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Abstra
t

In the paper the relation between the standard probabilisti
 
hara
terization of the 
ommon 
ause

(used for the derivation of the Bell inequalities) and Bell's notion of lo
al 
ausality will be investigated.

It will be shown that the probabilisti
 
ommon 
ause follows from lo
al 
ausality if one a

epts, as

Bell did, two assumptions 
on
erning the 
ommon 
ause: �rst, the 
ommon 
ause is lo
alized in

the interse
tion of the past of the 
orrelating events; se
ond, it provides a 
omplete spe
i�
ation of

the `beables' of this interse
tion. However, neither assumptions are a priori requirements. In the

paper the logi
al role of these assumptions will be studied and it will be shown that only the se
ond

assumption is ne
essary for the derivation of the probabilisti
 
ommon 
ause from lo
al 
ausality.

1 Introdu
tion

There has been a long tradition going ba
k to Hans Rei
henba
h (1956) to 
hara
terize the notion

of the 
ommon 
ause in probabilisti
 terms. This probabilisti
 
hara
terization of the 
ommon 
ause

turned out to be a fruitful mathemati
al tool to study 
ausal problems in physi
s, among them the

possibility of hidden variable models for quantum theory. In its full-�edged form a probabilisti
 
ommon


ausal explanation 
ontained not only the 
ondition expressing Rei
henba
h's 
hara
terization of the


ommon 
ause as a s
reener-o�, but also su
h probabilisti
 requirements as lo
ality and no-
onspira
y.

Sin
e these latter requirements had spatiotemporal 
onnotations, the question arose as to whether there

exists a 'spatiotemporal justi�
ation' of the probabilisti
 requirements imposed on the notion of the


ommon 
ause. The �rst step in su
h a justi�
ation is to establish a mathemati
ally well-de�ned and

physi
ally well-motivated relation 
onne
ting events undestood as elements of a probability spa
e and

regions understood as subsets of a spa
etime. Only after having su
h a relation 
an we ask whether a


ertain probabilisti
 equation 
an be derived from a 
ertain spa
etime lo
alization of the 
ommon 
ause.

What kind of spa
etime lo
alizations do we have in mind? Obviously, the 
ommon 
ause is an

event C happening somewhere in the past of two 
orrelating events, say A and B. But in whi
h past?

Relativisti
ally two spa
etime separated events 
an have (at least) two di�erent pasts. Let VA and VB

denote the regions where A and B, respe
tively are lo
alized. Then one 
an de�ne the weak past of A and

B as PW (VA, VB) := I−(VA)∪I−(VB) and the strong past of A and B as PS(VA, VB) := I−(VA)∩I−(VB)
where I−(V ) denotes the union of the 
ausal pasts I−(x) of every point x in V . Let us 
all the appropriate


ommon 
auses weak and strong 
ommon 
auses, respe
tively (see Fig. 1).
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Figure 1: Weak and the strong past of the 
orrelating events A and B.
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Now, one might 
onsider the strong past as a more natural 
andidate for the lo
alization of the


ommon 
ause, and indeed plenty of 
lassi
al examples attest that the strong past is a reasonable 
hoi
e.

(But see (Butter�eld, 1989) and the debate in (Henson, 2005), (Rédei and Sanpedro, 2012), (Henson,

2013).) The 
orrelation between two fans' shouting at the same time at a football mat
h is explained by

the goals s
ored, that is by events lo
alized in the strong past of the shouts. Curiously enough, however,

in algebrai
 quantum �eld theory 
ommon 
auses are typi
ally understood as weak 
ommon 
auses. It is

not di�
ult to see why.

In algebrai
 quantum �eld theory observables are represented by (C∗
-)algebras asso
iated to bounded

regions of a spa
etime. This asso
iation is 
alled a net. A state φ is de�ned as a normalized positive

linear fun
tional on the quasilo
al algebra A whi
h is the indu
tive limit of the net. From our perspe
tive,

the two important axioms of the net, are isotony and lo
al primitive 
ausality. Isotony requires that if a

region V1 is 
ontained in another region V2, then the lo
al algebra A(V1) asso
iated to V1 be a (unital C
∗
-

)subalgebra of A(V2). Lo
al primitive 
ausality is the requirement that for any region V , A(V ) = A(V ′′),
where V ′′

is the 
ausal 
ompletion of V .

Now, suppose that there is a (superluminal) 
orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈
A(VA) and B ∈ A(VB) su
h that VA and VB are spatially separated. Consider the lo
al algebra A((VA ∪
VB)

′′) asso
iated to the 
ausal 
ompletion of VA ∪ VB and suppose that we �nd a 
ommon 
ause C of

the 
orrelation in A((VA ∪ VB)
′′). In whi
h past of VA and VB 
an C be lo
ated? Consider a region VC

in the weak past PW (VA, VB) whi
h is 'wide' enough to ensure that (VA ∪ VB) ⊂ V ′′

C . Due to isotony,

A(VA ∪ VB) will be a subalgebra of A(V ′′

C ) whi
h, due to lo
al primitive 
ausality, is identi
al to A(VC).
Thus, C will be in VC and hen
e in the weak past of VA and VB . To sum up, isotony and lo
al primitive


ausality ensures that if a superluminal 
orrelation has a 
ommon 
ause, then it 
an be lo
alized in the

weak past.

Can the 
ommon 
ause be lo
alized also in the strong past? It may, but not simply due to the axioms

of algebrai
 quantum �eld theory. If VC is in PS(VA, VB), then isotony and lo
al primitive 
ausality does

not help to relateA(VC) toA((VA∪VB)
′′). One also needs to know about the dynami
s of the system. The

axioms of algebrai
 quantum �eld theory are 
ompletely silent about whether one 
an lo
ate the 
ommon


ause in the strong past. As a 
onsequen
e, weak 
ommon 
auses 
annot be ex
luded a priori from our

explanatory arsenal. (For more on 
ommon 
ausal explanation in algebrai
 quantum �eld theory see

(Rédei 1997), (Rédei and Summers, 2002), (Butter�eld 2007) and (Hofer-Szabó and Ve
sernyés, 2012a,b,

2013a,b).)

So we have (at least) two options to lo
alize the 
ommon 
ause in the past of the 
orrelating events.

What else 
an we use in the derivation of the probabilisti
 
ommon 
ause? Some prin
iples regulating the

possible 
ausal 
onne
tion of events in a

ordan
e with the spe
ial theory of relativity. An analogy might

help. The theory of Bayesian nets 
onsists of two 
omponents: a 
ausal graph representing the 
ausal

relations among 
ertain events and a probability spa
e with random variables. How these two parts of the

theory are related to one another? The bridge relating the two 
omponents is 
alled the Causal Markov

Condition. It says that if the nods on the graph are related to one another in su
h-and-su
h a way, the

variables pertaining to the nods should satisfy su
h-and-su
h probabilisti
 independen
ies. So the role of

the Causal Markov Condition in the theory of Bayesian nets is to syn
ronize the probabilisti
 and the

graphi
 des
ription of 
ausal relations.

A prin
iple playing a similar syn
ronizing role in the philosophy of physi
s has been introdu
ed by

John S. Bell (1975/87) and has been 
alled lo
al 
ausality. Lo
al 
ausality is a relativisti
 prin
iple tailor-

made to study probabilisti
 relations between events lo
alized in di�erent spa
etime regions, among them

the relation between the 
ommon 
ause and the 
orrelating events. From the in�uential writings of Bell

on, the probabilisti
 notion of the 
ommon 
ause has been regarded as an expression of probabilisti



onstraints between 
ertain events in the spa
etime imposed on by relativisti
 
onsiderations. In what

follows we will show that the link between the spatiotemporal and the probabilisti
 
hara
terization of

the 
ommon 
ause is very sensitive to two essential assumptions 
on
erning the 
ommon 
ause, both

rightly emphasized by Bell himself. The �rst assumption is that the 
ommon 
ause is lo
alized in the

strong past, the se
ond is that it provides a 
omplete spe
i�
ation of the 
ausal past of the 
orrelating

events.

In the paper we intend to investigate the role of these assumptions in the derivation of the probabilisti



ommon 
ause from lo
al 
ausality. In Se
tion 2 the standard requirements of the probabilisti
 
ommon


ausal explanation will be re
alled. In Se
tion 3 Bell's original idea of lo
al 
ausality will be delineated
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with the emphasis on the role of the two above assumptions. In order to pro
eed in a more pi
turesque

way, in Se
tion 4 and 5 
lassi
al toy models will be introdu
ed whi
h will help us in s
rutinizing the role

of the two assumptions in the derivation of probabilisti
 
ommon 
ause from lo
al 
ausality. We 
on
lude

the paper in Se
tion 6. Some te
hni
alities are put in the Appendi
es.

2 Common 
ausal explanation

As mentioned above, the �rst probabilisti
 
hara
terization of the 
ommon 
ause is due to Rei
henba
h.

There is a long route leading from Rei
henba
h's original idea of the 
ommon 
ause to the sophisti
ated

probabilisti
 requirements used today in the philosophy of quantum physi
s. For the sake of brevity, we do

not repeat here all the intermediate steps of the entire de�nitional pro
ess (for this see (Hofer-Szabó and

Ve
sernyés, 2012a)), but jump dire
tly to the full-�edged probabilisti
 
hara
terization of the 
ommon


ause and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement pro
edures (thought as happening in

two spatially separated spa
etime regions). Suppose that ea
h measurement 
an have two out
omes and

denote the `positive' out
omes by Am and Bn and the `negative' out
omes by Am and Bn, respe
tively.

Let all these events be a

omodated in a 
lassi
al probability spa
e (Σ, p). Suppose that there is a


onditional 
orrelation between the measurement out
omes in the sense that for any m ∈ M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (1)

representing that if we set to measure the pair am and bn, the appropriate out
omes will 
orrelate.

The standard probabilisti
 
hara
terization of a 
ommon 
ausal explanation of this 
orrelation is the

following. A partition {Ck} in Σ (that is a set of mutually ex
lusive events adding up to unity) is said to

be a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of the 
orrelations (1) if for anym,m′ ∈ M

and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧ Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (s
reening-o�) (2)

p(Am|am ∧ bn ∧Ck) = p(Am|am ∧ bn′ ∧ Ck) (lo
ality) (3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (lo
ality) (4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-
onspira
y) (5)

The motivation behind requirements (2)-(5) is the following. S
reening-o� (2) (also 
alled as out
ome

independen
e (Shimony, 1986), 
ompleteness (Jarrett, 1984) and 
ausality (Van Fraassen, 1982)) is sim-

ply the appli
ation of Rei
henba
h's original 
hara
terization of the 
ommon 
ause as a s
reener-o� to


onditional 
orrelations: although Am and Bn are 
orrelating 
onditioned on am and bn, they will 
ease

to do so, if we further 
ondition on Ck. Lo
ality (3)-(4) (also 
alled as parameter independen
e (Shimony,

1986), lo
ality (Jarrett, 1984) and hidden lo
ality (Van Fraassen, 1982)) is the 
onstraints that the mea-

surement out
ome on the one side 
an depend only on the measurement 
hoi
e on the same side and

the value of the 
ommon 
ause, but not on the measurement 
hoi
e on the opposite side (for more on

that see below). Finally, no-
onspira
y (5) is the requirement that the 
ommon 
ause system and the

measurement 
hoi
es should not in�uen
e ea
h other, they should be probabilisti
ally independent.

Now, it is a well known fa
t that if a set of 
orrelations has a lo
al, non-
onspiratorial joint 
ommon


ausal explanation in the above sense, then the set of 
orrelations has to satisfy various Bell inequalities.

(For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality see Appendix A.)

In the EPR situation (if quantum 
orrelations are interpreted as 
lassi
al 
onditional 
orrelation alá (1))

these Bell inequalities are violated ex
luding a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation

of EPR 
orrelations.

Thus, in the EPR-Bell literature (2)-(5) is regarded as the 
orre
t probabilisti
 
hara
terization of the


ommon 
ause. But observe that the above relativisti
 motivations for the probabilisti
 independen
e

relations (2)-(5) are 
ompletely meaningless until we do not lo
alize the 
ommon 
ause on the spa
etime,

or more generally, until we have no prin
ipled way to asso
iate events understood as elements of the

probability spa
e (Σ, p) to regions of a given spa
etime.

Suppose that we do have su
h an asso
iation, that is suppose we have an isotone net N asso
iating

bounded regions of the Minkowski spa
etime to σ-subalgebras of Σ. We do not assume that lo
al primitive

3




ausality also holds. (For more on the relation of lo
al primitive 
ausality and Bell's lo
al 
ausality see

(Hofer-Szabó and Ve
sernyés, 2014).) What else is needed for (2)-(5) to represent a legitimate probabilisti



hara
terization of a 
ommon 
ause? Does Bell's notion of lo
al 
ausality, for instan
e, help us to arrive

at (2)-(5)? Or turning the question around, do the probabilisti
 
onstraints imposed on the notion of


ommon 
ause restri
t also the possible spa
etime lo
alization of the 
ommon 
ause? Do we need to


hoose between weak and strong 
ommon 
auses for example? To address these questions �rst re
all the

notion of lo
al 
ausality.

3 Lo
al 
ausality

As mentioned in the Introdu
tion, there is an in�uential tradition a

ording to whi
h equations (2)-(5)

are 
onsequen
es of the requirement that a 
ertain set of 
orrelations are to be a

omodated in a lo
ally


ausal theory. The 
learest formulation of su
h a theory is due to Bell himself:

�Consider a theory in whi
h the assignment of values to some beables Λ implies, not ne
essarily

a parti
ular value, but a probability distribution, for another beable A. Let p(A|Λ) denote1

the probability of a parti
ular value A given parti
ular values Λ. Let A be lo
alized in a

spa
e-time region A. Let B be a se
ond beable lo
alized in a se
ond region B separated from

A in a spa
elike way. (Fig. 2.) Now my intuitive notion of lo
al 
ausality is that events in B

A B

Λ

Figure 2: Lo
al 
ausality I.

should not be `
auses' of events in A, and vi
e versa. But this does not mean that the two

sets of events should be un
orrelated, for they 
ould have 
ommon 
auses in the overlap of

their ba
kward light 
ones. It is perfe
tly intelligible then that if Λ in (6) does not 
ontain

a 
omplete re
ord of events in that overlap, it 
an be usefully supplemented by information

from region B. So in general it is expe
ted that

p(A|Λ, B) 6= p(A|Λ) (6)

However, in the parti
ular 
ase that Λ 
ontains already a 
omplete spe
i�
ation of beables in

the overlap of the light 
ones, supplementary information from region B 
ould reasonably be

expe
ted to be redundant.�

And here 
omes the de�nition of a lo
ally 
ausal theory.

�Let C denote a spe
i�
ation of all beables, of some theory, belonging to the overlap of the

ba
kward light 
ones of spa
elike regions A and B. Let a be a spe
i�
ation of some beables

from the remainder of the ba
kward light 
one of A, and B of some beables in the region B.

(See Fig. 3.) Then in a lo
ally 
ausal theory

p(A|a, C,B) = p(A|a, C) (7)

whenever both probabilities are given by the theory.� (Bell, 1987, p. 54)

1

For the sake of uniformity throughout the paper I slightly 
hanged Bell's denotation and �gures.
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A B

Ca b

Figure 3: Lo
al 
ausality II.

Now, let us spell out Bell's 
hara
terization of lo
al 
ausality using the notion of net introdu
ed above.

To do this �rst we should translate Bell's language using random variables in (7) into a language using

events. Se
ond, the term 'beables in a 
ertain spa
etime region' is to be repla
ed by 'events in an algebra

supported in a 
ertain spa
etime region' and '
omplete spe
i�
ation' by 'set of atoms of the algebra in

question' (assuming that lo
al algebras are atomi
). (For more on Bell's lo
al 
ausality and the role of

'beables' see (Norsen 2011); for the translation of '
omplete spe
i�
ation' into atomi
ity see (Henson,

2013).) Finally, instead of 
onsidering the whole 
ausal past of an event we will 
onsider only a suitable

Cau
hy segment of this past.

Then Bell's notion of lo
al 
ausality 
an be paraphrased as follows.

De�nition 1. An isotone netN asso
iating bounded regions of the Minkowski spa
etime to σ-subalgebras

of Σ is 
alled lo
ally 
ausal, if for any 
lassi
al probability measure p (or, more generally, state φ) on Σ,
and for any two events Am ∈ A(VA) and Bn ∈ A(VB) lo
alized in the spatially separated regions VA and

VB and 
orrelating in the probability measure p, and for every Cau
hy surfa
e S (lying past to VA and

VB), the following is true:

Let Va, VC and Vb be three open neighborhoods of S∩(I−(VA)\I−(VB)), S∩P
S(VA, VB) and S∩(I−(VB)\

I−(VA)), respe
tively (see Fig. 4) and let A(Va), A(VC) and A(Vb) the asso
iated lo
al algebras. Let am

V

V V

V V

A B

Ca b
S

Figure 4: Lo
al 
ausality III.

and bn be events in A(Va) and A(Vb), respe
tively and let Ck be an atom in A(VC). Then the following


onditional probabilisti
 independen
ies hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧ Ck) (8)

p(Bn|Am ∧Ck ∧ bn) = p(Bn|bn ∧ Ck) (9)

p(Am|am ∧Ck ∧ bn) = p(Am|am ∧ Ck) (10)

p(Bn|am ∧Ck ∧ bn) = p(Bn|bn ∧ Ck) (11)

Why four equations instead of Bell's single (7)? Observe that (9) is just the symmetri
 version of (8)

where Am and am are inter
hanged with Bn and bn. Equations (10)-(11), however, are slight extensions

5



of Bell's formulation. Observe that VA is spa
elike separated not only from VB but also from Vb, and

therefore the same 
onditional independen
e should hold between Am and bn as between Am and Bn.

Thus (10) is the appli
ation of Bell's idea to algebras A(VA) and A(Vb), and (11) to algebras A(Vb) and
A(VA). There are no more spatially separated regions in Fig. 4 to whi
h lo
al 
ausality 
ould be applied.

How the above 
onsiderations relate to the probabilisti
 
hara
terization (2)-(5) of the 
ommon 
ause

delineated in the previous Se
tion?

First observe that (10)-(11) are equivalent to lo
ality (3)-(4) and from (8)-(11) s
reening-o� (2) follows

dire
tly. This proves that the probabilisti
 
hara
terization of the 
ommon 
ause by the requirements

of s
reening-o� and lo
ality 
an be 'derived' from Bell's notion of lo
al 
ausality imposed on an isotone

net asso
iating spa
etime regions and lo
al albegras. We note, however, that the third requirement in

the de�nition of a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation, namely no-
onspira
y (5)


annot be 'derived' from Bell's notion of lo
al 
ausality in a similar way. No-
onspira
y is an independent

assumption stating that the events am ∈ A(Va), Ck ∈ A(VC) and bn ∈ A(Vb) are probabilisti
ally

independent.

So far, so good. But here 
omes the point. To obtain this dedu
tive relation between the probabilisti



hara
terization of the 
ommon 
ause and Bell's notion of lo
al 
ausality the following two assumptions

have been made: the 
ommon 
ause system provides �a 
omplete spe
i�
ation of beables�, and it is

lo
ated in the �overlap of the light 
ones�. In other words, one assumed that (i) Ck is lo
ated in the

strong past of the 
orrelating events, and (ii) it is an atom of the appropriate algebra. As we saw, Bell

expli
itly stresses both assumptions, and in all the subsequent papers of Van Fraassen (1982), Jarrett

(1984), Shimony (1986) et
. trying to turn spa
etime 
onsiderations into probabilisti
 independen
ies

these two assumptions have been (expli
itly or impli
itly) made.

However, neither assumptions are a priori requirements 
on
erning the 
ommon 
ause. One 
an easily

make up 
ommon 
auses whi
h are either non-atomi
 or not lo
ated in the strong past of the 
orrelating

events. How these 
ommon 
auses relate to Bell's notion of lo
al 
ausality? In the following two Se
tions

the relation between lo
al 
ausality and probabilisti
 
hara
terization of the 
ommon 
ause will be studied

in the la
k of these two assumptions. First toy models will be introdu
ed in whi
h the two assumptions

are violated, then the formal results will be gathered.

4 Non-atomi
 
ommon 
auses

Example 1. Consider the following toy model. There are �ve lighthouses on the o
ean in a line of equal

distan
e from ea
h other. (See Fig. 5.) Let us 
ount them from left to right. In the middle one, that is

A BC

1 2 3 4 5

Figure 5: Lighthouses I.

in lighthouse 3 the lighthouse keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy

to turn the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three lamps, or none.

He never turns on the lamps in any other 
ombination. He 
hooses between these four options with equal

probability (say tossing two 
oins). Let us denote that a given lamp is turned on and o� by C and C,

6



respe
tively. Using this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C
′′

∧ C
′′′

(12)

C2 ≡ C
′

∧ C
′′

∧ C′′′
(13)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(14)

C4 ≡ C
′

∧ C
′′

∧ C
′′′

(15)

ea
h with probability

p(Ck) =
1

4
(16)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another lighthouse keeper,

A and his role is simply to wat
h the light signals arriving from either the left or from the right that

is from either lighthouse 1 or lighthouse 3. He does not know that lighthouse 1 is empty, therefore he

spends equal time wat
hing both neighboring lighthouses. Suppose furthermore that if he is wat
hing

left, he will miss the light signals 
oming from the right. This means that with probability

1
2 he observes

the signals 
oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the event that

the lighthouse keeper A is wat
hing to the left and to the right by aL and aR, respe
tively and denoting

by A the event that he observes a light signal (disregarding from whi
h lamp), one obtains the following


onditional probabilities:

p(A|am ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

(17)

In other words, the lighthouse keeper A observes the light signal only if he is wat
hing right and there is

a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse keeper B is wat
hing in

both dire
tions with equal probability, but sin
e lighthouse 5 is empty, he misses the light signal 
oming

from lighthouse 3 with probability

1
2 . Denoting again the events that the lighthouse keeper B is wat
hing

to the left and to the right by bL and bR, respe
tively and denoting by B the event that he observes a

signal, one obtains the following 
onditional probabilities for B's observing a light signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

(18)

This situation 
ompletely 
hara
terizes a probability spa
e. The event algebra is generated by the

following events:

A, A, B, B, am, bn, Ck

withm,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whi
h have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the atoms one 
an easily


al
ulate the probability of any events of the algebra.

Now, it is easy to see that there is a 
orrelation between events A and B that is between the lighthouse

keepers' observing a light signal, both in the non-
onditional and 
onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(19)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
·
3

4
if m = R, n = L (20)

7



As one expe
ts, the 
orrelation is due to C's signaling: Ck is a lo
al, (non-
onspiratorial) joint 
ommon


ausal explanation of the 
orrelation (20) in the sense of (2)-(5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧Ck) = p(Bn|am′ ∧ bn ∧Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Example 2. Suppose we take a 
oarser 
lustering of the swit
hing of the lamps, say D1 ≡ C1 ∨ C2 ∨ C3

and D2 ≡ C4. Physi
ally, D1 is the event that any light is on in lighthouse 3, and D2 is the event that

no light is on. As one expe
ts, for this 
oarser partition (2)-(5) will hold just as good as for the partition

{Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 3

4 if n = L, k = 1
1
4 · 1

4 otherwise

Thus, {Dk} is also a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explanation of the 
orrelation (20).

Example 3. Now, 
onsider a 
oarser 
lustering of the swit
hings 'in the wrong way': D′

1 ≡ C1 ∨ C2 ∨ C4

and D′

2 ≡ C3 mixing together light ons and light o�s. Contrary to the previous 
ase, for this 
oarser

partition the requirement of s
reening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′

1) p(B|aR ∧ bL ∧D′

1) =
2

3
·
2

3

(Lo
ality and no-
onspira
y will hold even in this 
ase.) Hen
e {D′

k} is not a lo
al, (non-
onspiratorial)

joint 
ommon 
ausal explanation of the 
orrelation (20).

Now, let us 
onsider the spa
etime diagram of the above examples whi
h is depi
ted in Fig. 6. Let N

V

V VA B

C
S

Va
Vb

Figure 6: Spa
etime diagram of Examples 1, 2 and 3.

be a lo
ally 
ausal net asso
iating bounded spa
etime regions to lo
al algebras su
h that A ∈ A(VA),
B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) and Ck, Dk, D

′

k ∈ A(VC) for all m, n and k. As shown in Se
tion 2,

8



lo
al 
ausality of the net implies that the set {Ck}�being an atomi
 partition lo
alized in the strong past

PS(VA, VB)�satis�es (2)-(4), hen
e providing a lo
al, joint 
ommon 
ausal explanation of the 
orrelation

(20). (No-
onspira
y (5), as already stressed above, is not a 
onsequen
e of lo
al 
ausality but assumed

in the model.) Thus, {Ck} is an atomi
, strong, lo
al, non-
onspiratorial joint 
ommon 
ause system.

What about non-atomi
 partitions lo
alized in the strong past? As Examples 2 and 3 attest lo
al


ausality has no bearing on this 
ase. {Dk} and {D′

k} are all lo
alized in PS(VA, VB), but whereas {Dk}
is a 
ommon 
ause system of the 
orrelation (20), {D′

k} is not. This leads to the following

Moral 1. The probabilisti
 
hara
terization of a lo
al, joint 
ommon 
ause system {Ck} via (2)-(4) 
annot
be justi�ed by Bell's lo
al 
ausality applied to a net asso
iating spa
etime regions to lo
al algebras, if

{Ck} is a non-atomi
 partition of A(VC).

Thus, a 
oarse-grained (non-atomi
) probabilisti
 
ommon 
ausal explanation of a 
orrelation 
annot be

ba
ked by Bell's spatiotemporal 
onsiderations on lo
al 
ausality. In the next Se
tion we turn to the role

of the other premise, namely the lo
alization of the 
ommon 
ause in the strong past.

5 Weak 
ommon 
auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B remain in their pla
es

that is in lighthouse 2 and 4, respe
tively, but suppose that lighthouses 1, 3 and 5 are inhabitated by

three lighthouse keepers C′
, C′′

and C′′′
, respe
tively, ea
h having the appropriate one of the three lamps

introdu
ed in the previous Se
tion. (See Fig. 7.) That is suppose that now lighthouse keeper C′
in

A BC

1 2 3 4 5

C C

Figure 7: Lighthouses II.

lighthouse 1 operates lamp C′
, lighthouse keeper C′′

in lighthouse 3 operates lamp C′′
and lighthouse

keeper C′′′
in lighthouse 5 operates lamp C′′′

. Suppose furthermore that the ons and o�s of the di�erent

lamps follow just the same statisti
s de�ned in (12)-(16), that is p(Ck) =
1
4 for every k = 1, 2, 3, 4 (only

lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).

Now, the role of lighthouse keepers A and B is just as above to wat
h the light signals arriving at

lighthouse 2 and 4, respe
tively. But now both 
an obtain a signal from both dire
tions. Suppose that

both A and B 
an only see the light signal sent from a neighboring lighthouse that is A 
annot see the

signal sent from C′′′
(say, it is two far or the lighthouses hide ea
h other) and B 
annot see the signal

sent from C′
. Now, again the event algebra has 16 atoms with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a 
onditional and non-
onditional 
orrelation between event A and B, the dete
tions of light

9



signals in lighthouse 2 and 4, respe
tively both in the non-
onditional and 
onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
·
3

8
(21)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 1

4 if m = R, n = L,
1
4 · 1

2 if m,n = R,
1
2 · 1

4 if m,n = L.

(22)

As one expe
ts, {Ck} is a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explanation of the 
orrelation:

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
·
1

4

Now, 
onsider again the spa
etime diagram of Example 4 depi
ted in Fig. 8. Here {Ck} is lo
alized not

V

V VA B

S
Va

VbV VC’ C’’ C’’’

Figure 8: Spa
etime diagram of Example 4.

in the strong past but in the weak past of the 
orrelating events. How these weak 
ommon 
auses relate

to Bell's lo
al 
ausality? This question is answered in the following

Proposition 1. Let N be again a lo
ally 
ausal net asso
iating bounded spa
etime regions to lo
al

algebras su
h that A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) for all m and n, and for the

partition

{Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l }

(where C′

1 ≡ C′
and C′

2 ≡ C
′

and similarly for C′′

j and C′′′

l ) C′

i ∈ A(VC′ ), C′′

j ∈ A(VC′′ ) and C′′′

l ∈ A(VC′′′)
for all i, j and l. Then {Cijk} is a weak, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (23)

in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijk) = p(A|am ∧ bn ∧ Cijk) p(B|am ∧ bn ∧ Cijk) (24)

p(A|am ∧ bn ∧ Cijk) = p(A|am ∧ bn′ ∧ Cijk) (25)

p(B|am ∧ bn ∧ Cijk) = p(B|am′ ∧ bn ∧ Cijk) (26)
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Proof. Sin
e {C′′

j } is an atomi
 partition lo
alized in the strong past PS(VA, VB), lo
al 
ausality of the

net implies that for any event a′im ≡ C′

i ∧ am ∈ A(VC′ ∪ Va), b
′

nl ≡ bn ∧ C′′′

l ∈ A(Vb ∪ VC′′′) and atomi


event C′′

j the following will hold:

p(A ∧Bn|a
′

im ∧ b′nl ∧C′′

j ) = p(A|a′im ∧ b′nl ∧C′′

j ) p(B|a′im ∧ b′nl ∧ C′′

j ) (27)

p(A|a′im ∧ b′nl ∧C′′

j ) = p(A|a′im ∧ b′n′l′ ∧C′′

j ) (28)

p(B|a′im ∧ b′nl ∧C′′

j ) = p(B|a′i′m′ ∧ b′nl ∧ C′′

j ) (29)

In other words, {C′′

j } is a strong, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (30)

with the new 
onditions a′im and b′nl. (Again, no-
onspira
y

p(a′im ∧ b′nl ∧ C′′

j ) = p(a′im ∧ b′nl) p(C
′′

j ) (31)

does not follow from lo
al 
ausality of the net.) But (27)-(29) are just equivalent to (32)-(34) proving

that {Cijk} is a weak, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations (23).

This leads to

Moral 2. The probabilisti
 
hara
terization of a lo
al, joint 
ommon 
ause system {Cijk} via (2)-(4)


an be justi�ed by Bell's lo
al 
ausality applied to a net asso
iating spa
etime regions to lo
al algebras,

if {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } is a weak 
ommon 
ause (C′

i ∈ A(VC′), C′′

j ∈ A(VC′′) and C′′′

l ∈ A(VC′′′ ))
and C′′

j is an atomi
 partition of A(VC′′).

In the Example 4 one might have found it pe
uliar that although the 
ommon 
ause {Cijk} was non-


onspiratorial (it was probabilisti
ally independent of am and bn), still there was a '
onspira
y' within the


ommon 
ause: C′

i, C
′′

j and C′′′

l were not probabilisti
ally independent. For example it never happened

that only lamp C′′
was swit
hed on. This fa
t does not raise any problem until the 
ommon 
ause is

lo
alized at one pla
e, as in Example 1, where all the three lamps were lo
alized in lighthouse 3. But in

Example 4 the 
ommon 
ause was s
attered around in three di�erent lo
ations. It was lo
ated in three

di�erent lighthouses. The problem with su
h a 
ommon 
ause that it may well question our whole proje
t

to provide a 
ommon 
ausal explanation for a 
orrelation. If the explanans itself has a built-in 
orrelation,

then what is the point of using it for explaining 
orrelations? Can we not 
ome up with a 
ommon 
ausal

model in whi
h C′

i, C
′′

j and C′′′

l are spatially separated but still independent, say, regulated by three

independent 
oin tossings in lighthouse 1, 3 and 5, respe
tively. Can one obtain a weak 
ommon 
ause

for a given 
orrelation without a built-in 
orrelation?

Let {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } be a weak 
ommon 
ause of a given 
orrelation. (Here {C′

i}, {C
′′

j }
and {C′′′

l } are general partitions of A(VC′), A(VC′′ ) and A(VC′′′ ), respe
tively, and not those spe
i�ed in

the above Examples.) Let us 
all {Cijk} a genuine weak 
ommon 
ause, i� {C′′

j }�the 'middle part' of

{Cijk}�is not a strong 
ommon 
ause. In what follows we will show that the above mentioned `built-in


orrelation' is a ne
essary 
ondition to explain a 
orrelation by a genuine weak 
ommon 
ause. In other

words, we will show that if {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } is a 
ommon 
ause of the 
orrelation (23) and C′

i,

C′′

j and C′′′

l are probabilisti
ally independent, then also {C′′

j } will be a 
ommon 
ause of the 
orrelation.

Proposition 2. Suppose that {C′

i ∧ C′′

j ∧ C′′′

l } is a 
ommon 
ause of the 
orrelation between Am and

Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l ) p(Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )(32)

p(Am|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (33)

p(Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l ) (34)

p(am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l ) = p(am ∧ bn) p(C
′

i ∧ C′′

j ∧ C′′′

l ) (35)

and suppose that C′

i, C
′′

j and C′′′

l are independent that is

p(C′

i ∧ C′′

j ∧ C′′′

l ) = p(C′

i) p(C
′′

j ) p(C
′′′

l ) (36)
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then {C′′

j } is also a 
ommon 
ause the 
orrelation:

p(Am ∧Bn|am ∧ C′′

j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧C′′

j ) (37)

p(Am|am ∧ bn ∧ C′′

j ) = p(Am|am ∧ bn′ ∧C′′

j ) (38)

p(Bn|am ∧ bn ∧ C′′

j ) = p(Bn|am′ ∧ bn ∧C′′

j ) (39)

p(am ∧ bn ∧ C′′

j ) = p(am ∧ bn) p(C
′′

j ) (40)

For the proof see Appendix B. Sin
e in Example 4 {Cijk} ≡ {C′

i ∧ C′′

j ∧ C′′′

l } was lo
alized in the

weak past and {C′′

j } was lo
alized in the strong past, we 
an interpret Proposition 2 as follows: a weak


ommon 
ause with no 'built-in 
orrelation' is always parasiti
 on a strong 
ommon 
ause in the sense

that there is no other way to provide a genuine weak 
ommon 
ause for a given 
orrelation, then to

make the spatially separated parts of the 
ommon 
ause probabilisti
ally dependent. In brief, there is no

genuine weak 
ommon 
ause without 'built-in 
orrelation'.

6 Con
lusion

The probabilisti
 
hara
terization of the 
ommon 
ause 
an be justi�ed via Bell's notion of lo
al 
ausality

if two assumptions 
on
erning the 
ommon 
ause are made: �rst, the 
ommon 
ause is lo
alized in the

strong past of the 
orrelating events; se
ond, it provides a 
omplete spe
i�
ation of the `beables' of this

past. In the paper it was argued that only the se
ond assumption, that is 
omplete spe
i�
ation, is

ne
essary for the derivation of the probabilisti
 
ommon 
ause from lo
al 
ausality. Thus, 
oarse-grained


ommon 
ausal explanations 
annot be rationalized in this way. (Whether it 
an be justi�ed in other

ways, based on non-spatiotemporal 
onsiderations, is not investigated here. For a justi�
ation via Causal

Markov Condition see (Glymour 2006).)

Con
erning the �rst assumption, namely lo
alization in the strong past, it was shown that genuine

weak 
ommon 
auses 
an be provided for a given 
orrelation only at the 
ost of introdu
ing a 'built-in


orrelation' between the spatially separated parts of the 
ommon 
ause.

We 
on
lude the paper with a highly spe
ulative question. As it was shown in the Introdu
tion, the


ommon 
auses that naturally arise in algebrai
 quantum �eld theory are weak and not strong 
ommon


auses.

Question: Is this fa
t somehow related to or a 
onsequen
e of the following two fa
ts? (If they are fa
ts

at all.)

1. In algebrai
 quantum �eld theory quantum states establishing a superluminal 
orrelation between

two spa
elike separated events, also establish (or 'typi
ally' establish) a `built-in 
orrelation' between

the spa
elike separated parts of the weak 
ommon 
auses of this 
orrelation.

2. An analoge of Proposition 2 holds in algebrai
 quantum �eld theory stating that a `built-in 
orre-

lation' is a ne
essary 
ondition to explain a 
orrelation by a genuine weak 
ommon 
ause.

Were these two fa
ts to hold, one 
ould understand why weak 
ommon 
auses in algebrai
 quantum �eld

theory are geniune 
ommon 
auses that is why they do not redu
e to strong 
ommon 
auses. (For more

on this see (Hofer-Szabó and Ve
sernyés, 2014).)
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Appendix A

Here we will show that if a set of 
orrelations {(Am, Bn)|m,n = 1, 2} has a lo
al, non-
onspiratorial joint

ommon 
ausal explanation in the sense of (2)-(5), then the following Clauser�Horne inequalities have to
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hold for any m,m′, n, n′ = 1, 2; m 6= m′, n 6= n′
:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)

−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0 (41)

The derivation of (41) from (2)-(5) is simple. It is an elementary fa
t of arithmeti
 that for any

α, α′, β, β′ ∈ [0, 1] the number

αβ + αβ′ + α′β − α′β′ − α− β (42)

lies in the interval [−1, 0]. Now let α, α′, β, β′
be the following 
onditional probabilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (43)

α′ ≡ p(Am′ |am′ ∧ bn′ ∧Ck) (44)

β ≡ p(Bn|am ∧ bn ∧ Ck) (45)

β′ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (46)

Plugging (43)-(46) into (42) and using lo
ality (3)-(4) one obtains

−1 6 p(Am|am ∧ bn ∧Ck)p(Bn|am ∧ bn ∧Ck) + p(Am|am′ ∧ bn ∧ Ck)p(Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ |am′ ∧ bn ∧ Ck)p(Bn|am′ ∧ bn ∧ Ck)− p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧Ck) 6 0 (47)

Using s
reening-o� (2) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧Ck) 6 0 (48)

Finally, multiplying the above inequality by p(Ck), then summing up for the indi
es k and using no-


onspira
y (5) one arrives at (41).

Appendix B

Here we prove Proposition 1. Suppose that {C′

i∧C′′

j ∧C′′′

l } is a 
ommon 
ause of the 
orrelation between

Am and Bn in the sense of (32)-(35) and suppose that C′

i, C
′′

j and C′′′

l are independent in the sense of

(36). First, observe that (35) and (36) together entail that:

p(am ∧ bn ∧ C′

i ∧ C′′

j ∧C′′′

l ) = p(am ∧ bn) p(C
′

i)p(C
′′

j )p(C
′′′

l ) (49)
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Then C′′

j is a strong 
ommon 
ause that is (37)-(40) hold:

p(Am ∧Bn|am ∧ bn ∧C′′

j ) =
p(Am ∧Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Am ∧Bn|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(32)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(Bn|am ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

(33)(34)
=

∑

il

p(Am|am ∧ bn ∧ C′

i ∧ C′′

j )p(Bn|am ∧ bn ∧C′′

j ∧C′′′

l )p(C′

i)p(C
′′′

l )

(49)
= p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′

j )

p(Am|am ∧ bn ∧C′′

j ) =
p(Am ∧ am ∧ bn ∧C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Am|am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(33)
=

∑

il

p(Am|am ∧ bn′ ∧C′

i ∧C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Am|am ∧ bn′ ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am ∧ bn′)p(C′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn′)p(C′′

j )

(49)
=

p(Am ∧ am ∧ bn′ ∧ C′′

j )

p(am ∧ bn′ ∧ C′′

j )
= p(Am|am ∧ bn′ ∧ C′′

j )

p(Bn|am ∧ bn ∧C′′

j ) =
p(Bn ∧ am ∧ bn ∧ C′′

j )

p(am ∧ bn ∧ C′′

j )

(49)
=

∑

il p(Bn|am ∧ bn ∧ C′

i ∧C′′

j ∧ C′′′

l )p(am ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am ∧ bn)p(C′′

j )

(34)
=

∑

il

p(Bn|am′ ∧ bn ∧C′

i ∧ C′′

j ∧ C′′′

l )p(C′

i)p(C
′′′

l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′

j ∧ C′′′

l )p(am′ ∧ bn)p(C
′

i)p(C
′′

j )p(C
′′′

l )

p(am′ ∧ bn)p(C′′

j )

(49)
=

p(Bn ∧ am′ ∧ bn ∧ C′′

j )

p(am′ ∧ bn ∧ C′′

j )
= p(Bn|am′ ∧ bn ∧C′′

j )

p(am ∧ bn ∧C′′

j ) =
∑

il

p(am ∧ bn ∧ C′

i ∧C′′

j ∧C′′′

l )

(49)
=

∑

il

p(am ∧ bn ∧ C′

i ∧C′′′

l )p(C′′

j ) = p(am ∧ bn) p(C
′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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