
Resolution Spaces: A Topological Approach to Similarity

Konstantinos Georgatos
Mathematics Department

John Jay College
City University of New York

445 West 59th Street
New York, New York 10019

e-mail: kgeorgatos@jjay.cuny.edu

Abstract

We argue that in order to reason with similarity we need
to model the concept of discriminating power. We offer a
simple topological notion called resolution space that pro-
vides a rich mathematical framework for reasoning with
limited discriminating power avoiding the vagueness para-
dox.

1 Introduction

A central concept for Information Retrieval ([1, 2]) is
that of similarity. Although an Information Retrieval sys-
tem is expected to return a set of documents most relevant
to the query word(s), it is often described as returning a set
of documents most similar to the query. In particular, look-
ing into the inner mechanism of the underlying model on
which an Information Retrieval system is based, one often
finds that relevance is based on (or derives from) a notion
of similarity. This is true for the most significant Infor-
mation Retrieval models such as the vector, probabilistic
([3]), and various logical models (e.g. boolean ([4]) , non-
classical ([1, 5]), information-theoretic ([6]), etc).

In the vector and probabilistic model, documents are
judged similar according to various functions that depend
on indexing terms and their frequency. In logical models,
either a rank is presupposed ([5]) or is computed according
to measures such as expected utility ([6]) or information
content that in turn induce a measure of similarity. Recent
approaches involve hyperlinks to judge similarity ([7, 8]).
It is striking that there no single criterion for judging rele-
vance and most probably more ingenuous suggestions will
emerge in the future.

This paper proposes a new approach to similarity us-
ing the topological notion of resolution space. Resolution
spaces have been introduced in for modeling vague state-
ments ([9]). The reason that standard topological meth-

ods are inappropriate to model similarity is that similar-
ity in Topology is expressed with the notion of metric dis-
tance. Metrics however require complete separation be-
tween objects and quantitative data that often are unavail-
able. Therefore what we need is a general framework that
can classify entities as similar or not similar (and eventu-
ally rank them) under any possible criterion. This is what
we offer.

Our approach is based on the following thesis: two ob-
jects are similar when they are indistinguishable under an
appropriate resolution. For example consider two docu-
ments containing the same text but formatted in a different
way. In most approaches in Information Retrieval format-
ting is discounted and therefore those two documents are
considered identical. This is an example of lowering our
resolution in order to get rid of unnecessary detail. Fur-
ther, suppose that we use an indexing mechanism. Two
documents will be considered identical in case they con-
tain the same indexing terms even if their text is different .
So,

similarity = indistinguishability (under an
appropriate resolution).

We formalize the notion of power of discrimination with
the help of resolution spaces. We then show how one can
define propositions on a resolution space. The algebra of
the propositions is not boolean but as we will show forms
an ortholattice.

The main thrust of this paper is a general need for mod-
elling commonsense reasoning problems that have arisen
in AI and, particularly, in the area of nonmonotonic logic
as we expressed in [10] and [11]. We are convinced that an
effective way of handling vagueness is central and neces-
sary to Information Retrieval.

Proceedings of the 11th International Workshop on Database and Expert Systems Applications (DEXA'00) 
0-7695-0680-1/00 $10.00 © 2000 IEEE 



2 The Color Patches Problem Revisited

Perhaps the best way to illustrate the issues involved
with similarity is the well-known red patches test. Sup-
pose I have a large enough series of patches p1; p2; : : : ; pn
changing gradually their color from red to white where it
is impossible to distinguish a patch pi from its successor
pi+1. Where is the last red patch? If we choose, say pk,
as the last red patch then we run into troubles since pk+1

seems to us of exactly the same color.
We will reformulate the above test in order to motivate

the theory we will develop in the following section. Our
version of the above test is the following: let p1; p2; : : : ; pn
be any sequence of color patches. Now, we are handed
a patch with some color called witt. Then, we are asked
to identify the witt patches. This is our one (and, in our
opinion, the only) way to go. We pick patches and com-
pare them with the prototype witt we were given. Those
we can distinguish from it form a set F and those that do
not will form another set P . The set F is the set of those
patches that are definitely not witt. The set P is the set of
those patches that could be witt as they are indistinguish-
able from the prototype but we have no way to find out.
The sets F and P complement each other. We managed
to create two well defined sets with no borderline cases.
Those sets have been created through relative distinguisha-
bility. Relative distinguishability has a prominent role in
philosophical approaches to vagueness (see [12, 13]). As
pointed out in [14] relative distinguishability does not re-
fine direct distinguishability. That is, two patches that be-
long to F and P , respectively, can still be identical. How-
ever, we do know that the witt patch and the patches in
F are distinct. The formation of F and P resembles that
of the recursive enumerable predicates. A predicate is r.e.
just in case its extension function is r.e. In our case the dis-
criminating function converges on all inputs but it can be
partially (on the positive side) wrong!

The following section provides a further generalization
of the above approach to the color patches problem.

3 The Two Values of Discrimination

In this section, we will elaborate on the terms of our
language, called objects and the methods of distinguishing
among them. How do we distinguish among objects? By a
comparison test. For instance, x and y are distinguishable
because they look different. On the other hand x and x (as
printed characters) are indistinguishable because they look
the same even though they are not. A magnifying glass can
certainly detect a difference among them.

Observing is not the only way of distinguishing. Mea-
suring is another. Measuring means to compare an object

with a prototype. For example, if Ann says “I am two me-
ters tall” means that if we join two meters (meter as the
physical object) the height of the resulting object will be
indistinguishable from Ann’s height. This is the reason for
the inherent value of prototypes. They become widely ac-
cepted points of reference and objects of comparison. Dur-
ing measurement we must also provide a method for doing
so. When Ann says “I am two meters tall”, she means that
we should also set the one edge of the two meter object
on her feet and the other towards her head. Moreover, by
edge she means the “intended” edges of the two-meter ob-
ject’s length than the edges of its width. Although such
explanations are usually cumbersome and implicit they are
not always so. Height measurement is by now standard
and everyone has been trained to decide distinguishability
according to it. In contrast, an experiment is a measure-
ment but we take great pains in reproducing it. Reproduc-
ing it means we know the method of the comparison we try
to make rather than revealing some truth about the objects
compared.

Intuitively, a resolution space is a set of objects rep-
resenting the objects of our discourse. objects can refer
to entities, relations and functions among them, situations,
etc. There is no preset bounds on what can be expressed by
objects. If two objects are distinguishable then that means
we have a method for telling them apart. Otherwise they
are indistinguishable.

Definition 1 A resolution space is a pair

(R;a)

where R is a set of objects, a is a binary relation between
members of R called the distinguishability relation. We
shall assume the following properties for a:

1. x 6a x, for all x 2 R (Distinguishability Irreflexivity)

2. x a y implies y a x (Symmetry)

The complement of the distinguishability relation will be
called indistinguishability and denoted by �.

Note here that the indistinguishability relation is re-
flexive and symmetric. Our idea of using a reflexive and
symmetric relation in order to express indistinguishability
is not new. Although many authors have argued that in-
distinguishability is better expressed through equivalence
([15, 16, 17]), many have also dropped transitivity as early
as [18] (see also [19]).

Example 1

1. Let D be the set of finite binary strings of finite length
n. We can say that two strings are indistinguishable
when they have the same length and differ in at most
one digit. Otherwise, they are distinguishable.
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2. Let R be the set of real numbers. Let r1 a r2 when
they differ on the integer part of their decimal repre-
sentation.

Can a distinguishability relation be expressed in terms
of a metric? It seems that a distinguishability relation is
more basic than a metric. It seems plausible to think of
metric as a way to generate distinguishability, for example,
let x a y if and only if d(x; y) � � for some appropriate
metric d. This concept has been long exploited in topology
by the notion of uniformity (see for example [20]): a fil-
ter of reflexive and symmetric relations with an additional
axiom expressing the triangle inequality and therefore the
real-valued nature of the metric. Apart from defining a res-
olution space on the basis of a single distinguishability re-
lation rather than a set of them, we do not impose a triangle
inequality as we aim for a qualitative rather than a quanti-
tative framework. Therefore, set of resolution spaces can
be used to present a generalization of uniformities.

As we mentioned above we are interested in relative dis-
tinguishability. This is so because we would like to express
valuations. In particular, we would like to identify values
within the distinguishability domain. Our intention is to
build a richer structure that will reflect those intuitions. To
this end we will define the following operator

Definition 2 Let X � D. The discriminant operator a :
D ! D is defined by

Xa = fyj8x 2 X; x a yg:

The set Xa will be called the discriminant ball of X .

We have the following

Proposition 2 1. X � Y implies Y a � Xa (that is the
discriminant operator is antitone).

2. X � Xaa, Xa = Xaaa

3. aa : D ! D is a closure operator.

In fact, it is well known that an antitone operator on a
lattice induces a pair of Galois connection (see [21])(here
the lattice is the lattice of the powerset of D). Closure
operators in this case can be generated as a composition of
the maps that form the Galois connection.

The closed subsets of the closure operator will be called
stable. Stable subsets have the form Xaa.

The proposition below follows from a more general re-
sult about the closed subsets of a closure operator (see [22])

Proposition 3 The stable subsets of D form a complete
lattice under �. If fAigi2I is a family of stable sets then

^

i2I

Ai =
\

i2I

Ai

_

i2I

Ai = (
[

i2I

Ai)
aa:

Apart from the conjunction and disjunction operation on
the lattice of stable subsets, we can add an orthonegation
unary operation that is simply the discriminant operator.
Therefore, the negation of the stable subset will be Aa.
By the result above Aa is stable because A is stable. The
discriminant operator restricted in the stable subsets has
power two, that is, A = Aaa. In addition a _ aa = >
and a ^ aa = ?. The above properties make the lattice of
stable subsets an ortholattice (see [22]).

Our thesis is that the well-defined propositions describ-
ing properties of objects in a resolution space correspond
to stable subsets. The reason is simple. If one allows a non-
stable subset to be an extension of a proposition A then its
complement will contain a object x that is indistinguish-
able from some object contained in the extension ofA. The
object x can also be distinguished from all objects distin-
guished from A (in symbols, x 2 Aaa �A with x 2 A�).
Therefore, there is no apparent reason for excluding x from
satisfying the property a. In addition, stability allow us to
handle affirmative and refutative assertions under a single
notion ([23]).

If a subset is stable then its negation is not necessarily
its complement. Therefore, there are objects that satisfy
neither the proposition nor its negation (x 62 A [ Aa).
There is a good reason for that, namely, such ambiguous
object is indistinguishable from every object satisfying A

as well as indistinguishable from every object not satisfy-
ing A (x 2 A� [ (Aa)�).

Therefore, we suggest that the algebra of propositions
on a resolution space forms an ortholattice. The equational
theory of ortholattices appears in Table 1.

The above show

Theorem 4 (Soundness) The set of propositions on a res-
olution space forms an ortholattice.

4 Completeness

We shall now give a representation of the ortholattice of
unambiguous propositions by providing a corresponding
resolution space whose lattice of stable subsets contains
the ortholattice. Our representation runs along the lines
of Goldblatt’s representation of ortholattice with its filters
([24]). Our contribution lies in turning the space of filters
into a resolution space of objects.

To this end, let T be an ortholattice. Consider the maps
v from T to f0; 1g that preserve the meets of T that is
v(t ^ s) = v(t) ^ v(s). We will call these maps semi-
lattice homomorphisms. We shall move freely between
meet-homomorphisms and ortholattice filters1 because fil-

1A filter F is a proper upper-closed subset closed under meets, i.e.,
0 62 F , if t 2 F and t � s then s 2 F and if t; s 2 F then t ^ s 2 F .
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Table 1: Ortholattice Theory

x ^ x = x x _ x = x (Idempotency)

x ^ y = y ^ x x _ y = y _ x (Commutativity)

x ^ (y ^ z) = (x ^ y) ^ z x _ (y _ z) = (x _ y) _ z (Associativity)

x ^ (x _ y) = x _ (x ^ y) = x (Absorption)

x ^ x
a = ? x _ x

a = >

(x ^ y)a = x
a
_ y

a (x _ y)a = x
a
^ y

a (de Morgan)

(xa)a = x (Involution)

x ` y is equivalent to either x ^ y = x or x _ y = y

ters arise as inverse images of 1. To see that let v�1(1)
be the inverse image of 1 under the semilattice homo-
morphism v. If t; s 2 v�1(1) then v(t) = v(s) = 1
so v(t ^ s) = v(t) ^ v(s) = 1 ^ 1 = 1, therefore,
t ^ s 2 v�1(1). Also, if t 2 v�1(1) then 1 = v(t) � v(s)
so v(s) = 1. On the other hand, suppose that F is a filter
of T and v is a map from T to f0; 1g such that v(t) = 1 if
and only t 2 F . The only case needs to be considered is
v(t) = v(s) = 1 but v(t ^ s) 6= 0. However, this case is
impossible as t ^ s 2 F because F is a filter.

Now that we established the above bijective correspon-
dence, we shall define the desired resolution space. Let
(RT ;a) be the resolution space whose objects are the fil-
ters of the ortholattice T . By the result above, each object
can be considered a semilattice homomorphism. It only re-
mains to define the distinguishability relation: let a; b 2 R

then a a b iff there exists t 2 T such that a(t) = 1
and b(ta) = 1. We will prove that a is indeed a distin-
guishability relation, i.e. a is irreflexive and symmetric.
Irreflexivity follows from the fact that if a a a then there
is t 2 T such that a(t) = a(ta) = 1. It follows that
0 = a(a) = a(t ^ ta) = a(t) ^ a(ta) = 1 ^ 1 = 1, a
contradiction. Symmetry is immediate since taa = t.

Let S be the lattice of the stable subsets of RT under�.
It remains to show that T can be embedded in S: let i be
the map from T to S defined by i(t) = At, where At is the
set of semilattice homomorphisms that map t to 1, i.e. if
a 2 At then a(t) = 1.

Observe that Aat = Ata : for the left to right inclusion,
if a 2 Aa

t
then a a b for all b 2 At. In particular, a a �t,

where �t is the semilattice homomorphism such that �t(s) =
1 if and only if t � s. So there is s 2 T such that �t(s) = 1
while a(sa) = 1. The former implies that t � s so sa � ta

and the latter implies a(ta) = 1. It follows that a 2 Ata .
The other inclusion is straightforward.

The above implies thatAaa
t

= Ataa = At and therefore

the map i is well-defined. We will show that this map is an
isomorphism.

First, the map i is an ortholattice homomorphism. We
have that i(t^ s) = At^s = At\As = i(t)^ i(s) because
a(t ^ s) = 1 if and only if a(t) = 1 and a(s) = 1 for all
semilattice homomorphisms a. Also, i(t_s) = i(t)_ i(s),
as we have At_s = A(ta^sa)a = Aa(ta^sa) = (Ata ^

Asa)
a = (Aa

t
^ Aa

s
)a = At _ As.

Second, it is clear that the map i is a bijection proving
the following

Theorem 5 (Completeness) For every ortholattice T there
is a resolution space RT such that T can embedded in the
the complete ortholattice of stable subsets of RT .

5 Conclusion

The notion of a resolution space provides a useful math-
ematical tool for dealing with similarity. Its main advan-
tage is simplicity but at the same time it provides an ex-
pressive mathematical framework.

So far, our approach has been biased. We have relied
solely on the distinguishability operator `. The operator�
provides a considerable alternative. Define the similarity
ball of X with

X� = fyj8x 2 X; x � yg:

It can be easily seen that xa and x� are complements.
However, the discriminant and similarity ball of X are not
necessarily complements when X is not a singleton. An
ortholattice of stable subsets under the similarity operator
can be defined in a dual way we defined it above. This ob-
servation along with a space that can accommodate more
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than one distinguishability operator provides what we be-
lieve is the most promising research direction of resolution
spaces.
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