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Abstract

MODAL LOGICS FOR TOPOLOGICAL SPACES
by

Konstantinos Georgatos

Adviser: Professor Rohit Parikh

We present two bimodal systems, MP and MP*, for reasoning about knowledge
and effort.

Knowledge is interpreted as all true statements common to a set of possible worlds
which represents our view. Effort corresponds to increase of information and trans-
lates to a restriction of our view. Such restrictions are parameterized by the worlds in
our view and therefore are neighborhood restrictions. The semantics of these logics
consist of pairs of points and their neighborhoods. In this spatial setting basic topo-
logical and computation concepts are naturally expressed which make these systems
ideal for studying computing knowledge by set-theoretic means.

The system MP was introduced and proven complete for the class of sets con-
taining arbitrary neighborhoods by Larry Moss and Rohit Parikh. In this thesis,
MP*, an extension of MP, is introduced and proven complete for various class of

spaces closed under unions and intersections, among them topological spaces. We also

v



present necessary and sufficient conditions under which a Kripke frame can be turned
into a set-theoretic model of ours. Among our results is the finite model property and
decidability for MP*. In addition we present the algebraic models of these systems

and discuss further work.
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Chapter 1

Introduction

In this thesis we shall present two logical systems, MP and MP*, for the purpose of
reasoning about knowledge and effort. These logical systems will be interpreted in a
spatial context and therefore, the abstract concepts of knowledge and effort will be
defined by concrete mathematical concepts.

Our general framework consists of a set of possible worlds (situations, scenarios,
consistent theories, etc.) A state of knowledge is a subset of this set and our knowledge
consists of all facts common to the worlds belonging to this subset. This subset of
possibilities can be thought as our view. Thus two knowers having distinct views can
have different knowledge. This treatment of knowledge agrees with the traditional
one ([17], [15], [28], [3], [8]) expressed in a variety of contexts (artificial intelligence,

distributed processes, economics, etc.)
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Our treatment is based on the following simple observation
“a restriction of our view increases our knowledge.”

This is because a smaller set of possibilities implies a greater amount of common facts.
Moreover, such a restriction can only be possible due to an increase of information.
And such an information increase can happen with spending of time or computation
resources. Here is where the notion of effort enters. A restriction of our view is
dynamic (contrary to the view itself which is a state) and is accompanied by effort
during which a greater amount of information becomes available to us (Pratt expresses
a similar idea in the context of processes [29].)

We make two important assumptions.

Our knowledge has a subject. We collect information for a specific purpose. Hence
we are not considering arbitrary restrictions to our view but restrictions parameterized
by possibilities contained in our view, i.e. neighborhoods of possibilities. After all,
only one of these possibilities is our actual state. This crucial assumption enables
us to express topological concepts and use a mathematical set-theoretic setting as
semantics. Without such an assumption these ideas would have been expressed in

the familiar theory of intuitionism ( [16], [7], [32].) As Fitting points out in [9]

“Let (¢4, %, E) be a [intuitionistic, propositional] model. ¢ is intended to
be a collection of possible universes, or more properly, states of knowledge.

Thus a particular I' in ¢4 may be considered as a collection of (physical)
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facts known at a particular time. The relation & represents (possible)
time succession. That is, given two states of knowledge I' and A of ¥4,

to say 'ZA is to say: if we now know I', it is possible that later we will

know A.”

Considering neighborhoods and, inevitably, points which parameterize neighborhoods,
the important duality between the facts, which constitute our knowledge, and the
possible worlds, where such facts hold, emerges.

The other assumption is that of indeterminacy. Each state of knowledge is closed
under logical deduction. Thus an increase of knowledge can happen only by a piece of
evidence or information given from outside. Our knowledge is external (a term used
by Parikh to describe a similar idea in [27].) This fact leads to indeterminacy (we
do not know which kinds of information will be available to us, if at all) and resem-
bles indeterminacy expressed in intuitionism through the notion of lawless sequence
(see [20], [31]) where, not surprisingly, topological notions arise.

To illustrate better these simple but fundamental ideas we present the following

examples:

e Suppose that a machine emits a stream of binary digits representing the output
of a recursive function f. After time #; the machine emitted the stream 111.

The only information we have about the function being computed at this time



Chapter 1. Introduction 4

on the basis of this (finite) observation is that

As far as our knowledge concerns f is indistinguishable from the constant func-
tion 1, where 1(n) = 1 for all n. After some additional time 5, i.e. spending
more time and resources, 0 might appear and thus we could be able to dis-
tinguish f from 1. In any case, each binary stream will be an initial segment
of f and this initial segment is a neighborhood of f. In this way, we can ac-
quire more knowledge for the function the machine computes. The space of
finite binary streams is a structure which models computation. Moreover, this
space comprises a topological space. The set of binary streams under the prefix

ordering is an example of Alexandrov topology (see [33].)

e A policeman measures the speed of passing cars by means of a device. The speed
limit is 80 km/h. The error in measurement which the device introduces is 1
km/h. So if a car has a speed of 79.5 km/h and his device measures 79.2 km /h
then he knows that the speed of the passing car lies in the interval (78.2,80.2)
but he does not know if the car exceeds the speed limit because not all values
in this interval are more than 80. However, measuring again and combining the
two measurements or acquiring a more accurate device he has the possibility of
knowing that a car with a speed of 79.5 km/h does not exceed the speed limit.

Note here that if the measurement is, indeed, an open interval of real line and
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the speed of a passing car is exactly 80 km/h then he would never know if such

a car exceeded the speed limit or not.

To express this framework we use two modalities K for knowledge and O for effort.

Moss and Parikh observed in [24] that if the formula

A — OKA

is valid, where A is an atomic predicate and < is the dual of the O, i.e. & = -0,
then the set which A represents is an open set of the topology where we interpret
our systems. Under the reading of & as “possible” and K as “is known”, the above

formula says that
“if A is true then it is for A possible to be known”,
i.e. Ais affirmative. Vickers defines similarly an affirmative assertion in [33]

“an assertion is affirmative iff it is true precisely in the circumstances

when it can be affirmed.”

The validity of the dual formula

OLA — A,

where L is the dual of K, i.e. L = —K=, expresses the fact that the set which A
represents is closed, and hence A is refutative, meaning if it does not hold then it is
possible to know that. The fact that affirmative and refutative assertions are repre-

sented by opens and closed subsets, respectively, should not come to us as a surprise.
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Affirmative assertions are closed under infinite disjunctions and refutative assertions
are closed under infinite conjunctions. Smyth in [30] observed first these properties
in semi-decidable properties. Semi-decidable properties are those properties whose
truth set is r.e. and are a particular kind of affirmative assertions. In fact, changing
our power of affirming or computing we get another class of properties with a similar
knowledge-theoretic character. For example, using polynomial algorithms affirmative
assertions become polynomially semi-decidable properties. If an object has this prop-
erty then it is possible to know it with a polynomial algorithm even though it is not
true we know it now.

Does this framework suffers from the problem of logical omniscience? Only in
part. Expressing effort we are able to bound the increase of knowledge depending
on information (external knowledge.) Since the modality K which corresponds to
knowledge is axiomatized by the normal modal logic of S5, knowledge is closed under
logical deduction. However, because of the strong computational character of this
framework it does not seem unjustified to assume that in most cases (as in the binary
streams example) a finite amount of data restricts our knowledge to a finite number of
(relevant) formulae. Even without such an assumption we can incorporate the effort
to deduce the knowledge of a property in the passage from one state of knowledge to

the other.



Chapter 1. Introduction 7

We have made an effort to present our material somewhat independently. How-
ever, knowledge of basic modal logic, as in [6], [19], or [10], is strongly recommended.

The language and semantics of our logical framework is presented in Chapter 2. In
the same Chapter we present two systems: MP and MP*. The former was introduced
in [24] and was proven complete for arbitrary sets of subsets. It soon became evident
that such sets of subsets should be combined, whenever it is possible, to yield a
further increase of knowledge or we should assume a previous state of other states of
knowledge where such states are a possible. Therefore the set of subsets should be
closed under union and intersection. Moreover, topological notions expressed in MP
make sense only in topological models. For this reason we introduce an extension of
the set of axioms of MP and we call it MP*. In Chapter 3, we study the topological
models of MP* by semantical means. We are able to prove the reduction of the theory
of topological models to models whose associated set of subsets is closed under finite
union and intersection. Finding for each satisfiable formula a model of bounded size
we prove decidability for MP*. The results of this chapter will appear in [11]. In
Chapter 4, we prove that MP* is a complete system for topological models as well as
topological models comprised by closed subsets. We also give necessary and sufficient
conditions for turning a Kripke frame into such a topological model. In Chapter 5, we
present the modal algebras of MP and MP* and some of their properties. Finally,

in Chapter 6, we present some of our ideas towards future work.



Chapter 2

Two Systems: MP and MP*

In section 2.1 we shall present a language and semantics which appeared first in [24].
In section 2.2, we shall present the axiom system MP, introduced and proven sound
and complete with a class of models called subset spacesin [24], and the axiom system
MP*, introduced by us, which we shall prove sound and complete for, among other

classes, the class of topological spaces.

2.1 Language and Semantics

We follow the notation of [24].
Our language is bimodal and propositional. Formally, we start with a countable
set A of atomic formulae containing two distinguished elements T and L. Then the

language £ is the least set such that A C ¢ and closed under the following rules:
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¢ el 9
oA eZ  —9,00,Koe”

The above language can be interpreted inside any spatial context.

Definition 1  Let X be a set and @ a subset of the powerset of X, i.e. 0 C ZP(X)
such that X € 0. We call the pair (X, 0) a subset space. A modelis a triple (X, 0, 1),
where (X, 0) is a subset space and ¢ a map from A to Z2(X) with ¢(T) = X and

i(L) = 0 called initial interpretation.

We denote the set {(z,U): 2 € X,U € 0, andx € U} C X x & by Xx0O. For
each U € O'let [U be theset {V : V € ¢ and V C U} the lower closed set generated

by U in the partial order (€,C), ie. [U=2(U)N 0.

Definition 2  The satisfaction relation |= ,, where .# is the model (X, 0,1),

is a subset of (X% @) x . defined recursively by (we write z, U= ¢ instead of
((z,U),9) € = 4):

z, U= A iff = e€i(A), where A €A

v, UE ,ony i 2, UE ,¢and 2, UE 0

z, U= ¢ if =, U fE ¢

v, U= Ko if forallyel, y, Uk ¢

$7U|:/%D</5 if forall V € |[U such that x € V, x7V|:/%¢_
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If 2,Ul= _, ¢ for all (x,U) belonging to X x & then ¢ is valid in .#, denoted by .# |=¢.

We abbreviate “0-¢ and —-K—¢ by $¢ and Lo respectively. We have that
x, U= Lo if there exists y € U such that y, U= , ¢

z, Ul ,O¢ if there exists V € & such that V C U, x € V, and z, V= 0.
Many topological properties are expressible in this logical system in a natural way.
For instance, in a model where the subset space is a topological space, ¢(A) is open

whenever A — OKA is valid in this model. Similarly, i(A) is nowhere dense whenever

LOK=A is valid (cf. [24].)

Example. Consider the set of real numbers R with the usual topology of open inter-

vals. We define the following three predicates:

pi where i(pi)= {x}
I; where (I;)= (—o0,7]
I, where (I) = (7,+00)

Q where (Q)= {q: ¢ is rational }.

There is no real number p and open set U such that p, U EKpi because that would
imply p = 7 and U = {r} and there are no singletons which are open.
A point z belongs to the closure of a set W if every open U that contains z

intersects W. Thus 7 belongs to the closure of (7,+00), i.e every open that contains
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7 has a point in (7, 400). This means that for all U such that = € U, 7, UELI,,
therefore 7, REEOLI;. Following the same reasoning 7, R0, since 7 belongs to
the closure of (—oo, 7.

A point = belongs to the boundary of a set W whenever « belong to the closure of
W and X—W. By the above, 7 belongs to the boundary of (—oo, 7] and 7, RIEEO(LI; A
LIo).

A set W is closed if it contains its closure. The interval ¢(I;) = (—oo, 7] is closed
and this means that the formula OLI; — I; is valid.

A set W is dense it all opens contain a point of W. The set of rational numbers
1s dense which translates to the fact that the formula OLQ i1s valid. To exhibit the
reasoning in this logic, suppose that the set of rational numbers was closed then both
OLQ and OLQ — Q would be valid. This implies that @ would be valid which means

that all reals would be rationals. Hence the set of rational numbers is not closed.

2.2 MP and MP*

The axiom system MP consists of axiom schemes 1 through 10 and rules of table 1
(see page 12) and appeared first in [24].

The following was proved in [24].

Theorem 3 The arioms and rules of MP are sound and complete with respect to
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Axioms

1. All propositional tautologies
2. (A— OA) A (~A — O-A), for A€ A
3. 0(¢ = ¢) — (O¢ — OY)
4. O¢ — &
5. O¢ — O0O¢
6. K(¢ = o) = (Ko — Ky)
7. Ké — ¢
8. Ko — KKo
9. ¢ — KLo

10. KOg — OK¢

11. O0¢ — 0d¢

12. O(Kg Ah) ALO(KG A x) — O(KOP A O A LOY)

Rules
H
6o
¥
¢ . ¢ .
——  K-Necessitation —— [O-Necessitation
Ko O¢

Table 1: Axioms and Rules of MP*

12
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subset spaces.

We add the axioms 11 and 12 to form the system MP* for the purpose of ax-
iomatizing spaces closed under union and intersection and, in particular, topological
spaces.

A word about the axioms (most of the following facts can be found in any intro-
ductory book about modal logic, e.g. [6] or [13].) The axiom 2 expresses the fact
that the truth of atomic formulae is independent of the choice of subset and depends
only on the choice of point. This is the first example of a class of formulae which
we are going to call bi-persistent and their identification is one of the key steps to
completeness. Axioms 3 through 5 and axioms 6 through 9 are used to axiomatize the
normal modal logics S4 and S5 respectively. The former group of axioms expresses
the fact that the passage from one subset to a restriction of it is done in a constructive
way as actually happens to an increase of information or a spending of resources (the
classical interpretation of necessity in intuitionistic logic is axiomatized in the same
way). The latter group is generally used for axiomatizing logics of knowledge.

Axiom 10 expresses the fact that if a formula holds in arbitrary subsets is going
to hold as well in the ones which are neighborhoods of a point. The converse is not
sound.

Axiom 11 is a well-known formula which characterizes incestual frames, i.e. if two

points 3 and ~ in a frame can be accessed by a common point « then there is a point
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6 which can be accessed by both 8 and 7. It appeared in the equivalent form (in [24])
OB A COY — OO(d A1)

and was proved sound in subset spaces closed under (finite) intersection.
Obviously our attention is focused on axiom 12. It is sound in spaces closed under

(finite) union and intersection as the following proposition shows.

Proposition 4 Axioms 1 through 12 are sound in the class of subset spaces closed

under finite union and intersection.
PRrROOF. Soundness for Axioms 1 through 11 is easy. For Axiom 12, suppose
2, UEC(Kg A ) ALO(Kg A x).
Since x, UE=O(Kg A ), there exists U, C U such that
v, U EKé A ¢
and, since x, UEL(OK¢ A Oy), there exists y € U and U, C U such that
y, U =Ko A x.
We now have that U, U U, C U (we assume closure under unions.) Thus
z, U, UU,EKOe, 4, U, UUEKSe, 2, U, UU,EOY, and  y, U, UU,EOY.

Therefore,

2, UEO(KOd A Ov A LOY).
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With the help of axiom 12 we are able to prove the key lemma 33 which leads
to the DNF Theorem (page 45.) and this is the only place where we actually use
it. Any formula, sound in the class of subset spaces closed under finite union and

intersection, which implies the formula (note the difference from axiom 12)

S(Ke A1) ALO(K A x) — O(Ké A A Ly)

where C¢ — O¢, O — b and y — Oy are theorems, can replace axiom 12.



Chapter 3

A Semantical analysis of MP*

In this chapter we prove finite model property, decidability and (strong) reduction of
the theory of topological models to that of subset spaces closed under finite union and
intersection. The latter was a conjecture in [24]. All these are proved semantically
without using any complete axiomatization for these models, i.e. MP* | and in fact
preceded the results of the next chapter. The approach in this chapter seems unrelated

to the one of next chapter. We are able to relate both in the last section.

3.1 Stability and Splittings

Suppose that X is a set and .7 a topology on X. In the following we assume that
we are working in the topological space (X, .7). Our aim is to find a partition of .7,

where a given formula ¢ “retains its truth value” for each point throughout a member

16
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of this partition. We shall show that there exists a finite partition of this kind.

Definition 5 Given a finite family % = {Uy,...,U,} of opens, we define the

remainder of (the principal ideal in (.7, C) generated by) Uy by

Rem”Uy, = |Up— |J U

U ZU;

Proposition 6 In a finite set of opens . F = {Uy,...,U,} closed under intersection,

we have
Rem”U;, = LU; — U LU;,
U;cU;
fori=1,...,n.
Proor.

Rem? U, = LU; — Uv,gu, LU
= Ui — UUigUh l(Uh N Ui)

= Ui —Un,cu, WU

We denote Up.eo [Us with |7,

Proposition 7 If F = {U;,...,U,} is a finite family of opens, closed under inter-

section, then

a. Rem”ZU; N Rem“@U]‘ =0, fori#j,
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b. U, Rem”ZU; = |7, i.e. {Rem7U;}r, is a partition of |.F. We call such an

F a finite splitting (of |.7),

c. if Vi,V € Remin and Vo is an open such that Vi C Vo, C V3 then V, €

Remin, i.e. Rem? U, is conveu.
ProOOF. The first and the third are immediate from the definition.
For the second, suppose that V € |.% then V € Rem” Nve; Ui [

Every partition of a set induces an equivalence relation on this set. The members
of the partition comprise the equivalence classes. Since a splitting induces a partition,

we denote the equivalence relation induced by a splitting .% by ~ &.

Definition 8 Given a set of open subsets ¢, we define the relation ~%, on .7 with

Vi~ Vaifandonly if Vi CU < V, CU forall U € 9.

We have the following
Proposition 9 The relation ~; is an equivalence.

Proposition 10 Given a finite splitting F, ~'g=~g t.e. the remainders of F are

the equivalence classes of ~'5.
PROOF. Suppose Vi) ~'5 V; then Vi, V5 € Rem” U, where

U = (YU |WWCU, UecZ}.
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For the other way suppose Vi,V € Rem? U and that there exists U/ € .% such that
Vi C U’ while V3 € U'. Then we have that V; CU'NU, U'NU € .F and U'NU CU

i.e. Vi & Rem”U. .

We state some useful facts about splittings.

Proposition 11 If ¥ is a finite set of opens, then Cl(¥), its closure under intersec-

tion, yields a finite splitting for |9 .

The last proposition enables us to give yet another characterization of remainders:
every family of points in a complete lattice closed under arbitrary joins comprises a
closure system, i.e. a set of fixed points of a closure operator of the lattice (cf.
[12].) Here, the lattice is the poset of the opens of the topological space. If we
restrict ourselves to a finite number of fixed points then we just ask for a finite set
of opens closed under intersection i.e. Proposition 11. Thus a closure operator in
the lattice of the open subsets of a topological space induces an equivalence relation,
two opens being equivalent if they have the same closure, and the equivalence classes
of this relation are just the remainders of the open subsets which are fixed points of
the closure operator. The maximum open in Rem” U, i.e. U, can be taken as the
representative of the equivalence class which is the union of all open sets belonging
to Rem” U.

We now introduce the notion of stability corresponding to what we mean by “a

formula retains its truth value on a set of opens”.
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Definition 12 If ¢ is a set of opens then ¥ is stable for ¢, if for all x, either

z,ViE¢ for all V € 4 or x, VE—¢ for all V € 4, such that z € V.

Proposition 13 If %, ,%, are sels of opens then

a. if %4 C 9 and 9, is stable for ¢ then 4 is stable for ¢ ,

b. if % s stable for ¢ and 9 s stable for x then 4 N9, is stable for ¢ A x.
PROOF. (a) is easy to see while (b) is a corollary of (a). [

Definition 14 A finite splitting .% = {Uy,...,U,} is called a stable splitting for

o, it Rem” U, is stable for ¢ for all U; € .7,

Proposition 15 If % = {Uy,...,U,} is a stable splitting for ¢, so is
F' = C({Us, Uy, ..., U, }),

where Uy € | .Z.

PROOF. Let V € .Z’ then there exists U; € .Z such that Rem? V C Rem” U (e.g.
U =\U|U; € Z,V CU})ie F'is a refinement of #. But Rem? U, is stable for

¢ and so is Rem”'V by Proposition 13(a). [

The above proposition tells us that if there is a finite stable splitting for a topology
then there is a closure operator with finitely many fixed points whose associated

equivalence classes are stable sets of open subsets.
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Suppose that .# = (X,.7,1) is a topological model for .Z. Let .Z_, be a family of
subsets of X generated as follows: i(A) € .Z 4 forall A€ A, if S € F 4, then X -5 €
Ty, it S,T € F 4 then SNT € F 4, and if S € F 4 then S° € .Z 4 ie. F 4 is
the least set containing {i(A)|A € A} and closed under complements, intersections
and interiors. Let %, be the set {S°|S € F_ ,}. We have #°, = .7 , N 7. The

following is the main theorem of this section.

Theorem 16 (Partition Theorem) Let .# = (X,.7,i) be a topological model.

Then there exists a a set {F Y} e of finite stable splittings such that
1. Y C 7°% and X € FV, for adll ) € &,
2. ifU € FY then U¥ = {z € Ulz, Uy} € F 4, and

3. if ¢ is a subformula of 1) then F¢ C .FV and FV is a finite stable splitting for

¢,

where F_ 4, F°, as above.

PrOOF. By induction on the structure of the formula . In each step we take care

to refine the partition of the induction hypothesis.

e If ) = A is an atomic formula, then .Z4 = {X,0} = {i(T),7(L)}, since 7 is

stable for all atomic formulae. We also have F4 C F°, and XA = i(A) e Z 4.
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o If » = =¢ then let .F¥ = F?, since the statement of the proposition is sym-
metric with respect to negation. We also have that for an arbitrary U € .#V,
Uv =Ué.

o If b=y Ao, let

FV = C(FXU.F?).
Now, .#¥ is a finite stable splitting containing X, by induction hypothesis.
Observe that ZFX U .F¢ C FxN¢,

Now, if W; € .Z" then there exists U; € #X and V), € .Z#? such that
W,=U;NV, and RemgwI/Vi - Rem“gXUj N Rem“{}wWg

(e.g. U; = WULW; C U, Uy, € ZFX}and Vi, = (Vo [W: CV,, V,, € F9}.)
Since Rem”" U; is stable for x and Rem“@¢Vn is stable for ¢, their intersection
is stable for x A ¢ = ¢, by Proposition 13(b), and so is its subset RemngVi, by

Proposition 13(a). Thus .Z" is a finite stable splitting for 1> containing X.

We have that .#¥ C %, whenever X C % , and Z? C Z°,. Finally,

W =Uxnvy.

e Suppose ¥ = K¢. Then, by induction hypothesis, there exists a finite stable

splitting .#¢ = {U,,...,U,} for ¢ containing X. Let

Wi = (Ui(b)ov
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forall7 € {1,...,n}.

Observe that if € U; — W; then x, V-9, for all V € Rem9¢Ui and z € V,

since Rem9¢Ui is stable for ¢, by induction hypothesis.

Now, if V € Rem“%bUiﬂU/Vi, for some¢ € {1....,n}, thenz, Vg forallz € V,

by definition of W;, hence x, VIEK¢ for all x € V.

On the other hand, if V € Rem9¢Ui — |W; then there exists @ € V such that
x,VE-¢ (otherwise V. C W; .) Thus we have x, VI==K¢ for all + € V. Hence

Rem9¢Ui N [W; and Rem9¢Ui — | W; are stable for K¢. Thus, the set
F = {Rem7U;| W; & Rem”Z U;} U {Rem” U,;|[W,,Rem” U, N |[W,| W, € U;}

is a partition of .7 and its members are stable for K¢. Let ~p be the equivalence

relation on .7 induced by F' and let
TR~ QFPU{ W, | W, € RemT U, }).

We have that .ZK? is a finite set of opens and .Z¢ C .ZK¢. Thus, .ZK? is finite
and contains X. We have only to prove that FKé g a stable splitting for Ko,

i.e. every remainder of an open in FK? {5 stable for Ko.

If Vi oAp Vy, where Vi,V2 € 7, then there exists U = U; or W; for some

¢t =1,...,n such that V; C U while V52 € U. But this implies that V; + Vs,

FKs

zKe

Therefore {Rem U}Uef%m is a refinement of F and .ZK? is a finite stable

splitting for K¢ using Proposition 13(a).
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We have that .ZK?¢ C Z°, because W; € #°,, fori =1,...,n. Nowif U € FV

then either UK® = [ or UK? = 0.

e Suppose ¥ = O¢. Then, by induction hypothesis, there exists a finite stable
splitting . #¢ = {U,,...,U,} for ¢ containing X.
Let

F = CA(F?U{U; = U;| 1 <4,j <n}),

where = is the implication of the complete Heyting algebra .7 ie. V CU = W
it and only it VNU C W for V,UW € 7. We have that U = W equals
(X —(U—=W))°. Clearly, .Z7 is a finite splitting containing X and .#¢ C ..
We have only to prove that .Z#7¢ is stable for O¢. But first, we prove the

following claim:

Claim 1 Suppose U € .F? and U' € F"¢. Then

U'nUeRem”’U <= VNUE&ERem” U for all V€ Rem” U,

PROOF. The one direction is straightforward. For the other, let V' € Rem” " U’
and suppose VNU ¢ Rem” U towards a contradiction. This implies that there
exists U" € Z¢, with U” C U, such that V.NU C U”. Thus, V C U = U"
but U’ € U = U". But U = U" ¢ .#% which contradicts U’ ~gos V, by

Proposition 10. '
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Let U’ € .#5¢. We must prove that Rem? "“U/" is stable for O¢.

Suppose that x, U'E—=0¢. We must prove that
x, V! |:—|Dq§

for all V' € Rem? U such that z c V.

Since z,U'=-0¢, there exists V € .7, with @ € V and V C U’, such that
z,VE—¢. Since .Z? is a splitting, there exists U € .#¢ such that V € Rem”*U.

Observe that V. CU'NU CU,so U'NU € Rem9¢U, by Proposition 7(c).

By Claim 1, for all V' € Remng’, we have V' U € Rem” U. Thusifz € V'
then =, V' N UE=4¢, because Rem”*U is stable for ¢, by induction hypothesis.
This implies that, for all V’ such that V' € Rem” U and z € V., we have
z, V'E-DO¢.

Therefore, .#7¢ is a finite stable splitting for O4.

Now U; = U; € %°, for 1 <i,5 < n}, hence F7 C Z°,.

Finally, let U belong to .#% and V;,...,V,, be all opens in .#¢ such that
uny e Rem9¢‘/i, for e = 1,...,m. Then z,UE=C=¢ if and only if there
exists j € {1,...,m} with @ € V; and x, V;E—¢ because x,V; N UE—¢ since

VinU e Rem“%bvj. This implies that

Uttt = Ut = unJv.
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Since U, Vf(b,...,V“b belong to .% 4, so does U™"% and, therefore, U%¢ =

U—-u-oe,

In all steps of induction we refine the finite splitting, so if ¢ is a subformula of

then .#¢ C .Z¥ and ZV is stable for ¢ using Proposition 13(a). [

Theorem 16 gives us a great deal of intuition for topological models. It describes
in detail the expressible part of the topolocical lattice for the completeness result as it
appears in Chapter 4 and paves the road for the reduction of the theory of topological

models to that of spatial lattices and the decidability result of this chapter.

3.2 Basis Model

Let .7 be a topology on a set X and # a basis for .7. We denote satisfaction in
the models (X, .7,4) and (X, %,7) by =5 and =, respectively. In the following
proposition we prove that each equivalence class under ~ & contains an element of a

basis closed under finite unions.

Proposition 17 Let (X,.7) be a topological space, and let ZB be a basis for T closed
under finite unions. Let . be any finite subset of 7. Then for all V € F and all

x €V, there is some U € B withx € U CV and U € Rem” V.

PRrROOF. By finiteness of %, let V4,..., Vi be the elements of .# such that V € V;,

for v € {1,...,k}. Since V; # V, take a; € V=V, for ¢ € {1,...,k}. Since # is a



Chapter 3. A Semantical analysis of MP* 27

basis for .7, there exist U,,U;, with x € U, and z; € U;, such that U, and U, are

subsets of V for ¢ € {1,...,k}. Set

Observe that * € U, and U € A, as it is a finite union of members of #. Also

U e Rem?ZV, since U € [V but ULV, forie{l,... k}. [

Corollary 18 Let (X,.7) be a topological space, B a basis for T closed under finite

unions, v € X and U € #B. Then

r,UEz¢ <<= 2, UE4o.

ProOOF. By induction on ¢.

The interesting case is when ¢ = Ot. Fix x, U, and . By Proposition 16, there
exists a finite stable splitting .% for ¢ and its subformulae such that .# contains X
and U. Assume that z, Ul=_,0¢, and V' € .7 such that V C U. By Proposition 7(b),
there is some V' C U in .Z with V € Rem” V. By Proposition 17, let W € Z be such
that W € Rem”V’/ with z € W. So x, Wl=4t, and thus by induction hypothesis,

z, W= 5. By stability, twice, z, V= 51 as well. [

We are now going to prove that a model based on a topological space .7 is equiv-

alent to the one induced by any basis of .7 which is lattice. Observe that this enables
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us to reduce the theory of topological spaces to that of spatial lattices and, therefore,
to answer the conjecture of [24] : a completeness theorem for subset spaces which are

lattices will extend to the smaller class of topological spaces.

Theorem 19 Let (X,.7) be a topological space and ZB a basis for T closed under
finite unions. Let .41 = (X, T ,i) and My = (X, B, i) be the corresponding models.
Then, for all ¢,

%1 |:¢ < %2|:(/§

PROOF. It suffices to prove that z, Ul= 5 ¢, for some U € .7, if and only if z, U'[= ¢,
for some U’" € A.

Suppose z,Ul= ¢, where U € 7, then, by Corollary 18, there exists U’ € #
such that @ € U’ and z,Ul= ;6. By Corollary 18, z,U'l=4¢.

Suppose z, Ul= 46, where U € A, then z, U= ¢, by Corollary 18. [

3.3 Finite Satisfiability

Proposition 20 Let (X,.7) be a subset space. Let F be a finite stable splitting for
a formula ¢ and all its subformulae, and assume that X € % . Then for all U € F,

all x € U, and all subformulae o of ¢, x,Ul= 50 iff 2, U= 2.
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PrOOF. The argument is by induction on ¢. The only interesting case to consider is
when ¢ = 0.

Suppose first that z, U= 0 with U € F. We must show that z, U= ;.0 also.
Let V € .7 such that V C U; we must show that z, V= ,¢. By Proposition 7(b),
there is some V' C U in .Z with V € Rem”V’. So z,V'l= 21, and by induction
hypothesis, z, V'|= 5. By stability, «, V= 5 also.

The other direction (if , U= 0%, then x, U= ;0¢), is an easy application of
the induction hypothesis. 1

Constructing the quotient of .77 under ~ & is not adequate for generating a finite
model because there may still be an infinite number of points. It turns out that we
only need a finite number of them.

Let .# = (X,.7,1) be a topological model, and define an equivalence relation ~
on X by z ~ y iff

(a) forall U € 7,2 € Uiff y € U, and
(b) for all atomic A, x € i(A) iff y € ¢(A).

Further, denote by z* the equivalence class of z, and let X* = {2*: « € X}. For
every U € T let U* = {a*: 2 € X}, then 7" ={U*: U € T} is a topology on X*.
Define a map ¢* from the atomic formulae to the powerset of X* by ¢*(A) = {a* : z €

i(A)}. The entire model .# lifts to the model .#Z* = (X*, . 7% ¢*) in a well-defined

way.
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Lemma 21 For all z, U, and ¢,

v, U 0 iff 27U 4.0

ProOOF. By induction on ¢. [

Theorem 22 If ¢ is satisfied in any topological space then ¢ is satisfied in a finite

topological space.

PROOF. Let .# = (X, .7 i) be such that for some x € U € 7, x,UE_,¢. Let Z?
be a finite stable splitting (by Theorem 16) for ¢ and its subformulae with respect to
. By Proposition 20, z, U= , ¢, where 4" = (X, .#,7). We may assume that .7 is
a topology, and we may also assume that the overall language has only the (finitely
many) atomic symbols which occur in ¢. Then the relation ~ has only finitely many

classes. So the model .47 is finite. Finally, by Lemma 21, «*, U*= , . ¢. [

Observe that the finite topological space is a quotient of the initial one under
two equivalences. The one equivalence is N?z on the open subsets of the topological
space, where .#? is the finite splitting corresponding to ¢ and its cardinality is a
function of the complexity of ¢. The other equivalence is ~x on the points of the
topological space and its number of equivalence classes is a function of the atomic
formulae appearing in ¢. The following simple example shows how a topology is

formed with the quotient under these two equivalences
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FExample: Let X be the interval [0,1) of real line with the the set
1
T o= {0 (=002 )

as topology. Suppose that we have only one atomic formula, call it A, such that
i(A) = {0}. then it is easy to see that the model (X, .7,¢) is equivalent to the finite
topological model (X*,.7* i*), where
X = A{wm )
T = { @,{1’1,1}2} }7 and

i(A) = {a}.

So the overall size of the (finite) topological space is bounded by a function of the
complexity of ¢. Thus if we want to test if a given formula is invalid we have a finite
number of finite topological spaces where we have to test its validity. Thus we have

the following
Theorem 23 The theory of topological spaces is decidable.

Observe that the last two results apply for lattices of subsets by Theorem 19.



Chapter 4

Completeness for MP*

Open subsets of a topological space were used in [24] and in the previous section to
provide motivation, intuition and finally semantics for MP*. But in this chapter we
shall show that the canonical model of MP* is actually a set of subsets closed under
arbitrary intersection and finite union, i.e. the closed subsets of a topological space.
However, these results are not contrary to our intuition for the following reasons: the
spatial character of this logic remains untouched. The fact that the canonical model is
closed under arbitrary intersections implies strong completeness with the much wider
class of sets of subsets closed under finite intersection and finite union. Now, the
results of the previous section allow us to deduce strong completeness (in the sense
that a consistent set of formulae is simultaneously satisfiable in some model) also for

the class of sets of subsets closed under infinite union and finite intersection, i.e. the

32
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open subsets of a topological space.

4.1 Subset frames

As we noted in section 2.1, we are not interpreting formulae directly over a subset
space but, rather in the pointed product X x &. The pointed product can be turned
in a set of possible worlds of a frame. We have only to indicate what the accessibility

relations are.

Definition 24 Let (X, 0) be a subset space. Its subset frame is the frame
(Xx O, R, Rg),
where
(¢, U)Ra(y,V) if U=V

and

(¢, U)Rk(y,V) if x=yand V CU.

It & is a topology, intended as the closed subsets of a topological space, we shall call

its subset frame closed topological frame.

Our aim is to prove the most important properties of such a frame. We propose the
following conditions on a possible worlds frame .% = (S5, Ry, R2) with two accessibility

relations
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1. R; is reflexive and transitive.

2. Ry is an equivalence relation.

3. BBy C Ryly

4. (ending points) .# has ending points with respect Ry, i.e

for all s € S there exists so € S such that for all s’ € S if sR;s’ then

S/RlSo.

5. (extensionality condition) For all s,s" € 5, if there exists sq € S such that sRysg

and s'Rysg and

for all ¢t € S such that t Rys there exist ¢/, 1y € S such that ¢’ Rys’, t Ritg
and t'Rtg, and for all ¢ € S such that ' Rys’ there exist ¢,y € S such

that tRQS, t/tho and ttho,

then s = s'.

6. (union condition) For all 51,59 € 5,

if there exists s € S such that sRyRis1 and sRyRys,, then there exists

s’ € S such that for all ¢t € S with tRys’ then t Ry Rys; or R Rsss.

7. (intersection condition) For all {s;}e; € 9,



Chapter 4. Completeness for MP”* 35

if there exists s € S such that s;R;s for all © € [ then there exists
s" € S such that for all {¢;} C S with ¢;Rys; and ;Rytg for all ¢ € [

and some tg € S then t;R; Rys’.
8. The frame .# is strongly generated in the sense that

there exists s € S such that for all s € S, sRyRs’.

We have the following observations to make about the above conditions. Con-
ditions 1 to 6 and 8 are first order, while the intersection condition is not. The

extensionality condition implies the following
for all s,s" € S such that sRysg and s'Rys9 then s = &

which implies that By N R is the identity in S. In view of the extensionality condition
the relation R; is antisymmetric. So we can replace condition 1 with the condition
that Ry is a partial order.

Now, we have the following proposition

Proposition 25 If(X,.7) is a topological space then its closed topological frame F o

satisfies conditions 1 through §.

Proor. Let Ry = Rg and Ry = Rk. Conditions 1, 2, 3 are straightforward. For
each (x,V) € Xx.7 the pair (z,Nyer U) is its ending point with respect Rg and

condition 4 is satisfied. The extensionality condition represents the set-theoretic
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extensionality of the space. The union and intersection condition is satisfied because
7 is closed under finite unions and infinite intersections, respectively. Finally, .%o

is strongly generated by (2, X) for any « € X. [

The above proposition could lead to the consequence that topological models are
possible worlds models in disguise. But the following theorem shows that this is not

the case. There is a duality.

Theorem 26 Let .7 = (S, Ry, Rs) be a frame satisfying conditions I through 8. Then

Z is isomorphic to a closed topological frame F .

PROOF. We shall construct a topological space (X,.7) and a frame isomorphism f

from # to . Let

X = {s]sé€Sisanending point of .7 }

and

T = {U|teS}u{}

We also let

s € U, if there exists s’ such that s"R;s and s'Ryt.

Note that, using conditions 1, 2, 3 we can show that

if s € U; implies s € Uy then U: C Uy
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and, by the extensionality condition,

U =Uy if and only if tRyt.

Therefore the above settings are well defined.

It only remains to show that .7 is closed under infinite intersections and finite
unions. For the former we must show that (;c; Uy, belongs to .7, for U, € 7, 1 €
I If Mier Uy, = 0 we are done. If not, then there exists s € Uy, for all ¢ € I.
This, by definition, implies that there exist {s;};c; such that s;Rst; and s;Rys. Now,
intersection condition applies and let s’ be as in condition 7. We shall show ;e Uy, =
Ug. For the left to right subset direction, let r € (;c; Uy;. This implies, by definition,
that there exist {r;};c; € S such that r;Rys;, thus r;Ryt;, and r;Ryr for all ¢ € I.
By the intersection condition r; Ry Rys’, and therefore r € Uy. For the other subset
direction, let r € Uy. Then there exists ' € S such that ' Ryr and r Rys. Condition 3
implies that there exist {r;};er € 5 such that r; Ryt; and r;Ryr, thus r € N;e; Uy, for
all 7 € I. Therefore N;c; U, = Ul € 7.

We can prove similarly that U, UU;, = U., s’ as in the union condition, using the
union condition and condition 8.

Let f be the map from S to X x.7 defined in the following way

where sg is the ending point of s in .%.
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The map f is a frame isomorphism. If (s,U;) € X x.7 then there exists s’ € §
such that s'Rys and s'Rat. We have f(s') = (s,U;) and f is onto.

Let f(s) = f(r) = (so,U;) for some s,30,7,t € S. We have that sRysq, rRyso,
sRyt, and rRyt. By extensionality property, s = r and f is bijective.

Now observe that

tRys if and only it U, C U,
if and only if (to, U;)Ra(to, Us)
if and only if f(t)Raf(s),

where tg is the common ending point of ¢ and s in .#. We have also

tRys if and only if U, = U,
if and only if (o, Us)Rk(s0, Us)
if and only it f(t) Rk f(s).
Therefore [ preserves the accessibility relations in both directions and is a frame

isomorphism. [

Note that, in the above definitions, we could have used equally well the equivalence
class of s € S under the equivalence induced by the symmetric closure of Ry instead
of the ending point of s in .#. The above proofs show that the crucial conditions are
conditions 1 through 5 and if we are to strengthen or relax the union and intersection
conditions we get accordingly different conditions in the lattice of the set of subsets

of the space. The same holds for condition 8. We only used this condition to show
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that there exists a top element, i.e. the whole space, and satisfy the hypothesis of
the union condition. If we do not assume this condition the union of two subsets will
belong to the set of subsets if they have an upper bound in it. We state this case

formally without a proof because we are going to use it later.

Proposition 27 1. Let (X, O) be a subset space closed under infinite intersections
and if U,V € O have an upper bound in O then U UV € &. Then its frame

F ¢ satisfies conditions 1 through 7.

2. A frame F satisfying conditions 1 through 7 is isomorphic to a frame F s where

(X,0) asin (1).

4.2 On the proof theory of MP*

We shall identify certain classes of formulae in .#’. This approach is motivated by the
results of Chapter 3. In fact, these formulae express definable parts of the lattice of

subsets (see section 3.1.)
Definition 28 Let .’ C £ be the set of formulae generated by the following rules:

o, e L’ b

ACY -
- oNY e -0, OKg € £

Let 2" be the set {Ko,Lo|o € Z'}.

Formulae in ¢’ have the following properties
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Definition 29 A formula ¢ of .Z is called persistent whenever ¢ — O¢ is a theorem
(see also [24].)

A formula ¢ of .Z is called anti-persistent whenever —¢ is persistent, i.e. =¢ —
O-¢ (or, equivalently O¢ — ¢) is a theorem.

A formula ¢ of £ is called bi-persistent whenever (¢ — 0¢) A (m¢ — O=¢) (or,

equivalently G¢ — O¢) is a theorem.

Thus the truth of bi-persistent formulae depends only on the choice of the point
of the space while the satisfaction of persistent formulae can change at most once in
any model. We could go on and define a hierarchy of sets of formulae where each
member of hierarchy contains all formulae which their satisfaction could change at
most n times in all models.

All the following derivations are in MP* (Axioms 1 through 12 — see table at

page 1.)

Proposition 30 All formulae belonging to £’ are bi-persistent.

ProoOF. We prove it by induction, i.e. bi-persistence is retained through the appli-

cation of the formation rules of .%’.

o If A is atomic then A is bi-persistent because of axiom 2.

o If ¢ = =) then ¢ is bi-persistent by induction hypothesis (IH) and the fact that

bi-persistence is a symmetric property with respect negation.
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o if ¢ = OCKy then we have the following

1.

2.

3.

4.

and

1.

2.

3.

4.

OKyp — OKOyp by TH
OKOyp — COKy by Axiom 10
OOKy — OCKy by Axiom 11

OKyp — OOCKy by 1,2,3

~OKep — O-Kab
O0-Ky — 00-Ky by Axiom 5
O0-Ky — O-OKy)

~OKyp — O0-OKy by 1,2,3

therefore ¢ is bi-persistent.

o If o =1 Ay then we have

1.

2.

and

1.

Y Ay — Oy AQy by TH

O A Oy — O(p Ax) in S4

(Y Ax) = YV oy

D—@/) vV O-y — D(_|77Z) \Y _‘X) in S4

D=V =x) — O=( A x)

- Ax) = 0= A x) by 1,2,3,4

41
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A faster (semantical) proof would be “the initial assignment on atomic formulae
extends to the wider class of .Z’”! This implies that formulae in .’ define subsets of
the topological space.

Formulae in .Z” have similar properties as the following lemma show.
Lemma 31 If ¢ is bi-persistent then Ko is persistent and Lo is anti-persistent.

Proor.

1. OLe — LO¢ by Axiom 10

2. LOo — Lo by bi-persistence of ¢.
Similarly Fyps K¢ — OKe.

We prove some theorems of MP* that we are going to use later.
Lemma 32 If ¢ is bi-persistent then Fyp O(¢ A ) = Oo A O

PrOOF. The one implication is straightforward, by normality. For the other
1. OCop A Op — O A O by bi-persistence of ¢

2. 00 AN O — O(pAv)  in a normal system.

The following is the key lemma to the DNF Theorem and generalizes Axiom 12

Lemma 33 For all n,

Favps OKé A /n\ L(OKg A tpy) — O (qu A /n\ L;Z)n) ,
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where ¢, ; are bi-persistent.

ProOF. By induction on n.
Forn=1

Fape OKé A L(OKS A 1) — (Ko A Lib),

follows by Axiom 12 and bi-persistence of ¢ and . Suppose that the lemma is true
for n = k.

Forn=Fk+1

L. OKp A L(CKo Apr) Ao AL(CKG A ) A L(OK A thpt1)
— O(Ke A Liby .. A L) A L(OK@ A tbyy) by TH,
2. O(Kg A Lpy ..o A Labg) A L(OKG A 1)
— O(Kd A O(Lpy Ao ALk A Leyy) by Axiom 12,
3. O(Kg A O(Lapy A voo A Lbg) A Ltbggr)
— O(Kd ALy A AL ALery) by Lemma 31,
4. OKo A L(OKg Ath1) Ao o AL(OKG A b)) A L(OKD A thpiq)

— O(Kep ALy Avoo A Lo A Libgyq) by 1,2,3.

All formulae of £’ can be expressed in terms of bi-persistent, persistent and

antipersistent formulae by means of the following normal form.
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Definition 34

1. ¢ is in prime normal form (PNF) if it has the form
b AKY' AN L
=1
where ¢, 1, € £ and n is finite.

2. ¢ is in disjunctive normal form (DNF) if it has the form V7, ¢;, where each ¢,

is in PNTF and m is finite.

To keep the notation bearable we shall omit the cardinality of (finite) conjunctions
and disjunctions, writing, e.g. V; ¢; instead of V| ¢,. Suppose that ¢ is a formula
in the following form

A\ (m VLpiy vw) :
4 J
where ;, Z’,L/Jf € 2. We shall call such a form conjunctive normal form (CNF).

Using the distributive laws, we get the equivalent formula

V(A pust, npnecs).
lg mg n

k

Since <’ is closed under negation and conjunction and K distributes over conjunc-

tions, we can express the above formula in the following form

V (Xk AKX AN LX}?’“) :

k Mg

where Yk, X%, X2 " belong to .Z”’. So ¢ is equivalent to this formula which is in DNF.

Therefore DNF and CNF are effectively interchangeable up to equivalence.
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We now give the formal analogue of the Partition Theorem.

Theorem 35 (DNF) For every ¢ € L, there is (effectively) a o in DNF such that

|_1\/IP* gb = 77/)

ProOOF. By induction on the logical structure of ¢.

o If ¢ = A, where A is atomic, the result is immediate because the set of atomic

formulae belongs to £’ and A is in PNF.

e Suppose that ¢ = —¢p. Then, by induction hypothesis, ¢ is equivalent to a
formula in DNF, which implies that ¢ is equivalent to a formula in CNF and,

by the above discussion, is equivalent to a formula in DNF.

o If o =1 V x then ¢ is equivalent to a disjunction of two formulae in DNF| i.e.

is itself in DNF.

o If ¢ = K¢ then ¢ is equivalent to a formula in CNF, and hence ¢ is equivalent

to a formula of the following form
/\K (xi\/ LXQV\/KX?) :
4 J
since K distributes over conjunctions. Now , since the formula K(¢ vV Ki) <

Ko V Kt is a theorem of S5, the above formula is equivalent to

/\ (LX; \% (KXi \% \/Kxf)) ,
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which is in CNF.

o If ¢ = O then, by induction hypothesis, ¢ is equivalent to a formula of the
form
oV (Xi ANKXEAN LX?) :
4 J
Since < distributes over disjunctions in every normal system, the above formula
is equivalent to
Vo (Xi ANKXGA N LX?) :
4 J

By Lemma 32, it is equivalent to

K3

V (<>Xi A (Kx2 A /\LX?)) : (1)

Using theorems of S4 for O and S5 for K, and Lemma 31, formula 1 implies

\/ (Xi AOKYG A AL (<>KX; A Xf)) : (2)
@ J

By Lemma 33, formula 2 implies formula 1 and hence they are equivalent. Ob-
serve now that OKy! belongs to £’ and, since £’ is closed under conjunctions,

the last formula is in DNF. This is the only step of the proof which makes use

of Axiom 12. Thus ¢ is equivalent to a formula in DNF.

This completes the proof. [

The DNF theorem is the most important property of MP*. An immediate corol-

lary is that, as far as MP* is concerned, we could have replaced the O modality with
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OK, since the formulae in normal form are defined using these two modalities. Almost
all subsequent proof theoretic properties are immediate or implicit corollaries of the
DNF Theorem.

We close this section with the following proposition, which together with Axiom 11

shows that O is equivalent to <&O.
Proposition 36 For all ¢ € £, Fypr OO¢ — OO
PROOF. Since (see [6] p.146)
S4U{B(¢ V) — (CBg VvV OOY)} - OCe — OO,

and

S4 U {0C¢ — OOg} F O(¢p Vep) — (OOg Vv OO,

we have only to show that

Fvpr OO0y — OO,

where % is in prime normal form. For that, consider the following derivation in MP*

1. 0o (;/; A K" A /n\ L;z;i)
=1
— O (p ANOKY' A AL, L) by Lemma 32,

2.0 (¢ A K" A /n\ Lz/a)

=1

— P A OKY' A AL, OLyy,
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3. AOKY' A A DLy
=1

— O (P ANKY' A AL, OLy;) ¢ and OLy; are bi-persistent,

4. & (;/; A K" A /n\ DL;@)

=1

— O ANOKY' A AL, OLy;) by Lemma 32,

5. O (¢ A OKep' A /n\ DL@/)Z')

=1

= OO (¢ A K AN Laby).

4.3 Canonical Model

The canonical model of MP* is the structure
G = (Sv {R\jv RK}v v) )

where

S ={s C.Z|s is MP*-maximal consistent},
sRat iff {¢p € £|0¢ € s} Ct,
sRkt iff {¢ € ZL|K¢ € s} C t,

v(A)={se S|A €S},
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along with the usual satisfaction relation (defined inductively):

skE A iff sewv(A)
s fmol
S0 iff s fei0
sE.oNY ff sk ¢ and skt
sE0¢ iff for all t € S, sRgt implies tf=¢
sE Ko iff forallt € S, sRkt implies tl=_¢.
We write €l=¢, if si=¢ for all s € S.
A canonical model exists for all consistent bimodal systems with the normal axiom
scheme for each modality (as MP and MP*.) We have the following well known

theorems (see [6], or [13].)

Theorem 37 (Truth Theorem) For all s € S and ¢ € £,

sEL0 iff o € s.

Theorem 38 (Completeness Theorem) For all ¢ € L,

C=o  iff  Fwmpe 9

We shall now prove some properties of the members of 4. The DNF theorem
implies that every maximal consistent theory s of MP* is determined by the for-

mulae in ¢’ and " it contains, i.e. by s N .2’ and s N Z". Moreover, the set
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{Ko,Lo|Ko, Lo € s} is determined by s N .2 alone (this is the K-case of the DNF
theorem.)

The following definition is useful

Definition 39 Let P C .. We say P is an £’ theory if P is consistent and for
all ¢ € L' either ¢ € P or —¢ € P.
Let S C Z”. We say S is an 2" theory if S is consistent and for all ¢ € £

either ¢ € S or ~¢p € S.

Hence, s N 2" is an £’ theory and s N .Z" is an £ theory.

What about going in the other direction? When does an .Z’ theory and 2"
theory determine an MP* maximal consistent theory? When their union is consistent
because in this case there is a unique maximal extension. To test consistency we have

the following lemma.

Lemma 40 If P and S are an L' and " theory respectively then PUS is consistent
if and only if

if ¢€ P then Loe€Ss.

PROOF. Suppose that PUS is not consistent then there exists ¢ € P and {L¢;}"; C 5

such that

Favpe A\ Lo — -,
=1
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which implies, since K distributes over conjunctions,

Fvpe /\ Loi — K=o

=1
Therefore =Ly € S and Loy ¢ S. The other direction is straightforward because

o — Lo.

It is expected that since .’ and .Z” theories determine MP* maximal consistent

sets they will determine their accessibility relations, as well.

Proposition 41 For all s,1 € 5,
a. sRat if and only if i. ¢ €t if and only if ¢ € s, where ¢ € L,
it. if Lo €t then Lo € s, where ¢, € L.
b. sRkt if and only if K¢ €t if and only if K¢ € s, where ¢ € L.
PROOF. For (a), right to left, let ¢ € ¢ then, by the DNF Theorem, ¢ has the form

V (Xi/\ Kxi/\/\LXf) :

i J

where v, x/, Xi € 2" Then C¢ has the form

o\ (Xi/\ Kxé/\/\fo) :
7 J

which is equivalent to

% (xi A OKNEA AL (OKEA xz?)) ,

i J
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as in the proof of the DNF Theorem. Observe here that, in the case where ¢ € ., if
K¢ € t then OK¢ € t which implies that OK¢ € s. Thus, by «(i) and a(ii), ¢ € s.
Therefore, sRgt.

For the other direction, a(i) is straightforward using the bi-persistence of ¢. For
a(ii), if L¢ € t then OL¢ € s and use Lemma 31 to show that Lo € s.

For (b), right to left, we proceed as above. Let K¢ € ¢, then, by the DNF Theorem,

it has the following form

K3

A (LX2 vV Kx?) :
J
where \\, \? € &' Thus K¢ € s.

The other direction is straightforward by the definition of Rk. [

From the above proposition we have that for all s, € S, if sRgt then s N.¢' =
tNZ" and if sRkt then sN.Z" =t N .L".

We write Rk Rg for the composition of the relation Rk and Rg, i.e. if s, € S, we
write s Rk Rat if there exists r € S such that sRgr and rRgt. Similarly for RgRk.

For the composite relation Rk Ra and RgRK we have the following corollary of

proposition 41, which we stay here without proof

Corollary 42 For all s,1 € S,
a. sRaRkt if and only if i. if ¢ € s then Lo € t, where ¢ € L',
it. if Lo €1 then Lo € s, where ¢, € L.

b. sRxRat if and only if if Lo €1 then Lo € s, where ¢ € L.
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We shall now prove that the canonical model & of MP* satisfies the conditions

of Section 4.1 on page 33.

Proposition 43 The relation R is reflexive and transitive.

PrOOF. Holds in every system containing S4. [

Proposition 44 The relation Ry is an equivalence relation.

PrOOF. Holds in every system containing S5. [

Lemma 45 For all s,t € S, if sRaRkt then sRkRat.

PROOF. See [24]. Tt is immediate using Axiom 10. '

The relation Rg has ending points as shown in the following proposition.

Proposition 46 For each s € S, there exislts so € S with sRase such that for all

s'€ S, if sRas’ then s'Rosg.

PRroOOF. Let

A = sn.y,
B = {lgloe 2, Olges),

C = {Kg|¢€.2', OKé € s).
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Now, the set T'= BU (' is an .Z" theory. T is consistent. If not, then there exist

Loy,..., Lo, € B and K¢’ € C such that

Fyvp* Loy Ao A Lg, — =Ko,

and thus

Fyvp+ OLgy A ... A OLg, — O-Ko.

But the formula at the left of the implication belongs to s. Therefore O-K¢ € s so
—~OKg¢ € s, a contradiction. Now, for ¢ € &’ either Lo € T or -Lo € T

Observe that if ¢ € A then OL¢ € s and therefore L¢ € T', by definition. So AUT
has a unique maximal extension, by Lemma 40, call it so.

For all s € S (sincluded) such that sRgs’ we have that sN.Z" = N.Z" = soN.L’
and if Lo € s then OL¢ € s so Lo € s'. Thus s’ Rosg using proposition 41. Therefore

S0 1s the ending point of s. 1

The above proposition implies that s and s’ have a common ending point if and
only if sN.Z" = s NZ". The one direction comes from proposition 41, while the
other from the proof of the above proposition because the construction of the ending

point of a maximal consistent theory s depends solely on s N .Z".

Proposition 47 The canonical frame of MP* satisfies the extensionality condition

of Section 4.1.
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PROOF. We have to prove that for all s,s" € 5, if there exists so € S such that sRgsg

and s'Rgso and

for all ¢ € S such that ¢t Rks there exist ¢/, ¢y € S such that t' Rgs', t Rato
and t'Rgtg, and for all ¢ € S such that ¢ Rgs’ there exist ¢,#y € 5 such

that tRKS, t/RDtO and tRDto,

then s = &'

Since s and s have a common child s N .Z" = ' N .Z".

We have only to show that s N 2" = s'N.Z". For that suppose that L¢ € s with
¢ € L', then there exists t € S such that {Rks and ¢ € . By the hypothesis of the
condition there exist ¢,ty € S such that ¢'Rks’, t Rotg and ¢/ Rotg. This implies that

INZ =t'NY, so¢ et and Lo € s'. the other direction is similar. Therefore

Proposition 48 The canonical frame of MP* satisfies the union condition of sec-

tion 4.1.

PrOOF. We have to show that for all sq,s9 € .5,

if there exists s € 5 such that sRgRas; and sRk Rasz, then there exists

s" € S such that for all £ € S with tRks’ then t RgRKs1 or t Ra Rk ss.

Let

A= {Ko|Koe(sins)nL"}
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and

B = {LlY]|Lpe(siUsy)NL"}.

We shall show that T'= AU B is an .Z” theory. It is clear that for all ¢ € £, either
Lo or =L¢ belongs to T. Suppose T' is consistent. If not, there exist K¢ € A and
{L;}"_, € B such that

Fyvpr — (Kq§ A Z\IL;/)Z) :

Then

Fpe O (K¢A A Lm) ,

=1
which implies
I (<>K¢ A /n\ L(OKe A m)) .
=1

Since {Lih;}", C B there exist {£;}", C S such that either {;Rks; or {;Rss
and Ly € ¢ for all i € {1,....n}. Since Ké € A, we also have that Ké € ; for
all i € {1,...,n}. In particular, OK¢ € t; and L(OK¢ A ¢) € t;. Now choose
io € {1,...,n}. Since sRxRos, and sRxRas, there exists ¢ Rat;, and tRk Ros; and

t Rk Ross. Therefore, OK¢ € t and Ly; € t, by proposition 41 (a) and corollary 42.

Therefore

(<>K¢ A /n\ L(OKg A ;z;i)) €t

=1

which is a contradiction. This proves that T is an 2" theory.
Observe here that we could have defined T for an infinite number of s;’s, for an

infinite version of the union condition, and still get an .Z” theory. It would be the



Chapter 4. Completeness for MP”* 57

rest of this proof that would not work. If it did then the canonical model would have
satisfied an infinite version of the union condition.

Now the required s’ of the condition is any maximal extension of T. Suppose
neither s’ Rg Rk s1 nor ' Ro RKsy. Then by definition and corollary 42, it must be the
case that there exist ¢1, 02 € s’ N2’ such that Lg; € 51 N.Z" and Loy & s N L.
But then we have that, for ¢ = ¢ A ¢y € ' N L', Lo € s and Lo & sy but L € T
which is a contradiction. Similarly for any ¢ € S such that tRks’ because T' C ¢ and

the rest of the condition is satisfied. '

Proposition 49 The canonical frame of MP* satisfies the intersection condition of

Section 4.1.

PrOOF. We have to show that for all s; € 5, ¢ € [,

if there exists s € S such that s; Rgs for all ¢+ € I then there exists s' € §
such that for all {¢;} C S with ¢;Rks; and ¢; Raty for all ¢ € I and some

to € S then t;RoRgs'.
Let {t!}icrjes all subsets of S such that
for all y € J, t?RKSZ' and there exists ¢} € S such that tngté.

This class is not empty since {s;};es. Let

A={Ksloec |J ting}

el et
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and

B={Kéloec () ting}.

el et

We shall show that 7" = AU B is an .Z” theory. It is clear that either L¢ or —L¢
belongs to T'. Suppose T' is consistent. If not, there exist K¢ € A and {Lyy}7_, C B

such that

Fvpr — (qu A /n\ I—@Z)k) .

k=1

Then

Fvpe O (K¢A A Lm) ,

k=1

which implies

FMPp* — (<>Kq$ A /n\ L(OKo A ;/;k)) .

k=1

Each tf contains OK¢ because K¢ € ). To see that suppose K¢ ¢ ). Then
there exists £ € .S such that tRKté and —¢ € t. Lemma 45 implies that there exist
{t;}ier € S such that t;Rat and t;Rks;. But =¢ € t; for all ¢ € [ hence L=¢ € T', a
contradiction.

Now, for each k, 1 < k < n, choose tf(’j such that iy € tf(’j The choice of

is irrelevant since ¢! contain the same formulae in £’ for all i € I. We now have

OKo Ay, € tf(’j and therefore

(<>K¢/\ /n\ L(OKg A ;z;k)) € s,

k=1

Therefore ¢ is an .Z" theory.
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Now let s’ be any maximal extension of T'. If ¢ € tf N.Z" then Ly € T and thus
Lo € s and if L¢ € ' N L" then Lo € tf By Corollary 42, we have that tfRDRKS’

for all 2 € I and j € J. Therefore the intersection condition is satisfied. [

Corollary 50 The canonical frame of MP* is isomorphic to a subset frame Fg,
where (X., 0.) is a subset space closed under infinite intersections and if U,V € O.
have an upper bound in O, then U UV € O..

PrOOF. By Proposition 27, and Propositions 43 through 49. [

By the construction of Theorem 26, X, consists of the ending points of the mem-
bers of the domain of the canonical model. We define the following initial assignment
le

i(A) = {so]|A€so}.

In this way the model .#Z = (X., 0.,i.) is equivalent to the canonical model as a

corollary of frame isomorphism.
Corollary 51 For all s € S and ¢ € £ we have

¢ €s if and only if so,Us= 0.

Definition 52 A subset X of S, the domain of the canonical model %, is called

KO-closed whenever

if s € X, and sRat or sRkt, then té& X.
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The intersection of KO-closed sets is still closed, therefore we can define the smallest
KO-closed containing ¢, for all ¢ € S. We shall denote this set by S*. For t € S, we
define the model

¢ = (S, RL. Ri.v') .
where Rfy = Ro |sv and Ry |st, i.e. the restrictions of Rn and Rk to S*. We shall

call this model the submodel of € generated by t.

Proposition 53 The frame of a submodel €* is isomorphic to a closed topological

frame.

PROOF. Observe that since the domain is KO-closed the frame is strongly generated.
The rest of the conditions are inherited from the canonical frame. Now the proposition

follows from Theorem 26. ]

Now as above we have the following corollary
Corollary 54 A submodel € is equivalent to a closed topological model.

It is a well known fact that a modal system is characterized by the class of gen-

erated frames of the canonical frame.

Proposition 55 The system MP* is (strongly) characterized by closed topological

frames.
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Since the axioms and rules of M[P* are sound for the wider class of subset spaces

with finite union and intersection, we also have the following.

Proposition 56 The system MP* is (strongly) characterized by subset frames closed

under finite unions and intersections.

Now by Proposition 55 and 56, Corollary 18 and Theorem 19 of Chapter 3, where
we proved the equivalence of a topological model with the model induced by a basis

closed under finite unions, we have the following corollary

Corollary 57 The system MP* is (strongly) characterized by open topological frames

as well as subset frames closed under infinite unions and intersections.

4.4 Joint models

In this section we are going to prove that the canonical model is strongly generated, in
the sense that there is a world in it which access every other using the relation Rk Rg.
This translates to the fact that the canonical model as a set of (closed) subsets has
a greatest element (a universe), i.e. it represents a topological space. The usual way
to proceed in this case (see [19]) is to prove a rule of disjunction but the question is
which one. In uni-modal logics we use the primitive modality which determines the
accessibility relation. Here O determines the partial order but, not surprisingly, we

must also use K. It turns out that we do not need such a rule in full generality but
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only with respect to bi-persistent formulae. What we want to prove is the following

rule
if Fuvp Kor VKo V...V Ko, then Fmp* ¢, for somez, 1< <mn,

for ¢1, ¢2,..., 0, € Z’. Note that the disjunction rule does not hold for S5.
In the following we shall assume that Xy, Xs,..., X, are disjoint. This is with-
out any loss of generality since we can always replace a topological model with an

equivalent one using a distinct (but homeomorphic) topological space.

Definition 58 Let (X1, 71, v1), (X2, D5, v2),... (X, T4, v,) be a finite number of

topological models. Their joint model is (X, 7, v) where

n

7 is the topology generated by the subbasis U 7

=1

and

v(A) = [Jwvi(A4), for each atomic formula A.

=1

As this construction was defined, it brings us from topological models to topo-
logical models and the accessibility relations between points and subsets in the old
models are transferred to the new one. We only add more by adding more subsets.
Observe that the truth assignments for the atomic formulae remain the same and

that extends to bi-persistent formulae.



Chapter 4. Completeness for MP”* 63

Proposition 59 MP* provides the above rule of disjunction.

PRrOOF. By contradiction. Suppose that none of ¢1, ¢, ..., ¢, is a theorem of MP*.

Since topological models characterize the system, there are

<X17 L7.171)1>7 <X27 %7v2>7 s <Xn7 L77.”L7vn>

and xq,22,...,x, belonging to X1, Xs,..., X, respectively such that x; & v;(¢;) for

1 << n. Let (X,.7,v) be the joint model of

<X1, %,1)1% <X2, %,1)2% Ce <Xn, Z,Un>.

Then we have z; € v(¢;) and therefore x, X|E==K¢; for all # € X and 1 <7 < n.
Therefore Koy V Koy V...V Ko, is not a theorem of MP*. [

We can similarly prove a stronger disjunction property, namely

it e Ko — Koy VKéo V...V Ko,

then Fyppr Ko — ¢,  for somez, 1 <:<n,

for ¢, ¢1, day. .., 0, € L.

Now we are able to prove the following

Theorem 60 The canonical model of MP* is strongly generated.

PRroOOF. Let

T = {K¢| Fap+ 6, 6 € £/} U {L| Yagp- ~6,6 € £7).
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The set of formulae T is an " theory. For consistency suppose that
Fvps = (Lot AL AL A Le,),

for some Loy, Loy, ..., Lo, € T'. This implies that
Favpr K=o V K=gy V...V K=o,

and because —¢; € <" for 1 < i < n we can use the rule of disjunction and get
Fvmpr @5,  for some 1 <1 <n,

which is a contradiction.

Now for any member of the canonical model s, let
S=TU{¢|loesny},
i.e. T plus the bi-persistent formulae of s. The set S is consistent. If
Famp* Loy A Lo AL A Lg, — —),
where Lg; € T for 1 <7 <n and ¢ € sN.Z’ then
Fampr Lo ALoa AL A Lo, — L.

But consistency of T' implies that =) is a theorem, a contradiction.

Moreover, S has a unique maximal extension by the DNF Theorem, call it s’. So
we have showed that for all s and ¢ in the canonical model there exists s’ and ¢’ such
that s'Rgs and s’ Rkt’. This implies that in the canonical subset model the subset U

is the required universe. [
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By Theorem 60 we complete the set of conditions of page 34 which turn the frame
of the canonical model into a closed subset frame. To summarize, we have the fol-

lowing corollary (note that the canonical subset model is (X,, O.,.) of Corollary 50)

Corollary 61 The canonical subset model of MP* is a topological space.
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The Algebras of MP and MP*

In this section we shall give a more general type of semantics for MP and MP*.
Every modal logic can be interpreted in an algebraic framework. An algebraic model
is nothing else but a valuation of the propositional variables in a class of appropriately

chosen algebras. We shall also make connections with the previous chapters.

5.1 Fixed Monadic Algebras

Interior operators were introduced by McKinsey and Tarski [23].

Definition 62  An interior operator [ on a Boolean algebra % = (B,0,1,N,U) is

66
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an operator satisfying the conditions

I(anbd) =Tan Ib,
la < a,
Ila=Ia,
1=1.
To each interior operator [ we associate its dual ' = —I— the closure operator

which satisfies

ClaUb)=CaUCh,

a < Ca,
CCa="Ca,
C'0=0.

Universal quantifiers were introduced by P. Halmos [14].

Definition 63 A universal quantifier ¥V on a Boolean algebra Z is an operator

satisfying the conditions

Y(a U VYb) =VaU Vb,
Va < a,

v1l=1.

To each universal quantifier V we associate its dual 4 = —V— the existential
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quantifier which satisfies

d(a N 3b) = Fa N b,
a < da,

d0 =0.

Definition 64 Let [ be an interior operator on a Boolean algebra Z. Let IB =
{ala < Ta} and CB = {a|Ca < a}, i.e. the fixed points of I and C respectively. Let

Bl =1IBNCB then #! = (B1,0,1,—,N,U) is a Boolean subalgebra of Z.

Definition 65 A fized monadic algebra (FMA) 2 is a Boolean algebra with two
operators [ and V satisfying

Via > IVa.

A valuation v on % is a function from the formulae of MP to the elements of B

such that
v(A) € B! where A is atomic,

v(o V) = wv(g)Uu(e),
v(B¢) = Iv(9),

v(Ke) = Vo(¢).
An algebraic model of MP is a FMA 2 with a valuation v on it. We say ¢ is valid

in this model iff v(¢) = 1 and valid in an FMA iff it is valid in all models based on
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this algebra. Finally, ¢ is FMA-valid if it is valid in all FMA’s. The notion of validity

can extend to a set of formulae.

Observe that the important part of the algebra is the smallest subalgebra contain-

ing B! and closed under the operators I and V.

Theorem 66 (Soundness for FMA-validity) If a formula ¢ is a theorem of MP

then ¢ is FMA-valid.

PROOF. Let (#,v) be an algebraic model. We must prove that for all axioms ¢,
v(¢) = 1. First observe that in a Boolean algebra v(¢ — 1) = 1 is equivalent to

v(¢) < v(tp). Take for instance KOg¢ — OK¢. We have that

Viv(¢) < IVv(¢) implies v(KOg¢) < v(0OKg)
implies v(KO¢ — OKg) = 1.

We leave the rest of verifications to the reader. Similarly for rules. [

Theorem 67 (Completeness for FMA-validity) If ¢ is FMA-valid then ¢ is a

theorem of MP.

PRrOOF. The proof is actually the Lindenbaum construction. We define the following

equivalence relation on .Z

¢~ if and only if Fymp ¢ = .
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We denote the equivalence class of ¢ with [¢] and define the following partial order

on the set A of equivalence classes

[¢] <[] if and only if Fyp ¢ — 2.

All the required properties of an FMA follow from the axioms and rules of MP. If

we define the valuation on % with

then we have

[¢] =1 if and only if Fpp ¢.

5.2 Generated Monadic Algebras

We shall now define the algebraic models of MP*

Definition 68 A generated monadic algebra (GMA) % is an FMA satisfying in

addition
Cla=1Ca

C(Yanb)n3C(Yanc) < C(YCan CbNICe).

The concepts of algebraic model, validity, GMA-validity are defined as for FMA’s.

We used the direct algebraic translation of MP* axioms but we could have defined
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it with a different presentation. Observe that we only need C'Ia < ICa because the
other direction is derivable (see Proposition 36.)

We now have the following

Theorem 69 (Algebraic completeness of MP*) A formula ¢ is a theorem of

MP* if and only if ¢ is GMA-valid.

PrOOF. We omit the proof since it is similar to Theorems 66 and 67. [

It is known that a modal algebra determines a (general) frame (see [4].) So, in
our case, the canonical algebraic model of MP*, i.e. its Lindenbaum algebra, must
determine a closed topological model (actually its canonical frame.) We shall state
only the interesting part of this correspondence: the bijection on the domains. The

accessibility relations are defined in the usual way.

Theorem 70 There is a bijection between the set of the ultrafilters of the canonical
algebra of MPP* and the pointed product X x .7, where (X..7) is the canonical topology

of MP~.

The general theory of modal logic provides for yet another construction. A frame
determines a modal algebra. In case of the canonical frame, the modal algebra deter-
mined must be isomorphic to the canonical modal algebra. In our case, this algebra

(which must be a GMA) has a nice representation. It is the algebra of partitions of
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the topological lattice as it appeared in Section 3.1. A full account of this result and

detailed proofs will appear elsewhere.



Chapter 6

Further Directions

There are several further directions

1. Due to the indeterminacy assumption (see Introduction) MP* can be a “core”
logical system for reasoning about computation with approximation or uncer-

tainty.

2. A discrete version of our epistemic framework can arise in scientific experiments
or tests. We acquire knowledge by “a step-by-step” process. Each step being
an experiment or test. The outcome of such an experiment or test is unknown
to us beforehand, but after being known it restricts our attention to a smaller
set of possibilities. A sequence of experiments, test or actions comprises a
strateqy of knowledge acquisition. This model is in many respects similar to

Hintikka’s “oracle” (see [18].) In Hintikka’s model the “inquirer” asks a series of

73
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questions to an external information source, called “oracle”. The oracle answers
yes or no and the inquirer increases her knowledge by this piece of additional
evidence. This framework can be expressed by adding actions to the language.
Preliminary work of ours used quantales for modelling such processes. A similar

work without knowledge considerations appears in [2].

3. Since we can express concepts like affirmative or refutative assertions, which
are closed under infinite disjunctions and conjunctions respectively, it is very
natural to add infinitary connectives or fixed points operators (the latter as a
finite means to express the infinitary connectives.) This would serve the purpose
of specifying such properties of programs as “emits an infinite sequence of ones”
(see [1] for a relevant discussion.) An interesting direction of linking topological

spaces with programs can be found in [25].

4. Our work in the algebras of MP* looks very promising. GMAs (see 5) have
very interesting properties. A subalgebra of a GMA corresponds to a complete
space and this duality can be further investigated with the algebraic machinery

of modal logic (see [21], [22], [3]) or category theoretic methods.

5. Axiom 10 forces monotonicity in our systems. If we drop this axiom, an ap-
plication of effort no longer implies a further increase in our knowledge. Any

change of our state of knowledge is possible. A non-monotonic version of the
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systems presented in this thesis can be given along the lines of [26].

6. It would be interesting to consider a framework of multiple agents. Adding a
modality K; for each agent ¢ and assigning a different set of subsets or topology to
to each agent we can study their interaction or communication by set-theoretic

or topological means.

7. From our work became clear that both systems considered here are linked with
intuitionistic logic. We have embed intuitionistic logic to MP or MP* and it
would be interesting to see how much of the expressiveness of these logics can

be carried in an intuitionistic framework.

8. Finally, in another direction Rohit Parikh considers an enrichment of the lan-
guage to express more (and purely) topological properties such as separation

properties and compactness.
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