As shown in Se
tion 2, lo
al


ausality of the net implies that the set {Ck}�being an atomi
 partition lo
alized in the strong past

PS(VA, VB)�satis�es (2)-(4), hen
e providing a lo
al, joint 
ommon 
ausal explanation of the 
orrelation

(26). (No-
onspira
y (5), as already stressed in Se
tion 2, is not a 
onsequen
e of lo
al 
ausality but

is assumed in the toy model.) Thus, {Ck} is an atomi
, strong, lo
al, non-
onspiratorial joint 
ommon


ause system.

What about non-atomi
 partitions lo
alized in the strong past? Again, both {Dk} and {D′

k} are

lo
alized in PS(VA, VB), but whereas {Dk} is a 
ommon 
ause system of the 
orrelation (26), {D′

k} is

not. Thus, lo
al 
ausality is 
ompletely silent about whether a 
oarse-grained partition of a lo
al algebra

in the strong past is a 
ommon 
ause system of the 
orrelated events or not. This `non-aggregable'


hara
ter of the atomi
 
ommon 
ause relies heavily on the fa
t that it is lo
alized in the strong past�as

will be seen in Proposition 3 in the next Se
tion when 
ontrasted with the opposite 
hara
ter of weak


ommon 
auses. Moreover, the satisfa
tion of equations (2)-(5) for a given partition also does not ensure

that �ner-grained partitions will also do so (this is Simpson's paradox; see e.g. (U�nk 1999)). In this

sense the existen
e of a 
ommon 
ause system 
hara
terized by the probabilisti
 
onstraints (2)-(5) for

a given 
orrelation is a weaker requirement than the a

ommodation of the same 
orrelation in a lo
ally


ausal theory. There are many more lo
al, non-
onspiratorial joint 
ommon 
ause systems than the

atomi
 ones required by lo
ally 
ausal theories.

Obviously, from the perspe
tive of the EPR-Bell s
enario this di�eren
e is not of 
entral importan
e,

sin
e the violation of the Bell inequalities derived from (2)-(5) also ex
ludes atomi
 
ommon 
ause systems

and hen
e the possibility of a lo
ally 
ausal theory. But fo
using simply on the logi
al relation between

Bell's lo
al 
ausality and the probabilisti
 equations (2)-(5), it is fair to say that lo
al 
ausality `justi�es'

only one of the multiple 
ommon 
ausal explanations, namely the atomi
 one. The 
oarse-grained 
ommon


ause system {Dk}, however, is an entirely salient physi
al explanation of the the 
orrelation (�Observers

see light signals only if some lamps are swit
hed on�), even if the existen
e of su
h a 
ommon 
ausal

12



explanation is not a 
onsequen
e of the a

ommodation of the physi
al s
enario into a lo
ally 
ausal

theory.

Now we turn to the role of the other ingredient in Bell's formulation, namely the lo
alization of the


ommon 
ause in the strong past.

5 Weak 
ommon 
auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B remain in their pla
es,

that is in lighthouse 2 and 4, respe
tively: but suppose that lighthouses 1, 3 and 5 are inhabited by

three lighthouse keepers C′
, C′′

and C′′′
, respe
tively, ea
h having the 
orresponding one of the three

lamps introdu
ed in the previous Se
tion. (See Fig. 7.) That is suppose that now lighthouse keeper C′

A BC

1 2 3 4 5

C C

Figure 7: Lighthouses II.

in lighthouse 1 operates lamp C′
, lighthouse keeper C′′

in lighthouse 3 operates lamp C′′
and lighthouse

keeper C′′′
in lighthouse 5 operates lamp C′′′

. Suppose furthermore that the ons and o�s of the di�erent

lamps follow just the same statisti
s as de�ned in (18)-(22), that is p(Ck) = 1
4 for every k = 1, 2, 3, 4

(only lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).

Now, the role of lighthouse keepers A and B is just as in Se
tion 4: to wat
h the light signals arriving

at lighthouse 2 and 4, respe
tively. But now both 
an obtain a signal from both dire
tions. Suppose that

both A and B 
an only see the light signal sent from a neighboring lighthouse. That is, A 
annot see the

signal sent from C′′′
(say, be
ause it is too far or the lighthouses hide ea
h other); and B 
annot see the

signal sent from C′
. Now, again the event algebra has 16 atoms with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a 
onditional and non-
onditional 
orrelation between event A and B, the dete
tions of light

signals in lighthouse 2 and 4, respe
tively, both in the non-
onditional and 
onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(27)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 1

4 if m = R, n = L,
1
4 · 1

2 if m,n = R,
1
2 · 1

4 if m,n = L.

(28)
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As one expe
ts, {Ck} is a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explanation of the 
orrelation:

p(A ∧B|am ∧ bn ∧Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Now, 
onsider again the spa
etime diagram of Example 4 depi
ted in Fig. 8. Here {Ck} is lo
alized not

V VA B

VV VC’’C’ C’’’VbVa

Figure 8: Spa
etime diagram of Example 4.

in the strong past but in the weak past of the 
orrelated events. How do these weak 
ommon 
auses

relate to Bell's lo
al 
ausality? This question is answered in the following

Proposition 2. Let N be again a lo
ally 
ausal net asso
iating bounded spa
etime regions to lo
al

algebras and let A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb), C
′

i ∈ A(VC′), C′′

j ∈ A(VC′′ ) and
C′′′

l ∈ A(VC′′′ ) for all m,n, i, j, l be atoms of the appropriate algebras with the regions as shown in Fig.

8. (In Example 4 C′

1 ≡ C′
, C′

2 ≡ C
′

and similarly for C′′

j and C′′′

l .) Then

{Cijl} ≡ {C′

i ∧ C′′

j ∧ C′′′

l }

is a weak, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (29)

in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijl) = p(A|am ∧ bn ∧ Cijl) p(B|am ∧ bn ∧Cijl) (30)

p(A|am ∧ bn ∧ Cijl) = p(A|am ∧ bn′ ∧ Cijl) (31)

p(B|am ∧ bn ∧ Cijl) = p(B|am′ ∧ bn ∧ Cijl) (32)
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Proof. The proof is straightforward. Lo
al 
ausality of the net implies that for the atoms a′im ≡
C′

i ∧ am ∈ A(VC′ ∪ Va), b
′

nl ≡ bn ∧ C′′′

l ∈ A(Vb ∪ VC′′′) and C′′

j ∈ A(VC′′ ) the following equations hold

(being analogous to lo
al 
ausality (14)-(17)):

p(A ∧Bn|a
′

im ∧ b′nl ∧ C′′

j ) = p(A|a′im ∧ b′nl ∧ C′′

j ) p(B|a′im ∧ b′nl ∧ C′′

j ) (33)

p(A|a′im ∧ b′nl ∧ C′′

j ) = p(A|a′im ∧ b′n′l′ ∧ C′′

j ) (34)

p(B|a′im ∧ b′nl ∧ C′′

j ) = p(B|a′i′m′ ∧ b′nl ∧C′′

j ) (35)

In other words, {C′′

j } is a strong, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (36)

with the new 
onditions a′im and b′nl. (Again, no-
onspira
y

p(a′im ∧ b′nl ∧ C′′

j ) = p(a′im ∧ b′nl) p(C
′′

j ) (37)

does not follow from lo
al 
ausality of the net.) But (33)-(35) are just equivalent to (30)-(32) proving

that {Cijl} is a weak, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations (29).

As we saw before, the 
orrelated events A ∈ A(VA), B ∈ A(VB) in a lo
ally 
ausal net always have an

atomi
, strong 
ommon 
ause system C′′

j ∈ A(VC′′). Now, Proposition 2 states that this strong 
ommon


ause system 
an always be spatially extended into a weak 
ommon 
ause system by simply adding some

elements C′

i and C′′′

l from the spa
elike separated regions VC′
and VC′′′

, respe
tively. These extra terms

will not spoil the s
reening-o�: they 
an be freely added to the strong 
ommon 
ause. Moreover, as

will turn out from Proposition 3, these extra terms need not be atomi
 either: any Boolean 
ombination

C′ = ∨iC
′

i and C′′′ = ∨lC
′′′

l 
an also be added without violating the probabilisti
 
onstraints (2)-(4).

Thus, lo
al 
ausality does not determine the lo
alization of the 
ommon 
ause, it is 
ompatible both with

strong and weak 
ommon 
auses.

But what is the exa
t relation between the weak and the strong 
ommon 
ause systems arising from

the lo
al 
ausality of a given net?

In Example 4 one might �nd it pe
uliar that even though the 
ommon 
ause {Cijl} was non-


onspiratorial (it was probabilisti
ally independent of am and bn), still there was a `
onspira
y' within the


ommon 
ause: C′

i, C
′′

j and C′′′

l were not probabilisti
ally independent. For example it never happened

that only lamp C′′
was swit
hed on. This fa
t does not raise any problem until one asks whether the


ommon 
ause is lo
alized at one pla
e: for example, as in Example 1, where all the three lamps were

lo
alized in lighthouse 3. But in Example 4 the 
ommon 
ause was s
attered around in three di�erent

lo
ations. It was lo
ated in three di�erent lighthouses. The problem with su
h a 
ommon 
ause that it

may well question our whole proje
t to provide a 
ommon 
ausal explanation for a 
orrelation. If the

explanans itself has a built-in 
orrelation, then what is the point in using it for explaining 
orrelations?

Can we not 
ome up with a 
ommon 
ausal model in whi
h C′

i, C
′′

j and C′′′

l are spa
elike separated but

still independent, say, regulated by three independent 
oin tossings in lighthouse 1, 3 and 5, respe
tively.

Can one obtain a weak 
ommon 
ause for a given 
orrelation without a built-in 
orrelation? In the next

proposition we will answer this question in the negative.

Let {Cijl} ≡ {C′

i ∧ C′′

j ∧C′′′

l } be a weak 
ommon 
ause of a given 
orrelation. (Here {C′

i}, {C
′′

j } and

{C′′′

l } are general partitions of A(VC′), A(VC′′ ) and A(VC′′′ ), respe
tively, and not those spe
ial ones

spe
i�ed in the above Examples.) Let us 
all {Cijl} a genuine weak 
ommon 
ause, i� {C′′

j }�the `middle

part' of {Cijl}�is not a strong 
ommon 
ause. In what follows we will show that the above mentioned

`built-in 
orrelation' is a ne
essary 
ondition to explain a 
orrelation by a genuine weak 
ommon 
ause.

In other words, we will show that if {Cijl} ≡ {C′

i ∧ C′′

j ∧C′′′

l } is a 
ommon 
ause of the 
orrelation (29)

and C′

i, C
′′

j and C′′′

l are probabilisti
ally independent, then also {C′′

j } will be a 
ommon 
ause of the


orrelation.

15



Proposition 3. Suppose that {C′

i ∧ C′′

j ∧ C′′′

l } is a 
ommon 
ause of the 
orrelation between Am and

Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )(38)

p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Am|am ∧ bn′ ∧C′

i ∧ C′′

j ∧ C′′′

l ) (39)

p(Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (40)

p(am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) = p(am ∧ bn) p(C
′

i ∧ C′′

j ∧ C′′′

l ) (41)

and suppose that C′

i, C
′′

j and C′′′

l are independent, that is

p(C′

i ∧ C′′

j ∧ C′′′

l ) = p(C′

i) p(C
′′

j ) p(C
′′′

l ) (42)

then {C′′

j } is also a 
ommon 
ause of the 
orrelation:

p(Am ∧Bn|am ∧ C′′

j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j ) (43)

p(Am|am ∧ bn ∧ C′′

j ) = p(Am|am ∧ bn′ ∧ C′′

j ) (44)

p(Bn|am ∧ bn ∧ C′′

j ) = p(Bn|am′ ∧ bn ∧ C′′

j ) (45)

p(am ∧ bn ∧ C′′

j ) = p(am ∧ bn) p(C
′′

j ) (46)

For the proof see Appendix B. Sin
e in Example 4 {Cijl} ≡ {C′

i ∧C′′

j ∧C′′′

l } was lo
alized in the weak

past and {C′′

j } was lo
alized in the strong past, we 
an interpret Proposition 3 as follows: a weak 
ommon


ause without a `built-in 
orrelation' is always `parasiti
' on a strong 
ommon 
ause in the sense that

there is no other way to provide a genuine weak 
ommon 
ause for a given 
orrelation than to make the

spa
elike separated parts of the 
ommon 
ause probabilisti
ally dependent. In brief, there is no genuine

weak 
ommon 
ause without `built-in 
orrelation'.

Proposition 3 ni
ely explains why we are 
ompelled to use strong 
ommon 
auses in 
lassi
al 
ommon


ausal explanations. If we want to avoid explaining 
orrelations in terms of other 
orrelations, we 
annot

apply genuine weak 
ommon 
auses. So instead of appealing to non-genuine ('parasiti
') weak 
ommon


auses, it is more informative to use simply strong 
ommon 
auses.

The type of the 
ommon 
ause, however, is not always a matter of what we might want. As was

mentioned in the Introdu
tion, the 
ommon 
auses that naturally arise in AQFT are weak and not

strong 
ommon 
auses. Why is that? The mathemati
al answer, namely that only (the possibility of)

weak 
ommon 
auses follows from the axioms of the theory (see (Rédei 1997) and also (Hofer-Szabó and

Ve
sernyés 2012a, b)), is not very intuitive. In sear
h of a more intuitive explanation, we 
on
lude this

paper with a highly spe
ulative question:

Question: Is the fa
t that 
ommon 
auses in AQFT are weak 
ommon 
auses somehow related to or a


onsequen
e of the following two fa
ts? (If these latter are fa
ts at all.)

1. In AQFT quantum states establishing a superluminal 
orrelation between two spa
elike separated

events also establish (or `typi
ally' establish) a `built-in 
orrelation' between the spa
elike separated

parts of the weak 
ommon 
auses of this 
orrelation.

2. An analogue of Proposition 3 holds in AQFT: stating that, roughly speaking, a `built-in 
orrelation'

is a ne
essary 
ondition to explain a 
orrelation by a genuine weak 
ommon 
ause.

Were these two fa
ts to hold, one 
ould understand why weak 
ommon 
auses in AQFT are genuine


ommon 
auses, that is why they do not redu
e to strong 
ommon 
auses. (For more on this see (Hofer-

Szabó and Ve
sernyés 2014a, b).)
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6 Con
lusion and dis
ussion

In this paper, we gave a framework 
onne
ting sto
hasti
 events and spa
etime regions, the isotone net

framework of AQFT (Point 1) su
h that, on a 
ertain spe
i�
ation and lo
alization of the events in

question (Point 2), lo
al 
ausality, de�ned in this framework in an appropriate way, implies (up to no-


onspira
y) the standard probabilisti
 
hara
terization of the 
ommon 
ausal explanation (Point 3). The

subtle roles of the 
hoi
e of spe
i�
ation (atomi
 vs. non-atomi
) and lo
alization (strong vs. weak)

were analyzed with respe
t to the relations of the spatiotemporal and probabilisti
 
hara
terizations of

the 
ommon 
ause. Spe
i�
ally, it was shown that (i) the existen
e of non-atomi
 probabilisti
 
ommon


auses does not follow from the a

ommodation of the 
orrelations in question into a lo
ally 
ausal net; (ii)

the probabilisti
 
hara
terization of the 
ommon 
ause is also 
ompatible with weak 
ommon 
auses; and

(iii) genuine weak 
ommon 
auses 
an be provided for a given 
orrelation only at the 
ost of introdu
ing a

`built-in 
orrelation' between the spa
elike separated parts of the 
ommon 
ause. We also asked whether

this latter fa
t 
an help us understand how weak 
ommon 
auses arise naturally in AQFT.

Finally, we would like to brie�y 
omment on an ongoing debate between Henson, Rédei and San Pedro

on �
omparing-distinguishing-
onfounding 
ausality prin
iples� (Henson, 2005; Rédei and San Pedro,

2012; Henson, 2013a). The debate is about the status of a proposition proved in Henson (2005) 
laiming

that the Strong and Weak Common Cause Prin
iples are equivalent. Here Strong/Weak Common Cause

Prin
iples say that any atom of the algebra pertaining to the strong/weak past of a pair of 
orrelated events

is a s
reener-o�. The use of atoms (there 
alled "full spe
i�
ations") in the Common Cause Prin
iples

is inspired�just as in this paper�by Bell's work (see also Norsen, 2011), and further motivated as a

means to evade Simpson paradoxes (see also U�nk, 1999). The �rst point to make is that sin
e Henson's

framework 
onne
ting spa
etime regions and probability spa
es is not the isotone net formalism used in

this paper, and his Common Cause Prin
iples are not the non-
onspiratorial, lo
al, joint 
ommon 
ausal

explanation (2)-(5) (used to explain 
onditional 
orrelations!), it is not easy to see how Henson's result

exa
tly relates to ours. In the isotone net formalism only bounded regions are asso
iated to lo
al algebras,

whereas Henson's "least domains of de
idability" formalism is not restri
ted to su
h regions. Rédei and

San Pedro (2012) 
hallenge Henson's result on the basis of its in
ompatibility with some propositions in

AQFT (Rédei and Summers, 2002, Proposition 3). They 
laim that Henson's proof 
ru
ially depends

on the regions being allowed to be in�nite; and they question the validity of a similar proof for �nite

regions.

5

For �nite regions, su
h as the regions in our approa
h, Henson a
knowledges that his proof

"
annot be modi�ed so that" the two Common Cause Prin
iples are equivalent; "at least not assuming

that there are no 
orrelations between events on spa
elike se
tions of initial hypersurfa
e" (Henson, 2005,

532). In the light of our results and dis
ussion above, we would like to interpret: (i) the �rst part of this

quote as 
laiming that (provided the two formalisms are equivalent) there is no 
ontradi
tion between

Henson's proof and our sharp distin
tion between weak and strong 
ommon 
auses; and (ii) the se
ond

half of the quote as stating something parallel to Proposition 3. Nonetheless, it would be highly desirable

to investigate the relation between the two approa
hes more thoroughly.
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5

Their 
hara
terization of "�nite", however, is defe
tive, sin
e the region they want to have as in�nite turns out to be

�nite; whi
h fa
t is revealed in Henson's (2013a) reply. Here is a better 
hara
terization: V is �nite i�

(

I−(V ′′) \ (V ′′)
)

′′

⊇
V ′′

.
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Appendix A

Here we will show that if a set of 
orrelations {(Am, Bn)|m,n = 1, 2} has a lo
al, non-
onspiratorial joint

ommon 
ausal explanation in the sense of (2)-(5), then the following Clauser�Horne inequalities have to

hold for any m,m′, n, n′ = 1, 2; m 6= m′, n 6= n′
:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0 (47)

The derivation of (47) from (2)-(5) is simple. It is an elementary fa
t of arithmeti
 that for any

α, α‘, β, β‘ ∈ [0, 1] the number

αβ + αβ‘ + α‘β − α‘β‘ − α− β (48)

lies in the interval [−1, 0]. Now let α, α‘, β, β‘ be the following 
onditional probabilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (49)

α‘ ≡ p(Am′ |am′ ∧ bn′ ∧ Ck) (50)

β ≡ p(Bn|am ∧ bn ∧ Ck) (51)

β‘ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (52)

Plugging (49)-(52) into (48) and using lo
ality (3)-(4) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am′ ∧ bn ∧ Ck)p(Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ |am′ ∧ bn ∧ Ck)p(Bn|am′ ∧ bn ∧Ck)− p(Am′ |am′ ∧ bn′ ∧Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (53)

Using s
reening-o� (2) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (54)

Finally, multiplying the above inequality by p(Ck), then summing up for the indi
es k and using no-


onspira
y (5) one arrives at (47).

Appendix B

Here we prove Proposition 2. Suppose that {C′

i∧C′′

j ∧C′′′

l } is a 
ommon 
ause of the 
orrelation between

Am and Bn in the sense of (38)-(41) and suppose that C′

i, C
′′

j and C′′′

l are independent in the sense of

(42). First, observe that (41) and (42) together entail that:

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) = p(am ∧ bn) p(C
′

i)p(C
′′

j )p(C
′′′

l ) (55)
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Then C′′

j is a strong 
ommon 
ause. That is (43)-(46) hold:

p(Am ∧Bn|am ∧ bn ∧ C′′

j ) =
p(Am ∧Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Am ∧Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(38)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

(39)(40)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j )p(Bn|am ∧ bn ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

(55)
= p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j )

p(Am|am ∧ bn ∧ C′′

j ) =
p(Am ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(39)
=

∑

il

p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Am|am ∧ bn′ ∧C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn′)p(C′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn′)p(C′′

j )

(55)
=

p(Am ∧ am ∧ bn′ ∧ C′′

j )

p(am ∧ bn′ ∧C′′

j )
= p(Am|am ∧ bn′ ∧ C′′

j )

p(Bn|am ∧ bn ∧ C′′

j ) =
p(Bn ∧ am ∧ bn ∧C′′

j )

p(am ∧ bn ∧ C′′

j )

(55)
=

∑

il p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(40)
=

∑

il

p(Bn|am′ ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am′ ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am′ ∧ bn)p(C′′

j )

(55)
=

p(Bn ∧ am′ ∧ bn ∧ C′′

j )

p(am′ ∧ bn ∧ C′′

j )
= p(Bn|am′ ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j ) =
∑

il

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )

(55)
=

∑

il

p(am ∧ bn ∧ C′

i ∧ C′′′

l )p(C′′

j ) = p(am ∧ bn) p(C
′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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