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Abstract

Macromolecular protein complexes catalyze essential physiological processes that sustain life. Various in-
teractions between protein subunits could increase the effective mass of certain peptide groups, thereby
compartmentalizing protein α-helices. Here, we study the differential effects of applied massive barriers
upon the soliton-assisted energy transport within proteins. We demonstrate that excentric barriers, local-
ized onto a single spine in the protein α-helix, reflect or trap three-spine solitons as effectively as concentric
barriers with comparable total mass. Furthermore, wider protein solitons, whose energy is lower, require
heavier massive barriers for soliton reflection or trapping. Regulation of energy transport, delivery and uti-
lization at protein active sites could thus be achieved through control of the soliton width, or of the effective
mass of the protein subunits.
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Highlights

• Three-spine solitons provide a physical mechanism for transportation of amide I energy inside protein
α-helices.

• Macromolecular protein assembly could increase effective mass thereby compartmentalizing protein
α-helices.

• Three-spine solitons are able to tunnel through, reflect from or remain trapped by excentric massive
barriers.

• Wider three-spine solitons have lower energy, move at slower speed and manifest increased tunneling
probability.

• Regulation of total barrier mass by protein subunits could control soliton tunneling, reflection or
trapping.
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1. Introduction

Proteins sustain life through a catalysis of biochemical reactions within living systems [1–3]. Different
biological functions are performed by specialized macromolecular protein complexes, which are assembled by
multiple protein subunits [4–6]. Important examples of functionally active macromolecular protein complexes
include enzymes, motor proteins, active pumps, biomolecule transporters, and transmembrane ion channels
[7–9]. The α-helix is a ubiquitous secondary structural element in large proteins [10, 11], which provides
an ordered biological environment for the transport of metabolic energy in the form of molecular solitons:
specifically, a model for molecular quasiparticles, as first proposed by Alexander Davydov [12–17]. The
biophysical conditions for the creation and propagation of molecular solitons in protein α-helices were further
studied both for the continuum case, as modeled with nonlinear Schrödinger equation for excitons [18–21],
and for the discrete case modeled by a system of coupled differential equations obtained from the linear
Schrödinger equation for the composite system of excitons and phonons [22–27].

The general Hamiltonian for Davydov’s model is given as a sum of three terms describing excitons,
phonons and the corresponding exciton–phonon interaction [13, 16, 24, 27–30]

Ĥ = Ĥex + Ĥph + Ĥint (1)

with

Ĥex =
∑
n,α

[
E0â

†
n,αân,α − J1

(
â†n,αân+1,α + â†n,αân−1,α

)
+ J2

(
â†n,αân,α+1 + â†n,αân,α−1

)]
(2)

Ĥph =
1

2

∑
n,α

[
p̂2n,α
Mn,α

+ w1 (ûn+1,α − ûn,α)
2

+ w2 (ûn,α+1 − ûn,α)
2

]
(3)

Ĥint =
∑
n,α

[χl (ûn,α − ûn−1,α) + χr (ûn+1,α − ûn,α)] â†n,αân,α (4)

where E0 = 0.2 eV is the energy of the amide I exciton, J1 = 967.4 µeV is the nearest neighbor longitudinal
dipole–dipole coupling energy along a spine of hydrogen-bonded peptide groups [31], J2 = 1535.4 µeV is the
nearest neighbor lateral dipole–dipole coupling energy between spines [31], â†n and ân are bosonic amide I
exciton creation and annihilation operators, w1 = 13 N/m is the spring constant of the longitudinal hydrogen
bonds in the lattice of peptide groups [32], w2 = 2w1 is the spring constant of the lateral coupling of the
lattice of peptide groups due to covalent bonds in the protein backbone [27, 33], Mn,α is the mass, p̂n,α is
the momentum operator and ûn,α is the displacement operator from the equilibrium position of the lattice
site n, α; χr and χl are anharmonic parameters arising from the coupling between the amide I exciton and
the phonon lattice displacements, respectively, to the right or to the left along the spines, n is an index
that counts the peptide groups along the protein spines, and α ∈ {0, 1, 2} is an index subject to modulo
3 arithmetic denoting each of the three spines in the protein α-helix [27]. The modular arithmetic for the
spine index α arises due to the cyclic arrangement of the three spines with respect to the central axis of the
protein α-helix, namely, the spine with index α = 0 interacts with the spine to the left, (α− 1) mod 3 = 2,
or the spine to the right, (α+ 1) mod 3 = 1, the spine with index α = 1 interacts with the spine to the left,
(α − 1) mod 3 = 0, or the spine to the right, (α + 1) mod 3 = 2, and the spine with index α = 2 interacts
with the spine to the left, (α− 1) mod 3 = 1, or the spine to the right, (α+ 1) mod 3 = 0.

Historically, the three-spine model of a protein α-helix was first developed in 1978 by Davydov, Eremko
and Sergienko [28], and then numerically simulated in 1981 by Hyman, McLaughlin and Scott [29]. Im-
provement of the model with account of the helicity of α-helical proteins was achieved in 2004 by Brizhik,
Eremko, Piette and Zakrzewski [22] who have found that there exist several types of solitons of different
parameters and energies such that the lowest energy entangled soliton has the energy which is more than an
order lower than the energy of the soliton in the three-spine model without helicity. Here, we elaborate on
those previous works by considering the quantum dynamics of multiple amide I quanta. In order to study
the effects of excentric massive barriers in the protein α-helix, it is mandatory to use the full three-spine
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model because excentric placement of the barrier is impossible on a quasi-one-dimensional system with single
chain [27, 34, 35].

The quantum equations of motion for a given number Q of amide I exciton quanta are obtainable from
the linear Schrödinger equation for the composite system

ı~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (5)

using the adiabatic approximation [36]

|Ψ(t)〉 = |ψex(t)〉|ψph(t)〉 (6)

based on the restricted bosonic Hartree–Fock ansatz [37] for amide I excitons introduced by Zolotaryuk for
studying multiquantal Davydov solitons [38]

|ψex(t)〉 =
1√
Q!

[∑
n,α

an,α(t)â†n,α

]Q
|0ex〉 (7)

where |0ex〉 is the vacuum state of amide I excitons, and Glauber coherent phonon state of the lattice
[13, 34, 39, 40]

|ψph(t)〉 = e−
ı
~
∑
n′,α′(bn′,α′ (t)p̂n′,α′−cn′,α′ (t)ûn′,α′)|0ph〉 (8)

where |0ph〉 is the vacuum state of lattice phonons. It is worth noting that the phonon summation indices
n′, α′ are independent of the exciton summation indices n, α when the tensor product |ψex(t)〉|ψph(t)〉 is
formed.

Normalization of the state |Ψ(t)〉 is enforced by setting the inner product to unity

〈Ψ(t)|Ψ(t)〉 =

(∑
n,α

|an,α|2
)Q

= 1 (9)

which implies that
∑
n,α |an,α|

2
= 1.

From the ansatz (6), we can compute the following expectation values

Q |an,α|2 = 〈Ψ(t)|â†n,αân,α|Ψ(t)〉 (10)

bn,α = 〈Ψ(t)|ûn,α|Ψ(t)〉 (11)

cn,α = 〈Ψ(t)|p̂n,α|Ψ(t)〉 (12)

The time dynamics for the amide I exciton quantum probability amplitudes could be obtained from the
Schrödinger equation using the inner product

1√
Q!
〈ψph(t)|〈0ex| (ân,α)

Q
ı~
d

dt
|Ψ(t)〉 =

1√
Q!
〈ψph(t)|〈0ex| (ân,α)

Q
Ĥ|Ψ(t)〉 (13)

whereas the time dynamics of the expectation values of the phonon lattice displacement and momentum
operators could be obtained from the generalized Ehrenfest theorem using the respective commutators with
the total Hamiltonian (1)

ı~
d

dt
bn,α = 〈Ψ(t)|

[
ûn,α, Ĥ

]
|Ψ(t)〉 (14)

ı~
d

dt
cn,α = 〈Ψ(t)|

[
p̂n,α, Ĥ

]
|Ψ(t)〉 (15)
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After straightforward but tedious quantum calculations (for detailed derivations see [26, 27, 41, 42]), one
finds that cn,α = Mn,α

d
dtbn,α and arrives at the following system of gauge transformed equations

ı~
d

dt
an,α = −J1 (an+1,α + an−1,α) + J2 (an,α+1 + an,α−1) + [χl (bn,α − bn−1,α) + χr (bn+1,α − bn,α)] an,α

(16)

Mn,α
d2

dt2
bn,α = w1 (bn−1,α − 2bn,α + bn+1,α) + w2 (bn,α−1 − 2bn,α + bn,α+1)

+Q
[
χr

(
|an,α|2 − |an−1,α|2

)
+ χl

(
|an+1,α|2 − |an,α|2

)]
(17)

We adopt the latter system of ordinary differential equations as the starting point of the present computa-
tional study. The main research question that we address is the differential effects of concentric or excentric
massive barriers upon the soliton-assisted energy transport within proteins.

2. Model parameters and initial conditions

The dynamics of the solitons were simulated in an 18-nm-long protein α-helix with nmax = 40 lattice
sites. The left and right coupling parameters for the exciton–phonon interaction were considered to be
isotropic, χl = χr = 35 pN [27]. The energy released by hydrolysis of a single adenosine triphosphate
(ATP) molecule is experimentally measured to exceed 0.6 eV [43–45], which is sufficient to excite 3 amide I
quanta, each of which has energy E0 = 0.2 eV. Because the continuum approximation of Davydov’s model
[18, 27, 46–49] leads to sech-squared soliton solutions, we have applied the metabolic energy of a single
ATP molecule in the form of Q = 3 amide I exciton quanta spread initially over 5 or 7 peptide groups as a
discretized sech-squared pulse given by a discrete set of quantum probability amplitudes

1√
3
eıαω2

{
A3,αe

−3ıω1 , A2,αe
−2ıω1 , A1,αe

−ıω1 , A0,α, A1,αe
ıω1 , A2,αe

2ıω1 , A3,αe
3ıω1

}
(18)

with phase factor along the spines ω1 = π
12 [49], phase factor laterally across the spines ω2 = 2π

3 [24, 27],
and real amplitudes Ai,α that were dependent on the initial spread over peptide groups. The choice of the
initial spread to be over at least 5 peptide groups is justified by the chemical structure and dimensions of the
hydrolyzed ATP molecule and the enhanced thermal stability predicted for the resulting solitons [27]. The
discretization procedure of the continuous sech-squared pulse consisted of computing the exact spread for
which 95% of the probability is contained in the target number of peptide groups (5 or 7). Then the infinitely
long tails outside the target number of peptide groups were removed, the spatial extent of the remaining
trimmed pulse was split into corresponding number of equally wide bins (5 or 7), definite integration was
performed to compute the quantum probability for each bin, and the total probability was normalized to 1
by multiplication with 100

95 . For the soliton spread over 5 peptide groups, the non-zero exciton amplitudes
were

A0,α =
√

0.37, A1,α =
√

0.237, A2,α =
√

0.078 (19)

whereas for the soliton spread over 7 peptide groups, the non-zero exciton amplitudes were

A0,α =
√

0.232, A1,α =
√

0.199, A2,α =
√

0.126, A3,α =
√

0.059 (20)

The initial pulse of amide I energy (18) was applied at the N-end of the protein α-helix, so that the peptide
groups indexed by n = 1 received non-zero initial exciton amplitudes. For the soliton spread over 5 groups,
the initial exciton amplitudes were populated from (18) as follows: a1,α(0) = 1√

3
eıαω2A2,αe

−2ıω1 , a2,α(0) =
1√
3
eıαω2A1,αe

−ıω1 , a3,α(0) = 1√
3
eıαω2A0,α, a4,α(0) = 1√

3
eıαω2A1,αe

ıω1 , a5,α(0) = 1√
3
eıαω2A2,αe

2ıω1 , and

an,α(0) = 0 for n ≥ 6. For the soliton spread over 7 groups, the initial exciton amplitudes were similarly
populated from (18) starting with: a1,α(0) = 1√

3
eıαω2A3,αe

−3ıω1 , a2,α(0) = 1√
3
eıαω2A2,αe

−2ıω1 , etc. The

phonon lattice was initially unperturbed with bn,α(0) = 0 and d
dtbn,α(0) = 0. Reflective boundary conditions
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were implemented at the two ends of the protein α-helix following the procedure by Luo and Piette [30] by
setting a0,α(t) = a41,α(t) = 0 and b0,α(t) = b41,α(t) = 0.

Visualization of the soliton trajectory was performed by plotting the quantum probability of finding the
amide I exciton inside the nth protein unit cell

P (an) =
∑
α

|an,α|2 = |an,0|2 + |an,1|2 + |an,2|2 (21)

Previously, we have shown that bare amide I exciton pulses were able to self-induce at subpicosecond
timescale an accompanying phonon deformation in an initially unperturbed phonon lattice [25]. This induced
localized phonon deformation slows down the motion of the excitons and is referred to as self-trapping effect.
In addition, we have found that emitted “empty” phonon waves are moving forth and back at the speed of
sound in the phonon lattice without “carrying” any exciton amplitudes on top [25]. Because in this present
work we are primarily interested in the transport of exciton energy and the 100 ps duration of performed
simulations is quite long compared to the time for induction of self-trapping, we consider that as long as the
exciton amplitudes remain collected together as a pulse they would be accompanied by a localized phonon
deformation.

An assembly of multiple protein subunits could be modeled as a localized enhancement of the effective
mass of the peptide groups in the protein α-helix. A concentric assembly of proteins will lead to ring-like
massive barriers that are distributed equally onto the three α-helical spines. Because large protein subunits
contain multiple protein α-helices connected with protein loops, it is expected that for most of the protein
α-helices, which are not centrally located, the distribution of external mass will be excentric. Furthermore,
functionally active protein sites are typically located at the interface of interacting protein subunits, which
also suggests that the excentric distribution of protein mass onto several of the three α-helical spines could
be biologically relevant for the transport and utilization of metabolic energy by active proteins. To test
how concentric or excentric massive barriers affect the propagation of solitons in protein α-helices, we have
increased locally the values for Mn,α as multiples of the average mass M = 1.9× 10−25 kg of a single amino
acid inside the polypeptide chain.

The total mass of the single protein α-helix with nmax = 40 lattice sites is 3×40×1M = 120M . However,
functional macromolecular protein complexes, such as actin-tropomyosin-myosin complexes [50], F1F0-type
ATP synthase [51], voltage-gated ion channels [52], kinesin motors [53] or SNARE protein complexes [54],
have multiple subunits each of which may have several protein α-helices. Furthermore, those protein subunits
could be anchored to phosholipid membranes where they are exposed to large mechanical forces or strong
electric fields. For example, 4-α-helix bundles of SNARE proteins drive the fusion of synaptic vesicles with
diameter of 40 nm [55] with the presynaptic plasma membrane, kinesin motors drag huge intracellular cargo
vesicles with diameter of 100 nm [56] along microtubule tracks, and electrically charged S4 protein α-helix
sensors inside voltage-gated ion channels experience the physical forces due to strong transmembrane electric
field with intensity of 2 × 107 V/m [57]. Even though the protein interactions are quite complex and not
easy to model, for the purposes of the present study we consider that barriers with effective mass of several
hundred amino acid masses are biologically feasible. We also would like to note that the computational
study is primarily intended to characterize the general physical trends with respect to soliton transmission,
reflection or trapping by massive barriers. Consequently, suitable adaptation of the reported results to
concrete molecular systems in biological systems would have to take into consideration the relevant structural
data with regard of the composition of the molecular system of interest.

The system of equations (16), (17) has two conserved quantities: the total probability

P(t) =
∑
n,α

|an,α|2 = 1 (22)

and the expectation value of the gauge transformed total energy

E(t) = 〈Ψ(t)|Ĥ|Ψ(t)〉 −QE0 −W0

= −
∑
n,α

{
QJ1

(
a∗n,αan+1,α + an,αa

∗
n+1,α

)
−QJ2

(
a∗n,αan,α+1 + an,αa

∗
n,α+1

)
5



− 1

2
Mn,α

(
d

dt
bn,α

)2

− 1

2
w1 (bn+1,α − bn,α)

2 − 1

2
w2 (bn,α+1 − bn,α)

2

−Q [χl (bn,α − bn−1,α) + χr (bn+1,α − bn,α)] |an,α|2
}

(23)

where W0 = 〈0ph|Ĥph|0ph〉 is the zero-point energy of the lattice vibrations. The accuracy with which these
two quantities were preserved during the numerical integration of the system of equations of motion was
evaluated at the end of the 100 ps simulation period using ∆P = 1 − P(100) and ∆E = 1 − E(100)/E(0).
For the simulations with solitons initially spread over 5 peptide groups, the accuracy of preservation was
∆P < 1.67 × 10−7 and ∆E < 1.66 × 10−7, whereas for the simulations with solitons initially spread over
7 peptide groups, it was ∆P < 2.51× 10−6 and ∆E < 2.75× 10−6.

3. Computational results

For establishing a base case for comparison, we have first simulated the quantum dynamics of a molecular
soliton, which was spread initially over 5 peptide groups, and encountered a concentric massive barrier
on all 3 spines extending over 3 peptide groups, each of which with the same increased effective mass,
M26,α = M27,α = M28,α ∈ {50M, 100M, 150M, 200M} for α ∈ {0, 1, 2} (Fig. 1). The initial speed of
the soliton was 439 m/s before impacting on the massive barrier. Crucially, when the total mass of the
concentric barrier was below or equal to 1350M , the soliton tunneled successfully to the other side of the
barrier (Fig. 1a-c). The loss of quantum probability following the passage through the barrier increased with
the barrier mass (Supplementary Fig. S1). For the light concentric barrier with total mass of 450M , the
maximal probability to detect each exciton on the left side of the barrier was 94.5% (Supplementary Fig. S1a)
and the soliton speed remained 439 m/s after the reflection from the protein α-helix end (Fig. 1a). For the
heavier concentric barrier with total mass of 900M , the soliton remained for 22.6 ps inside the barrier, the
maximal probability to detect each exciton on the left side of the barrier decreased to 90.1% (Supplementary
Fig. S1b) and the soliton speed after tunneling through the barrier dropped to 266 m/s (Fig. 1b). Further
increasing the total barrier mass to 1350M prolonged the time during which the soliton remained in the
vicinity of the concentric barrier, increased the tunneling delay to 30.3 ps (Fig. 1c) and decreased the maximal
probability to detect each exciton on the left side of the barrier to 83.0% (Supplementary Fig. S1c). For
the heaviest concentric barrier with total mass of 1800M , the soliton was reflected from the barrier with
reflection time of 17.9 ps and decreased speed of 274 m/s (Fig. 1d). Taken together, these results confirm
that the presence of massive barriers can lead to compartmentalization of the space available for soliton
propagation within the protein α-helix [35].

Next, we consider the cumulative effect of all masses present in the previous concentric barrier onto a sin-
gle spine, thereby producing a massive excentric barrier, M26,α = M27,α = M28,α ∈ {150M, 300M, 450M, 600M}
for α = 0 and M26,α = M27,α = M28,α = 1M for α ∈ {1, 2} (Fig. 2). The initial speed of the soliton remained
439 m/s before impacting on the massive excentric barrier. When the total mass of the excentric barrier was
below or equal to 1350M , the soliton was able to tunnel again successfully to the other side of the barrier
(Fig. 2a-c). For the light excentric barrier with total mass of 450M , the maximal probability to detect each
exciton on the left side of the barrier was 95.5% (Supplementary Fig. S2a) and the soliton speed dropped to
309 m/s after the second passing through the excentric barrier (Fig. 2a). For the heavier excentric barrier
with total mass of 900M , the soliton remained for 18.5 ps inside the barrier, the maximal probability to
detect each exciton on the left side of the barrier decreased to 90.3% (Supplementary Fig. S2b), and the
speed after tunneling through the barrier dropped to 160 m/s (Fig. 2b). Further increasing the total barrier
mass to 1350M prolonged the time during which the soliton remained in the vicinity of the excentric bar-
rier, increased the tunneling delay to 34.3 ps (Fig. 2c) and decreased the maximal probability to detect each
exciton on the left side of the barrier to 80.0% (Supplementary Fig. S2c). For the heaviest excentric barrier
with total mass of 1800M , the soliton was reflected from the barrier with reflection time of 18.2 ps and
decreased speed of 244 m/s (Fig. 2d). Taken together, these results indicate that the collection of effective
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Figure 1: The quantum dynamics of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton
quanta spread initially over 5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all
three spines (3×) extending over three peptide groups (3×), n=26–28, each of which with increased effective mass up to 50M
(a), 100M (b), 150M (c) or 200M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below
or equal to 1350M (a–c), but is reflected from the heaviest barrier with total mass of 1800M (d). The extent of the massive
barrier along peptide groups n=26–28 is indicated with thin vertical black lines.
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mass onto a single spine in the barrier site is able to enhance the interaction time between the soliton and
the barrier, which in turn leads to spreading of the soliton and decreasing its speed.

The effect of concentric collection of the barrier mass onto a ring extending over a single peptide group,
M26,α ∈ {150M, 300M, 450M, 600M} for α ∈ {0, 1, 2} (Fig. 3) differed in significant ways from the soliton
dynamics observed with the wider barriers (Figs. 1 and 2). Firstly, the soliton was able to tunnel successfully
to the other side of the barrier only when the total mass of the narrow concentric barrier was below or equal
to 900M (Fig. 3a-b and Supplementary Fig. S3a-b), but reflected from the barrier when the total mass was
greater or equal to 1350M (Fig. 3c-d and Supplementary Fig. S3c-d). Secondly, the soliton was able to
tunnel through the barrier for a second time in the reverse direction for the narrow concentric barrier with
total mass of 900M (Fig. 3b), whereas it remained in the left compartment of the protein α-helix for the
wider concentric barrier with total mass of 900M (Fig. 1b) or the wider excentric barrier with total mass of
900M (Fig. 2b). Thirdly, for the heaviest narrow concentric barrier with total mass of 1800M , the soliton
was reflected from the barrier with shorter reflection time of 11.6 ps (Fig. 3d) compared to the respective
reflection times of 17.9 ps and 18.2 ps from the wider barriers (Figs. 1d and 2d). Fourthly, the speed of
the reflected soliton was much higher, 329 m/s, after bouncing from the heaviest narrow concentric barrier
with total mass of 1800M (Fig. 3d) compared to the respective soliton speeds of 274 m/s and 244 m/s
after reflection from the wider barriers (Figs. 1d and 2d). Combining all of these results indicates that the
narrower concentric barrier increases the probability for a soliton reflection, and reduces the interaction time
between the soliton and the barrier, which in turn leads to a lesser loss of speed for the reflected soliton.

Solitons that are spread over more peptide groups have lower energy and move at lower speeds compared
to solitons that are spread over fewer peptide groups [25, 26]. From the multinomial theorem [58] and the
action of bosonic creation or annihilation operators on the vacuum state [59–61], the expectation value of
the exciton energy operator is found to be

〈ψex(t)|Ĥex|ψex(t)〉 = Q
∑
n,α

[
E0|an,α|2 − J1

(
a∗n,αan+1,α + an,αa

∗
n+1,α

)
+ J2

(
a∗n,αan,α+1 + an,αa

∗
n,α+1

)]
(24)

= QE0 − 2QJ1
∑
n,α

[Re (an,α) Re (an+1,α) + Im (an,α) Im (an+1,α)]

+ 2QJ2
∑
n,α

[Re (an,α) Re (an,α+1) + Im (an,α) Im (an,α+1)] (25)

For a detailed calculation of the expectation values of two-site exciton operators, see Appendix A.
For the soliton (18) that is spread over 5 peptide groups as in (19), the initial exciton energy is

〈Ĥex〉 ≈ 3 (E0 − 1.67J1 − J2) (26)

When the soliton (18) is spread over 7 peptide groups as in (20), the initial exciton energy is decreased to

〈Ĥex〉 ≈ 3 (E0 − 1.78J1 − J2) (27)

and the initial speed of the soliton drops to 365 m/s (Fig. 4). The latter wider soliton also tunnels readily
through the lighter narrow concentric barriers with total mass of 450M (Fig. 4a) or total mass of 900M
(Fig. 4b). In contrast to the narrow soliton spread over 5 peptide groups, which reflects from the narrow
concentric barrier with total mass of 1350M (Fig. 3c), however, the wider soliton spread over 7 peptide
groups successfully tunnels through the barrier (Fig. 4c and Supplementary Fig. S4c). Consistent with
stronger interaction with the massive barrier, the wider soliton spread over 7 peptide groups is reflected
from the heaviest narrow concentric barrier with total mass of 1800M with increased reflection time to
12.4 ps (Fig. 4d) compared to 11.6 ps observed for the narrower soliton spread over 5 peptide groups
(Fig. 3d). Taken together, these results show that the efficacy of massive barriers to transmit or reflect
incoming solitons depends critically on the soliton energy. Due to their lower energy, wider solitons manifest
increased tunneling probability (Supplementary Fig. S4c), stronger interaction with the massive barriers and
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Figure 2: The quantum dynamics of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton
quanta spread initially over 5 peptide groups that undergoes tunneling through an excentric massive barrier B placed on a
single spine (1×) extending along three peptide groups (3×), n=26–28, each of which with increased effective mass up to 150M
(a), 300M (b), 450M (c) or 600M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below
or equal to 1350M (a–c), but is reflected from the heaviest barrier with total mass of 1800M (d). The extent of the massive
barrier along peptide groups n=26–28 is indicated with thin vertical black lines.
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Figure 3: The quantum dynamics of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton
quanta spread initially over 5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all
three spines (3×) extending along a single peptide group (1×), n = 26, with increased effective mass up to 150M (a), 300M
(b), 450M (c) or 600M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below or equal to
900M (a-b), but is reflected from the heavier barriers with total mass greater or equal to 1350M (c-d). The extent of the
massive barrier along the peptide group n = 26 is indicated with thin vertical black lines.
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increased reflection times. This provides biological systems with at least two distinct strategies for exerting
control over the transport of energy inside proteins: one strategy is to control the effective mass of the
barriers due to interacting proteins through protein subunit assembly, and a second strategy is to control
the initial soliton spread through biochemical regulation of the release of metabolic energy from ATP at
protein hydrolytic sites.

Lastly, we have explored the capacity of excentric massive barriers to trap the solitons at the interface of
interacting protein subunits, which would provide a physical mechanism for utilization of the soliton energy
to do useful work at functionally active protein sites. Having observed that the soliton tunneling is replaced
with a soliton reflection as the barrier mass grows (Figs. 1–4), we conjecture the existence of some barrier
mass for which the excentric barrier located at one of the protein α-helix spines is able to trap the soliton
inside the barrier region. Indeed, we have confirmed that the narrow soliton spread over 5 peptide groups
is trapped by an excentric massive barrier with total mass of 1440M (Fig. 5 and Supplementary Fig. S5),
whereas the wider soliton spread over 7 peptide groups is trapped by an excentric barrier whose total mass
is 1761M (Fig. 6 and Supplementary Fig. S6). These results corroborate the observed higher tunneling
probability for wider solitons (Figs. 3 and 4) and demonstrate that higher overall effective barrier mass is
required to nullify the tunneling probability for the wider soliton. The range of barrier masses, for which
the soliton remains trapped in the vicinity of the barrier for a prolonged period of time, corresponds to 5–10
amino acid masses. The latter fact is particularly useful from a biological perspective because the amino
acid composition of proteins could be controlled in living cells through mRNA splicing [62–65].

The mechanical forces that are exerted upon actin-tropomyosin-myosin complexes during skeletal muscle
contraction [66] or upon zipping SNARE protein complexes during fusion of synaptic vesciles [67] could
increase significantly the effective mass of portions of protein α-helices located at protein-protein attachment
interfaces or protein-lipid membrane insertion points. Although the effective masses of barriers imposed onto
individual protein α-helices need to be evaluated for each functional macromolecular protein complex on a
case by case basis, here we consider that the molecular mass of the myosin heavy chain, which contains 1959
amino acids in its sequence [68], is able to provide a meaningful upper bound of about 2000M on the total
barrier mass that can act upon a target protein α-helix. The presence of isolated point impurities has been
previously shown to reduce the amplitude of impacting solitons through emission of “quasi-particles” in the
continuum approximation [21, 69]. Here, we have shown that for the biologically relevant parameter values
of the discrete Davydov system, the solitons can impact upon very massive barriers with total mass of up to
1800M and suffer only a minimal loss of exciton quantum probability by the end of the 100 ps simulation
period (see Supplementary Figs. S1-S6). Because in the majority of macromolecular protein systems it is
expected that the effective barrier masses are lower than 1800M , our computational results suggest that
biological massive barriers modulate the dynamics of protein solitons without destroying them.

It is worth emphasizing that the apparent enhanced stability of the molecular solitons that we report
is due to the cooperative action of Q = 3 amide I exciton quanta [27]. In older literature, as reviewed by
Scott [34], it is incorrectly assumed that the energy released from the hydrolysis of a single ATP molecule
can excite at most Q = 2 amide I exciton quanta. Recent experimental measurements, however, establish
that the hydrolysis of a single ATP molecule suffices to excite Q = 3 amide I exciton quanta [43–45]. Here,
we have simulated quantum dynamics of molecular soliton initiated by a sech-squared exciton pulse spread
initially over 5 peptide groups and have confirmed that the impact onto a massive barrier with total mass
of 900M could indeed disperse the soliton for Q ≤ 2 (Figs. 7a,b), but preserves the soliton largely intact
for Q = 3 (Fig. 1b). The stabilization of the soliton by increased number of amide I exciton quanta Q is
explained by the stronger nonlinear exciton–phonon coupling, due to the fact that Q acts as a multiplicative
factor of χr and χl in the quantum equations of motion (16) and (17). This also contextualizes previous
reports by Kivshar and Malomed [21, 69] on the stability of Davydov solitons in the presence of impurities,
namely, the dispersal of the solitons by massive barriers is pronounced only when the nonlinearity of the
system is weak, as estimated by the product of Q and χr or χl.

The purely quantum derivation of the equations of motion (16) and (17) emphasizes the non-classical
nature of the simulated molecular solitons. From the generalized Ehrenfest theorem [25] and the assumed
validity of the adiabatic approximation [26, 27, 38, 41, 42], it follows that the quantum state vector |Ψ(t)〉
of the composite system is uniquely reconstructed from the numerically simulated an,α, bn,α and d

dtbn,α as
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Figure 4: The quantum dynamics of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton
quanta spread initially over 7 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all
three spines (3×) extending along a single peptide group (1×), n = 26, with increased effective mass up to 150M (a), 300M
(b), 450M (c) or 600M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below or equal to
1350M (a–c), but is reflected from the heaviest barrier with total mass of 1800M (d). The extent of the massive barrier along
the peptide group n = 26 is indicated with thin vertical black lines.
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Figure 5: The trapping of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta
spread initially over 5 peptide groups that impacts upon an excentric massive barrier B placed on a single spine (1×) extending
along three peptide groups (3×), n=26–28, each of which with increased effective mass up to 478M (a), 479M (b), 480M (c)
or 481M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below or equal to 1437M (a–b), but
remains in the vicinity on the right side of the barrier until the end of the simulation period of 100 ps. The soliton remains
trapped inside the barrier whose total mass is 1440M (c) and is reflected from the heaviest barrier with a total mass of 1443M
(d). The extent of the massive barrier along peptide groups n=26–28 is indicated with thin vertical black lines.
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Figure 6: The trapping of a molecular soliton initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta
spread initially over 7 peptide groups that impacts upon an excentric massive barrier B placed on a single spine (1×) extending
along three peptide groups (3×), n=26–28, each of which with increased effective mass up to 585M (a), 586M (b), 587M (c)
or 588M (d). The soliton is able to tunnel through the lighter barriers whose total mass is below or equal to 1758M (a–b), but
remains in the vicinity on the right side of the barrier until the end of the simulation period of 100 ps. The soliton remains
trapped inside the barrier whose total mass is 1761M (c) and is reflected from the heaviest barrier with a total mass of 1764M
(d). The extent of the massive barrier along peptide groups n=26–28 is indicated with thin vertical black lines.
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follows

|Ψ(t)〉 =
1√
Q!

[∑
n,α

an,α(t)â†n,α

]Q
|0ex〉e−

ı
~
∑
n′,α′(bn′,α′ (t)p̂n′,α′−Mn′,α′ [ ddt bn′,α′ (t)]ûn′,α′)|0ph〉 (28)

This state satisfies a large number of quantum information-theoretic theorems and the quantum uncertainty
principle [70]. Consequently, the plotted exciton quantum probability amplitudes should be interpreted
only as expectation values of possible exciton position measurements, and not as trajectories of classical
objects with fixed positions and velocities. In order to highlight the quantum tunneling of exciton quantum
probability amplitudes through the massive barriers in the protein α-helix, we also deliver Supplementary
Videos 1–3 for each simulation shown in Figs. 7a,b or 1b. Because the moduli of the exciton quantum
probability amplitudes are the square roots of the corresponding quantum probabilities, the dispersive
effects of the massive barriers upon the molecular soliton for Q ≤ 2 (Supplementary Videos 1–2) are visually
magnified in the videos as compared to the contour plots. The soliton stabilization effect due to increased
number of amide I excition quanta Q = 3 is also visibly appreciable (Supplementary Video 3), however, for
proper estimation of the efficiency of energy transport through molecular solitons one needs to compute the
loss of quantum probability rather than the loss of quantum probability amplitude.

In order to obtain an exact quantitative measure for the loss of exciton quantum probability by the soliton
for different values of Q, we have divided the length of the protein α-helix into 36 overlapping regions with
length of 5 peptide groups. Then, at t = 100 ps we have computed the loss as

1−max

{
i+5∑

n=i+1

2∑
α=0

|an,α(t)|2
}35

i=0

(29)

The lost exciton probability was 59.7% for Q = 1 (Fig. 7a), 63.6% for Q = 2 (Fig. 7b), and only 15.3%
for Q = 3 (Fig. 1b). An alternative, less stringent approach to evaluate the lost exciton probability could
allow for certain amount of widening of the soliton that is initially collected onto the length of 5 peptide
groups. For example, division of the protein α-helix length into 34 overlapping regions with length of 7
peptide groups and computing

1−max

{
i+7∑

n=i+1

2∑
α=0

|an,α(t)|2
}33

i=0

(30)

reduces the estimated loss of exciton probability to 52.3% for Q = 1, 59.9% for Q = 2 and 14.6% for Q = 3.
According to Davydov “for describing real systems even unstable solitary waves can be significant if their
lifetime is long in comparison with the time during which the phenomenon under study takes place” [71]. In
line with the latter statement, throughout this work we have used the term “soliton” in a general descriptive
sense to refer to localized waves of amide I excitons that avoid dispersal of half their initial probability for a
physiologically meaningful period of time of at least 30-40 ps during which the whole extent of the protein
α-helix could be traversed.

The reflectivity of the massive barriers increases with the increase of the total barrier mass and the
decrease of the barrier width. From the simulated performance of extreme barrier cases, with upper bound
of 1800M for the total barrier mass and lower bound of n = 1 for the barrier width, we have found that
the solitons lose only a minimal amount of exciton quantum probability. Because biological barriers are
expected to be wider and less massive, our numerical results imply that the protein solitons are quite robust
to local increases of the effective mass and preserve their amplitudes for physiologically relevant periods of
times extending over hundreds of picoseconds. On the other hand, we have also demonstrated that any
local increase of the effective mass slows down the motion of the soliton and increases the time spent by the
excitons in the region inside or near the massive barrier.

Given the complicated three-dimensional structure of macromolecular protein complexes, it is not ex-
pected that biological systems operate by imposing perfectly concentric barriers. Our computer simulations,
however, have demonstrated that excentric massive barriers could also achieve the same level of performance
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Figure 7: The quantum dynamics of a molecular soliton initiated by a sech-squared exciton pulse with small number of amide I
exciton quanta, Q = 1 (a) or Q = 2 (b), spread initially over 5 peptide groups that undergoes tunneling through a concentric
massive barrier B centered on all three spines (3×) extending over three peptide groups (3×), n=26–28, each of which with
increased effective mass up to 100M . The massive barrier is able to disperse the soliton when the number of quanta is Q ≤ 2
(a,b), however, there is only a minor loss of exciton quantum probability when Q = 3 (see Fig. 1b).

with respect to soliton tunneling, trapping or reflection, provided that the total mass of the excentric barrier
is similar to the total mass of the concentric barrier. This grants living systems a versatile physical mecha-
nism in order to compartmentalize metabolic energy, and to utilize that at functionally active protein sites
for the purpose of implementing the essential work.

4. Discussion

Conceptually, the physical processes that support protein function could be allocated into three stages:
(i) ATP hydrolysis inside a protein ATP hydrolytic site releases free energy, (ii) transport of the free energy
from ATP hydrolytic site to protein active site, and (iii) utilization of the free energy at the protein active
site for doing work, namely, execution of some particular biological function. Typically, the ATP hydrolytic
site and the protein active site do not coincide for macromolecular protein complexes, which implies that
biological systems should have evolved mechanisms that transport the energy within the protein in a manner
that maximizes the probability that the energy is utilized at the protein active site. Here, we explore the
possibility that the free energy could be transported along a protein α-helix, which has one of its ends
located near the ATP hydrolytic site and has the other end near the protein active site. For the purposes of
the present study, we will take for granted that the ATP hydrolysis is able to excite the amide I oscillators
(C=O bond stretching) in the nearby receptive protein α-helix and subsequently the protein active site is
able to utilize the amide I energy for doing work. Then, the main research question that remains to be
answered is whether there exists a physical mechanism that can prevent the soliton from bouncing forth-
and-back between the two ends of the protein α-helix, but instead prolongs the relative amount of time
during which the soliton remains in the vicinity of the protein active site where it can be absorbed and its
energy converted into useful work.

The assembly of protein subunits into functional complexes introduces intersubunit interactions [72–74],
which may lead to the local enhancement of the effective mass of peptide groups [26, 35]. The existence of
such massive barriers in protein α-helices is expected to affect the transportation, delivery and utilization
of energy carried by three-spine solitons. In this work, we have investigated the differential effects upon
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quantum dynamics of three-spine solitons in the presence of concentric or excentric massive barriers located
on all, or on some, of the protein α-helix spines.

We observed that the presence of massive barriers is conducive to compartmentalizing the space available
for soliton propagation within the protein α-helix. The total mass of the effective massive barriers could be
regulated by attachment of different regulatory or auxiliary subunits to the main protein complex [75] or
through additional attachment of specialized protein clamps [76, 77]. For lighter barriers, the soliton may
tunnel to the other side of the barrier with picosecond time delay, whereas for heavy barriers the soliton
becomes reflected from the barrier. The action of excentric barriers upon soliton dynamics is comparable
to that by concentric barriers with similar total effective mass. For a certain range of barrier masses, the
soliton may remain permanently trapped either inside, or in the vicinity of the massive barrier. Because
protein active sites are typically located at the interface of interacting subunits where effective mass is
locally increased, the soliton trapping provides a physical mechanism for utilization of soliton energy for the
performance of biologically useful work at protein active sites.

The ATP hydrolytic sites, which are three-dimensional pockets inside the protein, are different in different
protein complexes [78–82]. Different ATP hydrolytic sites will have different three-dimensional geometry
and will be located at different distance and angle from the receptive protein α-helix that receives the ATP
released energy for subsequent soliton transport. Naturally, different distances and angles will produce
different spreads of the initial exciton energy pulse and these will result in solitons with different widths
in different protein complexes. Here, we take it for granted that evolution through natural selection will
optimize the geometry of the ATP hydrolytic sites in different protein complexes so that the spreads of
the initial exciton energy pulses are best suited for the corresponding protein functions [26]. Comparative
analysis of the presented numerical simulations has demonstrated that solitons of greater width move at
lower speeds, tunnel through heavier barriers, and require greater total barrier mass in order to be trapped.
This highlights the importance of organization of ATP hydrolytic sites in active proteins for targeted release
of metabolic energy into pulses with appropriate width. The two distinct physical mechanisms for soliton
trapping, either through control of the soliton width or the total barrier mass, elucidate the physiological
possibilities for regulating protein function in living systems.
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Appendix A. Expectation values of two-site exciton operators

The normalization of quantum probability P(t) =
∑
n,α |an,α|

2
= 1 in the restricted Hartree–Fock

ansatz (7) allows for direct calculation of the expectation value of two-site exciton operators such as â†1â2
with the use of the multinomial theorem as follows

〈â†1â2〉 =
1

Q!
〈0ex|

[∑
q
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â†1â2

[∑
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(a2â†2)
k2

k2! ...
(a∗nân)

kn

kn!

(anâ†n)
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In the above calculation, we have dropped the repeated index among n, α in order to ease the notation.
Similarly, one obtains 〈â†nân±1〉 = Qa∗nan±1 and 〈â†nân〉 = Qa∗nan [26].

From the normalization of quantum probability
∑
n,α |an,α|

2
= 1, it follows that the expectation value

for the exciton number operator summed over all sites is also conserved〈∑
n,α

â†n,αân,α

〉
=
∑
n,α

Qa∗n,αan,α × 1Q−1 = Q
∑
n,α

|an,α|2 = Q× 1 = Q (A.2)

Therefore, all simulation plots could be also interpreted as showing the expectation value for the exciton
number operator provided that all values displayed in the scale bars are multiplied by Q = 3.

Appendix B. Supplementary material

We provide Supplementary Figs. S1–S6, for each of the main Figs. 1–6, with the corresponding sums
of exciton quantum probabilities on the right side of barrier, inside the barrier, or on the left side of the
barrier. We also indicate with arrows the time points that have maximal quantum probability for finding
each of the three excitons (Q = 3) on the left side of the barrier.

We also present Supplementary Videos 1–3 with captions, for each of the main Figs. 7a, 7b and 1b.
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Figure S1: Dynamics of the exciton quantum probabilities on the right side of barrier

25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

28∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier

40∑
n=29

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 1 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over
5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three spines (3×) extending
over three peptide groups (3×), n=26–28, each of which with increased effective mass up to 50M (a), 100M (b), 150M (c) or
200M (d). Arrows indicate the time points that have the maximal quantum probability for finding each of the three excitons
(Q = 3) on the left side of the barrier.
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Figure S2: Dynamics of the exciton quantum probabilities on the right side of barrier

25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

28∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier

40∑
n=29

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 2 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over
5 peptide groups that undergoes tunneling through an excentric massive barrier B placed on a single spine (1×) extending
along three peptide groups (3×), n=26–28, each of which with increased effective mass up to 150M (a), 300M (b), 450M (c) or
600M (d). Arrows indicate the time points that have the maximal quantum probability for finding each of the three excitons
(Q = 3) on the left side of the barrier.

20



a b

c d

B = 3×1×150M B = 3×1×300M

B = 3×1×450M B = 3×1×600M

Pr
ob

ab
ilit

y

Time (ps)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Time (ps)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Time (ps)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Time (ps)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

0.984
0.949

0.4270.435

Figure S3: Dynamics of the exciton quantum probabilities on the right side of barrier
25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

26∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier
40∑

n=27

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 3 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over
5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three spines (3×) extending
along a single peptide group (1×), n = 26, with increased effective mass up to 150M (a), 300M (b), 450M (c) or 600M (d).
Arrows indicate the time points that have the maximal quantum probability for finding each of the three excitons (Q = 3) on
the left side of the barrier.
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Figure S4: Dynamics of the exciton quantum probabilities on the right side of barrier
25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

26∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier
40∑

n=27

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 4 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over
7 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three spines (3×) extending
along a single peptide group (1×), n = 26, with increased effective mass up to 150M (a), 300M (b), 450M (c) or 600M (d).
Arrows indicate the time points that have the maximal quantum probability for finding each of the three excitons (Q = 3) on
the left side of the barrier.
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Figure S5: Dynamics of the exciton quantum probabilities on the right side of barrier
25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

28∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier
40∑

n=29

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 5 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over 5
peptide groups that impacts upon an excentric massive barrier B placed on a single spine (1×) extending along three peptide
groups (3×), n=26–28, each of which with increased effective mass up to 478M (a), 479M (b), 480M (c) or 481M (d). Arrows
indicate the time points that have the maximal quantum probability for finding each of the three excitons (Q = 3) on the left
side of the barrier.
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Figure S6: Dynamics of the exciton quantum probabilities on the right side of barrier
25∑
n=1

2∑
α=0

|an,α|2 (blue line), inside the

barrier

28∑
n=26

2∑
α=0

|an,α|2 (green line), or on the left side of the barrier
40∑

n=29

2∑
α=0

|an,α|2 (red line) in the simulation of a molecular

soliton (Fig. 6 in main text) initiated by a sech-squared exciton pulse with Q = 3 amide I exciton quanta spread initially over 7
peptide groups that impacts upon an excentric massive barrier B placed on a single spine (1×) extending along three peptide
groups (3×), n=26–28, each of which with increased effective mass up to 585M (a), 586M (b), 587M (c) or 588M (d). Arrows
indicate the time points that have the maximal quantum probability for finding each of the three excitons (Q = 3) on the left
side of the barrier.

24



Supplementary Videos

Supplementary Videos 1–3 can be found online at https://doi.org/10.1016/j.physleta.2022.128319

Supplementary Video 1. The quantum dynamics of the real and imaginary parts, Re(an,α) and Im(an,α),
of the exciton quantum probability amplitudes an,α for each of the three spines α ∈ 0, 1, 2 of a molecular
soliton initiated by a sech-squared exciton pulse with a single amide I quantum Q = 1, spread initially over
n = 5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three
spines (3×) extending over three peptide groups (3×), n=26–28, each of which with increased effective mass
up to 100M . The massive barrier, whose location is indicated with two horizontal black lines, is able to
disperse the soliton by the end of the simulation period of 100 ps. Contour plot of the exciton quantum
probabilities for this simulation is shown in main Fig. 7a.

Supplementary Video 2. The quantum dynamics of the real and imaginary parts, Re(an,α) and Im(an,α),
of the exciton quantum probability amplitudes an,α for each of the three spines α ∈ 0, 1, 2 of a molecular
soliton initiated by a sech-squared exciton pulse with two amide I quanta Q = 2, spread initially over
n = 5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three
spines (3×) extending over three peptide groups (3×), n=26–28, each of which with increased effective mass
up to 100M . The massive barrier, whose location is indicated with two horizontal black lines, is able to
disperse the soliton by the end of the simulation period of 100 ps. Contour plot of the exciton quantum
probabilities for this simulation is shown in main Fig. 7b.

Supplementary Video 3. The quantum dynamics of the real and imaginary parts, Re(an,α) and Im(an,α),
of the exciton quantum probability amplitudes an,α for each of the three spines α ∈ 0, 1, 2 of a molecular
soliton initiated by a sech-squared exciton pulse with three amide I quanta Q = 3, spread initially over
n = 5 peptide groups that undergoes tunneling through a concentric massive barrier B centered on all three
spines (3×) extending over three peptide groups (3×), n=26–28, each of which with increased effective mass
up to 100M . The massive barrier, whose location is indicated with two horizontal black lines, is unable to
disperse the soliton by the end of the simulation period of 100 ps. Contour plot of the exciton quantum
probabilities for this simulation is shown in main Fig. 1b.
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