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Abstract

In the paper the relation between the standard probabilistic characterization of the common cause
(used for the derivation of the Bell inequalities) and Bell’s notion of local causality will be investigated.
It will be shown that the probabilistic common cause follows from local causality if one accepts, as
Bell did, two assumptions concerning the common cause: first, the common cause is localized in
the intersection of the past of the correlating events; second, it provides a complete specification of
the ‘beables’ of this intersection. However, neither assumptions are a prior: requirements. In the
paper the logical role of these assumptions will be studied and it will be shown that only the second
assumption is necessary for the derivation of the probabilistic common cause from local causality.

1 Introduction

There has been a long tradition going back to Hans Reichenbach (1956) to characterize the notion
of the common cause in probabilistic terms. This probabilistic characterization of the common cause
turned out to be a fruitful mathematical tool to study causal problems in physics, among them the
possibility of hidden variable models for quantum theory. In its full-fledged form a probabilistic common
causal explanation contained not only the condition expressing Reichenbach’s characterization of the
common cause as a screener-off, but also such probabilistic requirements as locality and no-conspiracy.
Since these latter requirements had spatiotemporal connotations, the question arose as to whether there
exists a ’spatiotemporal justification’ of the probabilistic requirements imposed on the notion of the
common cause. The first step in such a justification is to establish a mathematically well-defined and
physically well-motivated relation connecting events undestood as elements of a probability space and
regions understood as subsets of a spacetime. Only after having such a relation can we ask whether a
certain probabilistic equation can be derived from a certain spacetime localization of the common cause.

What kind of spacetime localizations do we have in mind? Obviously, the common cause is an
event C' happening somewhere in the past of two correlating events, say A and B. But in which past?
Relativistically two spacetime separated events can have (at least) two different pasts. Let V4 and Vg
denote the regions where A and B, respectively are localized. Then one can define the weak past of A and
B as PW(Va,Vp) :=1_(Va)UI_(Vg) and the strong past of A and B as P5(Va, V) :=I_(Va)NI_(Vg)
where I_ (V) denotes the union of the causal pasts I_(x) of every point z in V. Let us call the appropriate
common causes weak and strong common causes, respectively (see Fig. 1).

Figure 1: Weak and the strong past of the correlating events A and B.
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Now, one might consider the strong past as a more natural candidate for the localization of the
common cause, and indeed plenty of classical examples attest that the strong past is a reasonable choice.
(But see (Butterfield, 1989) and the debate in (Henson, 2005), (Rédei and Sanpedro, 2012), (Henson,
2013).) The correlation between two fans’ shouting at the same time at a football match is explained by
the goals scored, that is by events localized in the strong past of the shouts. Curiously enough, however,
in algebraic quantum field theory common causes are typically understood as weak common causes. It is
not difficult to see why.

In algebraic quantum field theory observables are represented by (C*-)algebras associated to bounded
regions of a spacetime. This association is called a net. A state ¢ is defined as a normalized positive
linear functional on the quasilocal algebra A which is the inductive limit of the net. From our perspective,
the two important axioms of the net, are isotony and local primitive causality. Isotony requires that if a
region V7 is contained in another region Vs, then the local algebra A(V7) associated to V3 be a (unital C*-
)subalgebra of A(Vz). Local primitive causality is the requirement that for any region V, A(V) = A(V"),
where V" is the causal completion of V.

Now, suppose that there is a (superluminal) correlation, ¢(AB) # ¢(A)d(B), between events A €
A(V4) and B € A(Vp) such that V4 and Vp are spatially separated. Consider the local algebra A((V4 U
VB)") associated to the causal completion of V4 U Vg and suppose that we find a common cause C' of
the correlation in A((V4 UVp)”). In which past of V4 and Vg can C be located? Consider a region Vg
in the weak past P (V4,Vg) which is 'wide’ enough to ensure that (V4 U Vg) C V4. Due to isotony,
A(Va UVg) will be a subalgebra of A(V/Y) which, due to local primitive causality, is identical to A(Vc).
Thus, C' will be in Vi and hence in the weak past of V4 and V. To sum up, isotony and local primitive
causality ensures that if a superluminal correlation has a common cause, then it can be localized in the
weak past.

Can the common cause be localized also in the strong past? It may, but not simply due to the axioms
of algebraic quantum field theory. If Vi is in P°(V4, V), then isotony and local primitive causality does
not help to relate A(Ve) to A((VaUVE)"”). One also needs to know about the dynamics of the system. The
axioms of algebraic quantum field theory are completely silent about whether one can locate the common
cause in the strong past. As a consequence, weak common causes cannot be excluded a priori from our
explanatory arsenal. (For more on common causal explanation in algebraic quantum field theory see
(Rédei 1997), (Rédei and Summers, 2002), (Butterfield 2007) and (Hofer-Szab6 and Vecsernyés, 2012a,b,
2013a,b).)

So we have (at least) two options to localize the common cause in the past of the correlating events.
What else can we use in the derivation of the probabilistic common cause? Some principles regulating the
possible causal connection of events in accordance with the special theory of relativity. An analogy might
help. The theory of Bayesian nets consists of two components: a causal graph representing the causal
relations among certain events and a probability space with random variables. How these two parts of the
theory are related to one another? The bridge relating the two components is called the Causal Markov
Condition. It says that if the nods on the graph are related to one another in such-and-such a way, the
variables pertaining to the nods should satisfy such-and-such probabilistic independencies. So the role of
the Causal Markov Condition in the theory of Bayesian nets is to syncronize the probabilistic and the
graphic description of causal relations.

A principle playing a similar syncronizing role in the philosophy of physics has been introduced by
John S. Bell (1975/87) and has been called local causality. Local causality is a relativistic principle tailor-
made to study probabilistic relations between events localized in different spacetime regions, among them
the relation between the common cause and the correlating events. From the influential writings of Bell
on, the probabilistic notion of the common cause has been regarded as an expression of probabilistic
constraints between certain events in the spacetime imposed on by relativistic considerations. In what
follows we will show that the link between the spatiotemporal and the probabilistic characterization of
the common cause is very sensitive to two essential assumptions concerning the common cause, both
rightly emphasized by Bell himself. The first assumption is that the common cause is localized in the
strong past, the second is that it provides a complete specification of the causal past of the correlating
events.

In the paper we intend to investigate the role of these assumptions in the derivation of the probabilistic
common cause from local causality. In Section 2 the standard requirements of the probabilistic common
causal explanation will be recalled. In Section 3 Bell’s original idea of local causality will be delineated



with the emphasis on the role of the two above assumptions. In order to proceed in a more picturesque
way, in Section 4 and 5 classical toy models will be introduced which will help us in scrutinizing the role
of the two assumptions in the derivation of probabilistic common cause from local causality. We conclude
the paper in Section 6. Some technicalities are put in the Appendices.

2 Common causal explanation

As mentioned above, the first probabilistic characterization of the common cause is due to Reichenbach.
There is a long route leading from Reichenbach’s original idea of the common cause to the sophisticated
probabilistic requirements used today in the philosophy of quantum physics. For the sake of brevity, we do
not repeat here all the intermediate steps of the entire definitional process (for this see (Hofer-Szabo and
Vecsernyés, 2012a)), but jump directly to the full-fledged probabilistic characterization of the common
cause and give a brief motivation of the requirements thereafter.

Let {an,} and {b,} (m € M,n € N) be two sets of measurement procedures (thought as happening in
two spatially separated spacetime regions). Suppose that each measurement can have two outcomes and
denote the ‘positive’ outcomes by A,, and B,, and the ‘negative’ outcomes by A,, and B,,, respectively.
Let all these events be accomodated in a classical probability space (X,p). Suppose that there is a
conditional correlation between the measurement outcomes in the sense that for any m € M and n € N

P(Am A Bnlam A bn) # p(Am|am)p(Bn|bn) (1)

representing that if we set to measure the pair a,, and b,, the appropriate outcomes will correlate.

The standard probabilistic characterization of a common causal explanation of this correlation is the
following. A partition {C%} in X (that is a set of mutually exclusive events adding up to unity) is said to
be a local, non-conspiratorial joint common causal explanation of the correlations (1) if for any m,m’ € M
and n,n’ € N the following requirements hold:

p(Apm A Bplam Aby A Ck) = p(Am|am A bn A Ck) p(Bplam A by A Cl) (screening-off) (2)
P(Amlam A by A Ck) = p(Am|am A bp A Cy) (locality) (3)

p(Bnlam Nby A Cr) = p(Bpl|am: Aby A Cy) (locality) (4)

plam A by A Ck) = plam A by) p(Ch) (no-conspiracy) (5)

The motivation behind requirements (2)-(5) is the following. Screening-off (2) (also called as outcome
independence (Shimony, 1986), completeness (Jarrett, 1984) and causality (Van Fraassen, 1982)) is sim-
ply the application of Reichenbach’s original characterization of the common cause as a screener-off to
conditional correlations: although A,, and B,, are correlating conditioned on a,, and b, they will cease
to do so, if we further condition on Cx. Locality (3)-(4) (also called as parameter independence (Shimony,
1986), locality (Jarrett, 1984) and hidden locality (Van Fraassen, 1982)) is the constraints that the mea-
surement outcome on the one side can depend only on the measurement choice on the same side and
the value of the common cause, but not on the measurement choice on the opposite side (for more on
that see below). Finally, no-conspiracy (5) is the requirement that the common cause system and the
measurement choices should not influence each other, they should be probabilistically independent.

Now, it is a well known fact that if a set of correlations has a local, non-conspiratorial joint common
causal explanation in the above sense, then the set of correlations has to satisfy various Bell inequalities.
(For the derivation of one of the simplest Bell inequality, the Clauser—Horne inequality see Appendix A.)
In the EPR situation (if quantum correlations are interpreted as classical conditional correlation ald (1))
these Bell inequalities are violated excluding a local, non-conspiratorial joint common causal explanation
of EPR correlations.

Thus, in the EPR-Bell literature (2)-(5) is regarded as the correct probabilistic characterization of the
common cause. But observe that the above relativistic motivations for the probabilistic independence
relations (2)-(5) are completely meaningless until we do not localize the common cause on the spacetime,
or more generally, until we have no principled way to associate events understood as elements of the
probability space (3, p) to regions of a given spacetime.

Suppose that we do have such an association, that is suppose we have an isotone net 91 associating
bounded regions of the Minkowski spacetime to o-subalgebras of 3. We do not assume that local primitive



causality also holds. (For more on the relation of local primitive causality and Bell’s local causality see
(Hofer-Szabo and Vecsernyés, 2014).) What else is needed for (2)-(5) to represent a legitimate probabilistic
characterization of a common cause? Does Bell’s notion of local causality, for instance, help us to arrive
at (2)-(5)? Or turning the question around, do the probabilistic constraints imposed on the notion of
common cause restrict also the possible spacetime localization of the common cause? Do we need to
choose between weak and strong common causes for example? To address these questions first recall the
notion of local causality.

3 Local causality

As mentioned in the Introduction, there is an influential tradition according to which equations (2)-(5)
are consequences of the requirement that a certain set of correlations are to be accomodated in a locally
causal theory. The clearest formulation of such a theory is due to Bell himself:

“Consider a theory in which the assignment of values to some beables A implies, not necessarily
a particular value, but a probability distribution, for another beable A. Let p(A|A) denote!
the probability of a particular value A given particular values A. Let A be localized in a
space-time region A. Let B be a second beable localized in a second region B separated from
A in a spacelike way. (Fig. 2.) Now my intuitive notion of local causality is that events in B

Figure 2: Local causality I.

should not be ‘causes’ of events in A, and vice versa. But this does not mean that the two
sets of events should be uncorrelated, for they could have common causes in the overlap of
their backward light cones. It is perfectly intelligible then that if A in (6) does not contain
a complete record of events in that overlap, it can be usefully supplemented by information
from region B. So in general it is expected that

p(AlA, B) # p(A|A) (6)

However, in the particular case that A contains already a complete specification of beables in
the overlap of the light cones, supplementary information from region B could reasonably be
expected to be redundant.”

And here comes the definition of a locally causal theory.

“Let C' denote a specification of all beables, of some theory, belonging to the overlap of the
backward light cones of spacelike regions A and B. Let a be a specification of some beables
from the remainder of the backward light cone of A, and B of some beables in the region B.
(See Fig. 3.) Then in a locally causal theory

p(A|a, CvB) :p(A|a7 C) (7)

whenever both probabilities are given by the theory.” (Bell, 1987, p. 54)

IFor the sake of uniformity throughout the paper I slightly changed Bell’s denotation and figures.



Figure 3: Local causality II.

Now, let us spell out Bell’s characterization of local causality using the notion of net introduced above.
To do this first we should translate Bell’s language using random variables in (7) into a language using
events. Second, the term ’beables in a certain spacetime region’ is to be replaced by ’events in an algebra
supported in a certain spacetime region’ and ’complete specification’ by ’set of atoms of the algebra in
question’ (assuming that local algebras are atomic). (For more on Bell’s local causality and the role of
"beables’ see (Norsen 2011); for the translation of ’complete specification’ into atomicity see (Henson,
2013).) Finally, instead of considering the whole causal past of an event we will consider only a suitable
Cauchy segment of this past.
Then Bell’s notion of local causality can be paraphrased as follows.

Definition 1. An isotone net 91 associating bounded regions of the Minkowski spacetime to o-subalgebras
of ¥ is called locally causal, if for any classical probability measure p (or, more generally, state ¢) on X,
and for any two events A,, € A(V4) and B,, € A(Vp) localized in the spatially separated regions V4 and
Vi and correlating in the probability measure p, and for every Cauchy surface S (lying past to V4 and
Vi), the following is true:

Let V,, Vo and Vj, be three open neighborhoods of SN(1_(Va)\I_(Vg)), SNP%(Va, Vg) and SN(I_(VB)\
I_(Va)), respectively (see Fig. 4) and let A(V,), A(Ve) and A(V;) the associated local algebras. Let ay,

Figure 4: Local causality III.

and b, be events in A(V,) and A(V;), respectively and let Cy be an atom in A(Ve). Then the following
conditional probabilistic independencies hold:

p(Amlam NCy ABy) = p(Am|am A Cy) (8)
P(BulAm ANCr Abyp) = p(Bulby A Ck) 9)
p(Amlam ACr Aby) = p(Amlam A Ck) (10)
p(Brlam ACr Aby) = p(Byl|b, A Cy) (11)

Why four equations instead of Bell’s single (7)7 Observe that (9) is just the symmetric version of (8)
where A,,, and ay, are interchanged with B,, and b,,. Equations (10)-(11), however, are slight extensions



of Bell’s formulation. Observe that V4 is spacelike separated not only from Vp but also from Vj,, and
therefore the same conditional independence should hold between A,, and b, as between A,, and B,.
Thus (10) is the application of Bell’s idea to algebras A(Vy4) and A(V}), and (11) to algebras A(V}) and
A(V4). There are no more spatially separated regions in Fig. 4 to which local causality could be applied.

How the above considerations relate to the probabilistic characterization (2)-(5) of the common cause
delineated in the previous Section?

First observe that (10)-(11) are equivalent to locality (3)-(4) and from (8)-(11) screening-off (2) follows
directly. This proves that the probabilistic characterization of the common cause by the requirements
of screening-off and locality can be ’derived’ from Bell’s notion of local causality imposed on an isotone
net associating spacetime regions and local albegras. We note, however, that the third requirement in
the definition of a local, non-conspiratorial joint common causal explanation, namely no-conspiracy (5)
cannot be ’derived’ from Bell’s notion of local causality in a similar way. No-conspiracy is an independent
assumption stating that the events a,, € A(V,), Cr € A(Ve) and b, € A(V4) are probabilistically
independent.

So far, so good. But here comes the point. To obtain this deductive relation between the probabilistic
characterization of the common cause and Bell’s notion of local causality the following two assumptions
have been made: the common cause system provides “a complete specification of beables”, and it is
located in the “overlap of the light cones”. In other words, one assumed that (i) Cy is located in the
strong past of the correlating events, and (ii) it is an atom of the appropriate algebra. As we saw, Bell
explicitly stresses both assumptions, and in all the subsequent papers of Van Fraassen (1982), Jarrett
(1984), Shimony (1986) etc. trying to turn spacetime considerations into probabilistic independencies
these two assumptions have been (explicitly or implicitly) made.

However, neither assumptions are a priori requirements concerning the common cause. One can easily
make up common causes which are either non-atomic or not located in the strong past of the correlating
events. How these common causes relate to Bell’s notion of local causality? In the following two Sections
the relation between local causality and probabilistic characterization of the common cause will be studied
in the lack of these two assumptions. First toy models will be introduced in which the two assumptions
are violated, then the formal results will be gathered.

4 Non-atomic common causes

Ezxample 1. Consider the following toy model. There are five lighthouses on the ocean in a line of equal
distance from each other. (See Fig. 5.) Let us count them from left to right. In the middle one, that is

Figure 5: Lighthouses I.

in lighthouse 3 the lighthouse keeper C has three lamps, C’, C” and C"”. He has the following strategy
to turn the lamps on: either he turns on only the lamp C’, or only lamp C"”, or all three lamps, or none.
He never turns on the lamps in any other combination. He chooses between these four options with equal
probability (say tossing two coins). Let us denote that a given lamp is turned on and off by C' and C,



respectively. Using this notation the four possible state of the lamps are the following:

¢, = cac’' AT’ (12)
Co = CAC AC” (13)
Cy = C'AC"AC" (14)
c, = caC' AT (15)
each with probability
PO =5 (16)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another lighthouse keeper,
A and his role is simply to watch the light signals arriving from either the left or from the right that
is from either lighthouse 1 or lighthouse 3. He does not know that lighthouse 1 is empty, therefore he
spends equal time watching both neighboring lighthouses. Suppose furthermore that if he is watching
left, he will miss the light signals coming from the right. This means that with probability % he observes
the signals coming from lighthouse 3 and with probability % he will miss them. Denoting the event that
the lighthouse keeper A is watching to the left and to the right by ar and ag, respectively and denoting
by A the event that he observes a light signal (disregarding from which lamp), one obtains the following
conditional probabilities:

1 itm=Rk=1,23

0 otherwise (17)

p(Alam A Cy) = {
In other words, the lighthouse keeper A observes the light signal only if he is watching right and there is
a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse keeper B is watching in
both directions with equal probability, but since lighthouse 5 is empty, he misses the light signal coming
from lighthouse 3 with probability % Denoting again the events that the lighthouse keeper B is watching
to the left and to the right by by, and bg, respectively and denoting by B the event that he observes a
signal, one obtains the following conditional probabilities for B’s observing a light signal:

1 ifn=Lk=1,23

P(Blbn A Cr) = { 0 otherwise (18)
This situation completely characterizes a probability space. The event algebra is generated by the
following events:

Au Za -87 Eu Am, bn7 Ck
with m,n =L, Rand k = 1,2, 3,4. The event algebra has 64 atoms, 16 of which have non-zero probability:

1
PANBAG Nbu ACY) =2 ifm=Rn=L k=123
_ 1
p(A/\B/\am/\bn/\C’k):E ifmn=R, k=1,2,3
_ 1
p(A/\B/\am/\bn/\C’k):E ifmn="Lk=1,2,3
— 1 . m=Ln=R, k=1,2,3,
p(A/\B/\am/\bn/\C’k)—E 1f{01“/€=4

and the remaining 48 are of probability zero. By means of the probability of the atoms one can easily
calculate the probability of any events of the algebra.

Now, it is easy to see that there is a correlation between events A and B that is between the lighthouse
keepers’ observing a light signal, both in the non-conditional and conditional sense:

S _pANB) # p(A)p(B)= 2 (19)
g =p(AABlam Aby) #  p(Alan,) p(B|by,) = g . Z itm=R,n=1L (20)



As one expects, the correlation is due to C’s signaling: Cj is a local, (non-conspiratorial) joint common
causal explanation of the correlation (20) in the sense of (2)-(5):

(AN Blag Aby A Cy) = p(Alam A by A Cr) p(Blam Aby ACy) = {(1) ffm=Rn=Lk=123
p(Alam A by A Ck) = p(Alam ANbp ACk) = {(1) gt}z;ifékzlﬂﬂ
P(Blam Abn ACk) = p(Bulams Ab, ACy) = {(1) i)ftge?WiLs,ekzl,z,?,
Plam A b ACk) = plam Aby) p(Cr) = i . %

Ezample 2. Suppose we take a coarser clustering of the switching of the lamps, say D1 = Cy VvV Cy V Cs
and Dy = (4. Physically, D; is the event that any light is on in lighthouse 3, and D5 is the event that
no light is on. As one expects, for this coarser partition (2)-(5) will hold just as good as for the partition

{Cr}:

P(A A Blam A by A D) = p(Alam A by A Di) p(Blam Abn A Dy) = { (1) ioftlrlrérjvi]:(;n:l;’k: 1
p(Alam Abp A Dy) = p(Alam A b A Di) = { é ftﬁl;fg et
p(Blam Abp A Dy) = p(Bn|am: Abn A Dy) = { (1) i)ft}?ejwjizs,ek -
p(am Abn A Dy) = plam Abp) p(Dy) = { i i ic)ft}?erzwi,ek -

Thus, {Dx} is also a local, (non-conspiratorial) joint common causal explanation of the correlation (20).

Ezample 8. Now, consider a coarser clustering of the switchings ’in the wrong way’: D] = C; V Cy V Cy
and D} = C3 mixing together light ons and light offs. Contrary to the previous case, for this coarser
partition the requirement of screening-off is violated. For example:

2
3 :p(A/\B|aR/\bL /\Dll) #+ p(A|aR/\bL /\Di)p(B|aR/\bL /\Di) =

wl o
wl N

(Locality and no-conspiracy will hold even in this case.) Hence {D}.} is not a local, (non-conspiratorial)
joint common causal explanation of the correlation (20).

Now, let us consider the spacetime diagram of the above examples which is depicted in Fig. 6. Let 91

Figure 6: Spacetime diagram of Examples 1, 2 and 3.

be a locally causal net associating bounded spacetime regions to local algebras such that A € A(Vy4),
B e A(VB), am € A(V,), by, € A(Wy) and Cy, Dy, D}, € A(Ve) for all m, n and k. As shown in Section 2,



local causality of the net implies that the set {C) }—being an atomic partition localized in the strong past
P35 (Va, Vig)—satisfies (2)-(4), hence providing a local, joint common causal explanation of the correlation
(20). (No-conspiracy (5), as already stressed above, is not a consequence of local causality but assumed
in the model.) Thus, {C)} is an atomic, strong, local, non-conspiratorial joint common cause system.

What about non-atomic partitions localized in the strong past? As Examples 2 and 3 attest local
causality has no bearing on this case. {Dy} and {D}} are all localized in P¥(V4, V), but whereas { Dy}
is a common cause system of the correlation (20), {Dj} is not. This leads to the following

Moral 1. The probabilistic characterization of a local, joint common cause system {C},} via (2)-(4) cannot
be justified by Bell’s local causality applied to a net associating spacetime regions to local algebras, if
{Cy} is a non-atomic partition of A(V¢).

Thus, a coarse-grained (non-atomic) probabilistic common causal explanation of a correlation cannot be
backed by Bell’s spatiotemporal considerations on local causality. In the next Section we turn to the role
of the other premise, namely the localization of the common cause in the strong past.

5 Weak common causes

Ezxample 4. Now, let us modify the population of the lighthouses. Let A and B remain in their places
that is in lighthouse 2 and 4, respectively, but suppose that lighthouses 1, 3 and 5 are inhabitated by
three lighthouse keepers C’, C”" and C"”, respectively, each having the appropriate one of the three lamps
introduced in the previous Section. See Fig. 7.) That is suppose that now lighthouse keeper C’ in

NN

Figure 7: Lighthouses II.

lighthouse 1 operates lamp C’, lighthouse keeper C” in lighthouse 3 operates lamp C” and lighthouse
keeper C"” in lighthouse 5 operates lamp C””. Suppose furthermore that the ons and offs of the different
lamps follow just the same statistics defined in (12)-(16), that is p(Cx) = 1 for every k = 1,2,3,4 (only
lamp C’ is on, only lamp C"”; all three lamps are on, none is on).

Now, the role of lighthouse keepers A and B is just as above to watch the light signals arriving at
lighthouse 2 and 4, respectively. But now both can obtain a signal from both directions. Suppose that
both A and B can only see the light signal sent from a neighboring lighthouse that is A cannot see the
signal sent from C" (say, it is two far or the lighthouses hide each other) and B cannot see the signal
sent from C’. Now, again the event algebra has 16 atoms with non-zero probability:

1
P(AANBA ap Aoy ACr) = — ifk=3

16
_ 1
p(A/\B/\am/\bn/\C'k):E ifm=L k=1
_ 1
p(A/\B/\am/\bn/\Ck)zl—G ifn=R, k=2
1 m=R, k=1,
p(ANBA @y Aby ACy) = — if orn=1L,k=2,
16 B
ork=4

and there is a conditional and non-conditional correlation between event A and B, the detections of light



signals in lighthouse 2 and 4, respectively both in the non-conditional and conditional sense:

1 3 3
T=PANB) # pA)p(B) =22 1)
1 %% ifm=R,n=1L,
Z :p(A/\B|am/\bn) # p(A|am)p(B|bn): % : ? if m,n =R, (22)
As one expects, {Cy} is a local, (non-conspiratorial) joint common causal explanation of the correlation:
1 ftm=Rn=Lk=3
P(A A Blam A by A Cy) = p(Alam A by A C) p(Blam ANbpy ACl) = { 0 otherwise
1 ifm=Lk=1
p(Alam Abp ACk) = p(Alam Abp ACy) = 1 ifk=3
0 otherwise
1 ifm=Rk=2
p(Blam Aby A Ck) = p(Bplam ANbpy ANCi) = 1 ifk=3
0 otherwise
1 1
p(am Aby AC) = plam Abp) p(Cr) = 11

Now, consider again the spacetime diagram of Example 4 depicted in Fig. 8. Here {C}} is localized not

Figure 8: Spacetime diagram of Example 4.

in the strong past but in the weak past of the correlating events. How these weak common causes relate
to Bell’s local causality? This question is answered in the following

Proposition 1. Let 91 be again a locally causal net associating bounded spacetime regions to local

algebras such that A € A(V4), B € A(Vp), am € A(Va), b, € A(V,) for all m and n, and for the
partition

{Cijp} ={CIANC] ANC"}

(where C] = C" and C} = ¢’ and similarly for CYand C)") C} € A(Ver), CF € A(Ver) and C)" € A(Vor)
for all 4, j and l. Then {Cj;i} is a weak, local, joint common cause of the conditional correlations

p(A/\B|am /\bn) ;Ep(A|am)p(B|bn) (23)

in the sense that the following equations hold:

(AN Bylam Aby ACije) = p(Alam Abp A Ciji) p(Blam A by A Ciji) (24)
p(A|CLm A bn A Oljk) = p(A|am A bn/ A Cijk) (25)
p(B|am A b, N\ Cijk) = p(B|am/ A b, N\ Cijk) (26)
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Proof. Since {C7} is an atomic partition localized in the strong past P*(Va, Vp), local causality of the
net implies that for any event a},, = C/ A ay, € A(Ver UV,), b, = b, ACY" € A(V, U Ve ) and atomic
event C7 the following will hold:

P(AA Bulagy, Aoy ACY) = p(Alag, Ay ACY) p(Blag, Aby, ACY) (27)
p(Alag, AN ACY) = p(Alai, Abyy ACY) (28)
p(B|a‘;m A b;zl A C]”) = p(B|a‘;/m/ A b:zl A O_;/) (29)
In other words, {C'} is a strong, local, joint common cause of the conditional correlations
P(A A Blaj, Aby) # p(Alag,) p(Blby,) (30)
with the new conditions af,, and b/,. (Again, no-conspiracy
P(@y N ACY) = Pl A byy) p(CF) (31)

does not follow from local causality of the net.) But (27)-(29) are just equivalent to (32)-(34) proving
that {Ci;k} is a weak, local, joint common cause of the conditional correlations (23). =

This leads to

Moral 2. The probabilistic characterization of a local, joint common cause system {Cj;i} via (2)-(4)
can be justified by Bell’s local causality applied to a net associating spacetime regions to local algebras,
if {Cijr} ={C; NC7 ANC["} is a weak common cause (C] € A(Ver), CF € A(Ver) and Cf" € A(Ver))
and C7 is an atomic partition of A(Ver).

In the Example 4 one might have found it peculiar that although the common cause {C;;;} was non-
conspiratorial (it was probabilistically independent of a,, and b,,), still there was a ’conspiracy’ within the
common cause: C;, C/ and C]"” were not probabilistically independent. For example it never happened
that only lamp C” was sw1tched on. This fact does not raise any problem until the common cause is
localized at one place, as in Example 1, where all the three lamps were localized in lighthouse 3. But in
Example 4 the common cause was scattered around in three different locations. It was located in three
different lighthouses. The problem with such a common cause that it may well question our whole project
to provide a common causal explanation for a correlation. If the exzplanans itself has a built-in correlation,
then what is the point of using it for explaining correlations? Can we not come up with a common causal
model in which C}, C7 and Cj" are spatially separated but still independent, say, regulated by three
independent coin tossings in lighthouse 1, 3 and 5, respectively. Can one obtain a weak common cause
for a given correlation without a built-in correlation?

Let {Cijr} = {C; A C] N CJ"} be a weak common cause of a given correlation. (Here {C;},{C}'}
and {C]"} are general partitions of A(Ver), A(Ver) and A(Ver), respectively, and not those specified in
the above Examples.) Let us call {Cyj} a genuine weak common cause, iff {C}}—the 'middle part’ of
{Ci;k}—is not a strong common cause. In what follows we will show that the above mentioned ‘built-in
correlation’ is a necessary condition to explain a correlation by a genuine weak common cause. In other
words, we will show that if {C;;,} = {C] A CY A C]"} is a common cause of the correlation (23) and Cj,
C?7 and C}" are probabilistically independent, then also {C}'} will be a common cause of the correlation.

Proposition 2. Suppose that {C] A C7 A C]"} is a common cause of the correlation between A,, and
B,, in the sense that the following equations hold:

P(Am A Bplam Ab, AC;ACYACYY) P(Am|am Abn AC; ACY ANCY) p(Brlam Abn ACi ACY A (32)
p(Amlam Nop ANC;ANCT ANCYY) (A |am A b ACLANCY ANCT) (33)
P(Bnlam Aoy NCiNCY NC]") = p(By |am/ Nby NCiNCT NCT") (34)
pam ANbp ACLA O” ANC") = plam Abn)p(C; ACY A C”’) (35)

and suppose that C;, C/ and C}" are independent that is

p(CIACTNCT) = p(C})p(CY) p(CT") (36)
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then {C7} is also a common cause the correlation:

P(Am A Bylam A CY) P(Amam A by A CY) p(Bplam Aby ACY) (37)
p(Am|am Abn A C]’/) — p(Am|am Aby A C}l) (38)
P(Bulam A by ACY) P(Bulam: Aby ACY) (39)

Plam Abu ANCY) = plam Ab,)p(CY) (40)

For the proof see Appendix B. Since in Example 4 {C;;x} = {C] A C7 A C}"} was localized in the
weak past and {C7'} was localized in the strong past, we can interpret Proposition 2 as follows: a weak
common cause with no ’built-in correlation’ is always parasitic on a strong common cause in the sense
that there is no other way to provide a genuine weak common cause for a given correlation, then to
make the spatially separated parts of the common cause probabilistically dependent. In brief, there is no
genuine weak common cause without ’built-in correlation’.

6 Conclusion

The probabilistic characterization of the common cause can be justified via Bell’s notion of local causality
if two assumptions concerning the common cause are made: first, the common cause is localized in the
strong past of the correlating events; second, it provides a complete specification of the ‘beables’ of this
past. In the paper it was argued that only the second assumption, that is complete specification, is
necessary for the derivation of the probabilistic common cause from local causality. Thus, coarse-grained
common causal explanations cannot be rationalized in this way. (Whether it can be justified in other
ways, based on non-spatiotemporal considerations, is not investigated here. For a justification via Causal
Markov Condition see (Glymour 2006).)

Concerning the first assumption, namely localization in the strong past, it was shown that genuine
weak common causes can be provided for a given correlation only at the cost of introducing a ’built-in
correlation’ between the spatially separated parts of the common cause.

We conclude the paper with a highly speculative question. As it was shown in the Introduction, the
common causes that naturally arise in algebraic quantum field theory are weak and not strong common
causes.

Question: Is this fact somehow related to or a consequence of the following two facts? (If they are facts
at all.)

1. In algebraic quantum field theory quantum states establishing a superluminal correlation between
two spacelike separated events, also establish (or ’typically’ establish) a ‘built-in correlation’ between
the spacelike separated parts of the weak common causes of this correlation.

2. An analoge of Proposition 2 holds in algebraic quantum field theory stating that a ‘built-in corre-
lation’ is a necessary condition to explain a correlation by a genuine weak common cause.

Were these two facts to hold, one could understand why weak common causes in algebraic quantum field
theory are geniune common causes that is why they do not reduce to strong common causes. (For more
on this see (Hofer-Szabo6 and Vecsernyés, 2014).)
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Appendix A

Here we will show that if a set of correlations {(A,,, B,)|m,n = 1,2} has a local, non-conspiratorial joint
common causal explanation in the sense of (2)-(5), then the following Clauser—Horne inequalities have to
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hold for any m,m’,n,n' =1,2; m #m/,n # n':

-1 < p(Am A Bn|am A bn) +p(Am A Bn/|am A bn’) +p(Am/ A Bn|am/ A bn)
_p(Am/ N By |am/ A bn’) - p(Am|0Jm A bn) - p(Bn|am A bn) <0 (41)

The derivation of (41) from (2)-(5) is simple. It is an elementary fact of arithmetic that for any
a,d/, 3,8 €[0,1] the number

aB+af +dp—d'f —a—-3 (42)

lies in the interval [—1,0]. Now let «, @, 8, 8" be the following conditional probabilities:

a = p(Aml|am Aby AC) (43)
o = p(Aplam Abp ACy) (44)
B8 = p(Bnlam Ab, AC) (45)
B = p(Bplam: Abp ACy) (46)

Plugging (43)-(46) into (42) and using locality (3)-(4) one obtains

—1 < p(Ap|am Abp A C)p(Bplam A by A Ck) + p(Am|am: Abp A Cr)p(Bpr|am: A by A C)
+p(Ap|am: A by A Cr)p(Brlam: Abp A Ck) — p(Ams|am: A bpr A Cr)p(Bps|ams A bpr A C)
—p(Amlam Aby A Ck) — p(Bp|am ANbpy ACk) <0 (47)

Using screening-off (2) one obtains

—-1< p(Am A Bn|am A b, A Ok) —|—p(Am A\ Bn/|am/ A b, A Ok)
+p(Am/ A\ Bn|am/ A b, N\ Ck) — p(Am/ A\ Bn/|am/ Aby N Ok)
—p(Am|am A bp A Cr) — p(Bnlam ANby ACE) <0 (48)

Finally, multiplying the above inequality by p(Cy), then summing up for the indices k and using no-
conspiracy (5) one arrives at (41).

Appendix B

Here we prove Proposition 1. Suppose that {C; ACY AC]"} is a common cause of the correlation between
Am and B, in the sense of (32)-(35) and suppose that Cj, C/ and C}” are independent in the sense of

(36). First, observe that (35) and (36) together entail that:

plam Ao NCIACTANCY) = plam Abn) p(Ci)p(CY)p(C]") (49)
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Then C7 is a strong common cause that is (37)-(40) hold:
P(Am A Bp Aty Nbp ACY)
plam A b ACY)
(49) Eil P(Am A Brlam A b, ACi A OJ/'/ A C")p(am A bn)p(cz{)p(cj/'/)p(clm)
Plam AbD(CT)

P(Am A Bplam A b ACY) =

B b Anmlam Abu ACLACY A CIP(Bulam Abu ACLACY A CLP(CHP(C)
il
C ST b Al A ACLA Cp(Balam A by ACY A CIp(CP(CL)
il
(49)

P(Am|am A b A CY) p(Bulam A bn A CY)
P(Am A am Aby A C;’)
p(am Aby A CJ’-’)
(49) Yo P(Amlam AN b ANCEACT ACT )p(am A ba)p(Ci)p(CY)p(CY")
p(am Aby)p(CY)
ST (At Abu ACLACY A CI)P(CHP(CY)
l
> P(Amlam N b ANCENCY NG )p(am A bn)p(Cp(CF )p(CT")
p(am A bn’)p(CJ//)
(49) P(Am A am Abpr A C;’) 7 "
p(Bn A am Aby A C;’)
pam Abn ACY)
(9)  LaP(Balam Aba ACTACH NG )p(am A ba)p(CHP(CT)P(CT")
Pam A bn)p(CY)

> p(Bulans Aby NCIACT A C)p(CP(CL")
il
S5 D(Bulams Aby ACLACY A CPplam: A by )p(CHP(CY)p(CY")
plam: A ba)p(CY)

= p(Bplam Nby ACY)

p(Amlam Abn ACY) =

P(Bnlam A by ACY) =

(42) D(Bn A s Abp A C]//)
pam Aby ACY)
Plam Abp ACY) = Y plam Aby AC;ACY ACTY)
il

> p(am Aby AC]AC!)P(CY) = plam A bn) p(C})
il

(49)
where the numbers over the equation signs refer to the equation used at that step.
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