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Abstract

Protein α-helices provide an ordered biological environment that is conducive to soliton-assisted energy
transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the
hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a
localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however,
could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have
computationally solved the system of stochastic differential equations that govern the quantum dynamics
of protein solitons at physiological temperature, T = 310 K, for either a single isolated α-helix spine of
hydrogen bonded peptide groups or the full protein α-helix comprised of three parallel α-helix spines. The
simulated stochastic dynamics revealed that although the thermal noise is detrimental for the single isolated
α-helix spine, the cooperative action of three amide I exciton quanta in the full protein α-helix ensures
soliton lifetime of over 30 ps, during which the amide I energy could be transported along the entire extent
of an 18-nm-long α-helix. Thus, macromolecular protein complexes, which are built up of protein α-helices
could harness soliton-assisted energy transport at physiological temperature. Because the hydrolysis of a
single adenosine triphosphate molecule is able to initiate three amide I exciton quanta, it is feasible that
multiquantal protein solitons subserve a variety of specialized physiological functions in living systems.
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Highlights

• Secondary structure of protein α-helices supports the generation of moving Davydov solitons.

• Lateral coupling between protein α-helix spines is indispensable for soliton thermal stability.

• Lateral coupling between spines is mimicked by tripled mass of the phonon lattice unit cells.

• Soliton lifetime of 30–40 ps ensures energy transport in proteins at physiological temperature.

• Langevin dynamics of the protein lattice leads to stochastic trajectories of Davydov solitons.
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1. Introduction

Proteins are biological macromolecules that sustain life through execution of main physiological functions
such as transportation, contraction, signal transduction or catalysis of biochemical reactions [1–3]. To achieve
their diverse functions, proteins rely on efficient utilization of energy quanta released by the hydrolysis of
adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and inorganic phosphate (Pi). The Gibbs
free energy of ATP hydrolysis (measured in eV) depends on the chemical concentration of substrates and
products [4–6]

∆GATP = ∆G0
ATP +

kBT

qe
ln

(
[ADP][Pi]

[ATP]

)
(1)

where kB = 1.380649×10−23 J/K is the Boltzmann constant [7], T = 310 K is the physiological temperature
of the human body, qe = 1.602176634 × 10−19 C is the elementary electric charge [7], and ∆G0

ATP =
−0.31611 eV is the standard Gibbs free energy of ATP hydrolysis measured under standard conditions in
which the concentrations of all chemicals in the reaction, [ATP], [ADP], and [Pi], are 1 molar (M) [8, 9].
For physiological intracellular conditions with [ATP] = 6.18 mM, [ADP] = 0.05 mM and [Pi] = 0.88 mM
[5], the free energy released by ATP hydrolysis computed from (1) is about 0.63 eV. This amount of energy
is sufficient to excite three amide I exciton (C=O stretching) quanta, which couple strongly with the lattice
of hydrogen bonds that support the secondary structure of protein α-helices [10].

Structurally, the protein α-helix is a right-handed spiral that contains 3.6 amino acid residues for each
full turn (Fig. 1a). Three parallel chains of hydrogen-bonded peptide groups · · ·H-N-C=O· · ·H-N-C=O· · · ,
referred to as α-helix spines, stabilize the spiral (Fig. 1b). The amino acid residues in the protein α-helix
are tightly packed with an inner diameter of about 300 pm, which makes the α-helix inaccessible for entry
of water molecules from the solvent (Fig. 1c). Each of the three individual α-helix spines also rotates, but
in the opposite direction, to form a left-handed spiral (Fig. 1d).

The transportation of metabolic energy along protein α-helices, as described by Davydov’s theory of
interacting amide I excitations (excitons) and distortions in the lattice of hydrogen bonds (phonons), is
modeled by the following generalized Hamiltonian [11–13]

Ĥ = Ĥex + Ĥph + Ĥint (2)

with

Ĥex =
∑
n

[
E0â

†
nân − J

(
â†nân+1 + â†nân−1

)]
(3)

Ĥph =
1

2

∑
n

[
p̂2
n

M̃
+ w̃ (ûn+1 − ûn)

2

]
(4)

Ĥint =
∑
n

[χrûn+1 + (χl − χr) ûn − χlûn−1] â†nân (5)

where E0 = 0.2 eV is the energy of the amide I exciton, J = 967.4 µeV is the dipole–dipole coupling energy
between neighboring amide I oscillators, â†n and ân are the exciton creation and annihilation operators

satisfying the commutation relations [ai, a
†
j ] ≡ aia

†
j − a†jai = δij and [a†i , a

†
j ] = [ai, aj ] = 0, p̂n is the

momentum operator and ûn is the displacement operator from the equilibrium position of the lattice site n,
M̃ is the mass of each lattice site indexed by n, w̃ is the spring constant of the hydrogen bonds in the lattice
[11–14], χr and χl are anharmonic parameters arising from the coupling between the amide I exciton and
the phonon lattice displacements, respectively, to the right or to the left, [15–19].

The model Hamiltonian (2) is traditionally used to study the quantum dynamics of solitons propagating
along a single α-helix spine, where the individual lattice sites n are taken to be peptide groups with mass
M = 1.9 × 10−25 kg and the spring constant of the hydrogen bonds between neighboring peptide groups
is w = 13 N/m [20, 21]. However, A. C. Scott recognized that the same Hamiltonian (2) also describes
the propagation of symmetric solitons in the protein α-helix if the individual lattice sites n are taken to be
protein unit cells comprised from three consecutive peptide groups in the protein primary structure with
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Figure 1: Three-dimensional structure of a poly-alanine protein α-helix stabilized by three chains of hydrogen bonds (dashed
lines) referred to as α-helix spines. (a) Side view of the protein α-helix. (b) Side view of a single protein α-helix spine. (c)
Top view of the protein α-helix. (d) Top view of a single protein α-helix spine. H atoms are shown in white, N atoms in blue,
C atoms in green, and O atoms in red. The rise of right-handed (R) spiral occurs with counter-clockwise rotation, whereas the
rise of left-handed (L) spiral occurs with clockwise rotation.

total mass M̃ = 3M = 5.7 × 10−25 kg and the combined spring constant of the three hydrogen bonds
between neighboring peptide unit cells is set to w̃ = 3w = 39 N/m [14]. Here, we use the latter fact in
order to study the effects of thermal noise on the soliton lifetime, and investigate the potential unexpected
consequences of a theoretic consideration of a single α-helix spine isolated outside of the stable structure of
the massive protein α-helix. In particular, we show that the single isolated α-helix spine is a poor model
of protein α-helix as it lacks thermal stability. We further strengthen our analysis by considering computer
simulations of the more elaborate, three-spine model of protein α-helix.

The organization of this work is as follows: In Section 2, we present a system of Langevin equations that
model the quantum dynamics of protein α-helix in the presence of physiological thermal noise at T = 310 K.
In Section 3, we provide numeric values of various biophysical parameters, together with the initial conditions
for the amide I exciton pulse and the phonon lattice, which are required for computer simulations. Next,
in Section 4 we compare the thermal stability of a single isolated α-helix spine and the massive single-chain
model of protein α-helix. Finally, in Section 5 we investigate the full three-spine model of protein α-helix
and demonstrate the importance of the lateral coupling between the spines for ensuring thermal stability
of the generated protein solitons for 30-40 ps, which is sufficient for the amide I energy to be transported
along the entire extent of an 18-nm-long α-helix.
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2. Equations of motion with thermal noise

Quantum equations of motion for multiquantal states of amide I energy can be derived from the
Schrödinger equation

ı~
d

dt
|Ψ〉 = Ĥ|Ψ〉 (6)

using a generalized ansatz state vector that approximates the exact solution in the form [22, 23]

|Ψ(t)〉 = |ψex(t)〉|ψph(t)〉 (7)

with

|ψex(t)〉 =
1√
Q!

[∑
n

an(t)â†n

]Q
|0ex〉 (8)

|ψph(t)〉 = e−
ı
~
∑

j(bj(t)p̂j−cj(t)ûj)|0ph〉 (9)

where |0ex〉 is the vacuum state of amide I excitons, |0ph〉 is the vacuum state of phonons, and we identify
the following two expectation values: bj = 〈Ψ(t)|ûj |Ψ(t)〉 and cj = 〈Ψ(t)|p̂j |Ψ(t)〉 [18].

Using the generalized Ehrenfest theorem for the time dynamics of the expectation values of the latter
two observables gives

ı~
d

dt
bj = 〈Ψ(t)|

[
ûj , Ĥ

]
|Ψ(t)〉 (10)

ı~
d

dt
cj = 〈Ψ(t)|

[
p̂j , Ĥ

]
|Ψ(t)〉 (11)

From (10) follows that cj = M̃ d
dtbj [16], which allows us to express the initial lattice state only in terms of

bj(0) and d
dtbj(0) as follows

|ψph(0)〉 = e−
ı
~
∑

j(bj(0)p̂j−M̃[ d
dt bj(0)]ûj)|0ph〉 (12)

Further consideration of the expectation value 〈Ψ(t)|â†nân|Ψ(t)〉 = Q |an|2 together with the inner product
based on the Schrödinger equation

1√
Q!
〈ψph(t)|〈0ex| (ân)

Q
ı~
d

dt
|Ψ(t)〉 =

1√
Q!
〈ψph(t)|〈0ex| (ân)

Q
Ĥ|Ψ(t)〉 (13)

after straightforward, but laborious calculations (for a complete step-by-step derivations see [18, 23, 24]),
results in the following system of gauge transformed quantum equations of motion

ı~
d

dt
an = −J (an+1 + an−1) + [χrbn+1 + (χl − χr)bn − χlbn−1] an (14)

M̃
d2

dt2
bn = w̃

(
bn−1 − 2bn + bn+1)−Q

(
χr |an−1|2 + (χl − χr) |an|2 − χl |an+1|2

)
(15)

The latter system of equations (14) and (15) governs the quantum dynamics of protein solitons in the absence
of thermal noise (T = 0 K). In order to introduce the effects of a thermal bath coupled to the protein, one
needs to modify the lattice dynamics (15) with the inclusion of a damping term −M̃Γ d

dtbn and a thermal
noise term ηn(t) that obey the fluctuation–dissipation theorem [25]. The latter condition implies that the
correlation function for the random force is

〈ηn(t)ηn′(t′)〉 = 2M̃ΓkBTδnn′δ(t− t′) (16)

where δnn′ is the Kronecker delta, δ(t − t′) is the Dirac delta function, and Γ = 0.005
√

w̃
M̃

is the lowest

(non-zero) frequency of the protein lattice used in previous computational studies [26–28].
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In terms of the Itô calculus [29–31], if we have a real-valued continuous-time stochastic Wiener process
Wn(t) with zero drift 〈Wn(t)〉 = 0 and unit volatility 〈[Wn(t)]2〉 = t, then its formal derivative d

dtWn(t) is a
white noise process such that 〈

d

dt
Wn(t)

〉
= 0 (17)〈[

d

dt
Wn(t)

] [
d

dt
Wn(t′)

]〉
= δ (t− t′) (18)

Therefore, the introduction of stochastic differentials [32] converts (15) into a Langevin equation [33–36]

d2

dt2
bn =

w̃

M̃

(
bn−1−2bn+bn+1)− Q

M̃

(
χr |an−1|2 +(χl−χr) |an|2−χl |an+1|2

)
−Γ

d

dt
bn+

√
2ΓkBT

M̃

d

dt
Wn(t)

(19)

3. Computer simulations of stochastic soliton dynamics

The length of the simulated protein α-helix in the present study was taken to be 18 nm, which corresponds
to nmax = 40 lattice sites separated by a distance r = 0.45 nm between any two neighboring sites along
the main axis. Contrary to ordinary differential equations where the obtained solutions are deterministic,
computer simulations of stochastic processes generate different observable paths for different simulation runs.
In order to be able to perform direct comparisons of the resulting stochastic dynamics for different number Q
of amide I exciton quanta or different M̃ , we have randomly generated sets Si of nmax = 40 Wiener processes
{W1(t),W2(t), . . . ,W40(t)} each of which is discretized in time steps of ∆t = 5 fs. Next, we have thermalized
the phonon lattice in the absence of exciton quanta, Q = 0, in order to extract initial bn(0) and d

dtbn(0)
values of a protein lattice state |ψph(0)〉 that has arrived exactly at temperature of T = 310 K, namely

1

2

∑
n

M̃

(
dbn(0)

dt

)2

=
1

2
NkBT (20)

where N is the total number of lattice sites. Then, soliton simulations were performed using a discrete
Gaussian pulse of amide I energy applied over five consecutive lattice sites n given by{

A2e
−ı2∆ω, A1e

−ı∆ω, A0, A1e
+ı∆ω, A2e

+ı2∆ω
}

(21)

where A0 =
√

0.322, A1 =
√

0.24, A2 =
√

0.099, and the phase modulation introduced through the parameter
∆ω = π

12 ensures that the soliton has a positive initial momentum [19] given by

〈Ψ(0)|~k̂|Ψ(0)〉 =
2~
r

sin (∆ω) (A0A1 +A1A2) (22)

In the continuum approximation, Davydov and co-workers have shown that the solitons exhibit a charac-
teristic sech-squared exciton probability distribution [11, 12]. For the utilization of energy by biological
systems, however, it is advantageous if any sufficiently localized initial pulse of exciton energy is able to re-
shape into a soliton-like form with only minimal dispersion of energy into the so-called soliton ‘tails’ [37, 38].
Consequently, in order to demonstrate that the protein solitons are easy to generate in living matter, in this
present work we have chosen to apply general Gaussian exciton pulses, as we also did previously [16–19].
In Appendix E, we show that discrete sech-squared initial exciton pulses indeed exhibit dynamics that is
very similar to the one obtained with discrete Gaussian exciton pulses.

To simulate solitons inside a single protein α-helix spine, we used M̃ = 1M and w̃ = 1w, whereas for
solitons inside the massive single-chain model of a protein α-helix, we used M̃ = 3M and w̃ = 3w. The
exciton–phonon interaction was considered to be isotropic with equal left and right coupling parameters,
χl = χr = 35 pN [14, 18]. The present choice of modeling parameters ensures direct comparability of the
resulting simulations with those reported in previous works [16–19, 21, 28, 39].
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4. Comparison between single α-helix spine and massive single-chain model of protein α-helix

4.1. Quantum dynamics at zero temperature

To set up the appropriate base case for assessing the influence of thermal noise on the lifetime of protein
solitons, we have first simulated the quantum dynamics of solitons at zero temperature, T = 0 K, in a single
isolated protein α-helix spine or in the massive single-chain model of a protein α-helix.

4.1.1. Single α-helix spine

In the model of a single α-helix spine with M̃ = 1M and w̃ = 1w, the actual number Q of amide I
exciton quanta was crucial for surpassing the upper threshold for which the self-trapping of the soliton is
too strong to allow soliton motion, thereby pinning the soliton at the site of its creation (Fig. 2). In general,
increasing Q decreases the gauge transformed soliton energy given by the initial exciton expectation value
[19]

〈Ψ(0)|Ĥex|Ψ(0)〉 −QE0 = −QJ
∑
n

[
a∗n(0)an+1(0) + an(0)a∗n+1(0)

]
= −4QJ (A0A1 +A1A2) cos(∆ω) (23)

and the resulting stronger self-trapping effect slows down the speed of the soliton.
For Q = 1, the self-trapping is well above the lower threshold for soliton formation and the soliton speed

is 439 m/s (Fig. 2a). For Q = 2, the stronger self-trapping slows down the soliton speed to 234 m/s (Fig. 2b).
For Q ≥ 3, the soliton remains pinned at the site of its creation (Fig. 2c,d). These results are consistent with
previous reports that increasing the strength of the nonlinear exciton–phonon interaction leads to pinning
of the solitons, which in turn makes them unsuitable for transport of energy as they do not propagate at
all [16, 18, 28, 40–42]. Thus, the theoretical modeling of a single α-helix spine extracted outside of the full
protein α-helix already has some unintended consequences upon the biological utility of solitons even in the
absence of any thermal noise. In particular, with respect to the number Q of amide I exciton quanta, the
window with moving solitons is much narrower for the single protein α-helix spine as compared with the full
protein α-helix, which we elaborate next.

4.1.2. Massive single-chain model of protein α-helix

In the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w, the actual number Q
of amide I exciton quanta was crucial for surpassing the lower threshold for which the self-trapping is strong
enough to prevent the soliton dispersal (Fig. 3). In the presence of a single amide I exciton quantum, Q = 1,

the nonlinear interaction between the exciton and the distortion of the phonon lattice, given by Qχr |an−1|2

and Qχl |an+1|2 terms, is not strong enough to prevent dispersion (Fig. 3a). From the viewpoint of a
complete model with three α-helix spines (see Appendix F), the latter observation can be explained by
the reduction of the exciton quantum probability amplitudes an by 1√

3
due to their distribution over the

three spines thereby decreasing the exciton–phonon nonlinear interaction below the threshold for soliton
formation. For Q ≥ 2, the self-trapping effect is above the lower threshold for soliton formation, but below
the upper threshold for soliton pinning (Figs. 3b-d). For Q = 2 the soliton propagates with speed of 500
m/s (Fig. 3b), for Q = 3 the speed is decreased to 439 m/s (Fig. 3c), and for Q = 4 the speed is 367 m/s
(Fig. 3d). In the absence of thermal noise, for Q ≥ 2 the soliton lifetime was confirmed to exceed with at
least two orders of magnitude the simulation period of 50 ps, despite possible destabilizing effects due to
finite working precision and to numerical rounding-off in computer simulations.

4.2. Quantum dynamics at physiological temperature

4.2.1. Single α-helix spine

In the model of a single α-helix spine with M̃ = 1M and w̃ = 1w, the effects of the thermal noise were
devastating to soliton stability and its biological utility (Fig. 4). In order to assess the effect of increasing
the number Q of amide I quanta on soliton stability, we have used the same set S0 of Wiener processes and
the same initial thermalized state |ψph(0)〉 of the protein lattice. For Q = 1, the soliton persisted for only
≈ 4 ps (Fig. 4a), for Q = 2 it persisted a bit longer for ≈ 10 ps (Fig. 4b), and for Q ≥ 3 the soliton lifetime

6
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Figure 2: Dynamics of a soliton moving inside a single α-helix spine with M̃ = 1M and w̃ = 1w at T = 0 K, with different
number Q of amide I energy quanta visualized through the exciton quantum probability |an|2 at each peptide group n. The
Gaussian pulse of amide I energy is applied at the N-end of a protein α-helix spine with nmax = 40 peptide groups. The
lifetime of the protein soliton exceeds 50 ps. For Q ≥ 3, the soliton is pinned.

was ≈ 20 ps (Figs. 4c,d). The most important problem in the simulations with Q ≥ 2, however, was that
the soliton remained pinned at the site of its creation and did not move along the α-helix spine (Fig. 4b-d).
In other words, the thermal noise was unable to set the soliton in motion, not even in the fashion of a
random walk where the soliton is wandering aimlessly around. Although the pinning for Q ≥ 3 is already
predictable by the simulations at zero temperature (Figs. 2c,d), comparison of the case with Q = 2 at zero
and at physiological temperature (Fig. 2b vs Fig. 4b) shows that the presence of thermal noise is actually
capable of pinning the soliton that otherwise would be in motion. These findings for a single isolated α-
helix spine are qualitatively different from the simulations with the full protein α-helix (elaborated in the
next subsection) and are remarkable in Davydov’s theory of protein solitons for two reasons: First, they
reproduce the ultrashort soliton lifetimes for Q = 1 in single spine found by Lomdahl and Kerr [39]. Second,
they reproduce the soliton ineffectiveness for transportation of energy in single spine for Q ≥ 2 [27]. Thus,
we are in complete agreement with previous research done on a single isolated α-helix spine. But the main
conclusion to be drawn is that the model of a single α-helix spine is not a trustworthy model for studying
the transport of energy in intact protein α-helices. In particular, it is inadequate in handling the stochastic
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Figure 3: Dynamics of a soliton moving inside the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w
at T = 0 K, with different number Q of amide I energy quanta visualized through the exciton quantum probability |an|2 at
each protein unit cell n. The Gaussian pulse of amide I energy is applied at the N-end of a protein α-helix with nmax = 40
unit cells, each of which is comprised of three peptide groups. For Q ≥ 2, the lifetime of the protein soliton exceeds 50 ps.

quantum dynamics of proteins introduced by the presence of physiological thermal noise.

4.2.2. Massive single-chain model of protein α-helix

In the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w, the presence of
thermal noise (based on the set S0 of Wiener processes) at physiological temperature, T = 310 K, also
introduced dynamic instability but its action was delayed, namely, it disintegrated the soliton with lifetime
of over 30 ps (Fig. 5). For Q ≤ 3, the thermal noise smeared the soliton trajectory in the initial 20 ps of
the simulation, after which the soliton bifurcated into two tracks with smaller amplitudes. Eventually, the
soliton was dispersed after ≈ 30 ps (5a-c). For Q = 4, the self-trapping effect was strong enough to allow
the soliton to travel from the N-end along the whole extent of the protein α-helix and reach the opposite
C-end. In addition to the enhanced stability, the lifetime of the soliton was also extended to ≈ 40 ps (5d).
Thus, the larger mass M̃ of the full protein α-helix and the higher number Q of amide I exciton quanta
cooperate together to enhance the soliton stability against thermal noise.
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Figure 4: Dynamics of a soliton inside a single α-helix spine with M̃ = 1M and w̃ = 1w at T = 310 K, with different number
Q of amide I energy quanta visualized through the exciton quantum probability |an|2 at each peptide group n. The Gaussian
pulse of amide I energy is applied at the N-end of a protein α-helix spine with nmax = 40 peptide groups. The soliton is pinned
and depending on the value of Q persists for 4–20 ps before being dispersed by the thermal noise.

Gaussian pulses of amide I energy were also capable to generate moving solitons when delivered in the
middle of the protein α-helix (Fig. 6). Because in this instance the soliton was able to reach the end of the
helix within 10 ps, the simulations showed soliton bouncing from the C-end and propagation in reversed
direction towards the N-end. For Q ≤ 3, the soliton survived for 30 ps and reached the N-end of the helix
(Fig. 6a-c). For Q = 4, however, the bounce from the C-end led to splitting of the soliton into two tracks,
only one of which reached the N-end (Fig. 6d). Because the soliton consists of the expectation values of
detecting the amide I excitons at different lattice sites, splitting of the soliton indicates splitting of the
quantum probability for utilization of amide I quanta. In other words, in the presence of multiple soliton
tracks, the delivery of metabolic energy to different sites in the protein α-helix becomes a probabilistic event.

To further obtain unbiased statistical data on the stochastic quantum dynamics of solitons in the full
protein α-helix with M̃ = 3M and w̃ = 3w at T = 310 K, we have randomly selected another different
initial thermalized state |ψph(0)〉 of the lattice and generated 20 different sets Si of Wiener processes,
i ∈ {1, 2, . . . , 20}. Then, we have computed soliton plots with Q = 3 amide I exciton quanta, which
corresponds to the energy released by a single ATP molecule in physiological conditions [4–6]. As expected
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Figure 5: Dynamics of a soliton moving inside the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w
at T = 310 K, with different number Q of amide I energy quanta visualized through the exciton quantum probability |an|2 at
each protein unit cell n. The Gaussian pulse of amide I energy is applied at the N-end of a protein α-helix with nmax = 40 unit
cells, each of which is comprised of three peptide groups. The soliton persists for 30–40 ps in the presence of thermal noise.

by the stochastic nature of the Langevin dynamics introduced by the thermal noise, the protein soliton
followed different paths for different simulation runs (Fig. 7). In particular, the traversing of the entire
extent of the protein α-helix was a probabilistic event that occurred with different initial delay time, which
was ≈ 5 ps in the noise sets S1 and S2 (Figs. 7a,b), ≈ 10 ps in the noise set S4 (Fig. 7d), and ≈ 20 ps
in the noise set S3 (Fig. 7c). Overall, the observed mean±standard deviation of the soliton lifetime was
33.2 ± 8.8 ps and the average soliton speed until the time point of soliton dispersal was 394 ± 198 m/s.
Compared with the speed of 439 m/s recorded at zero temperature (Fig. 3c), the presence of thermal noise
decreased by ≈ 10% the average soliton speed due to existing brief periods of time during which the soliton
appeared to be temporarily pinned. Nevertheless, there were also periods of time during which the soliton
speed was boosted due to ambient thermal noise, as evidenced by the large standard deviation that is ≈ 50%
of the measured average soliton speed.

Taken together, the above results demonstrate that the cooperative excitation of the three α-helix spines
with Q = 3 amide I energy quanta is able to counteract the negative effects of the thermal noise for ≈ 30 ps
during which time the soliton could successfully traverse the whole extent of an 18-nm-long protein α-helix.
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Figure 6: Dynamics of a soliton moving inside the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w
at T = 310 K, with different number Q of amide I energy quanta visualized through the exciton quantum probability |an|2 at
each protein unit cell n. The Gaussian pulse of amide I energy is applied in the middle of a protein α-helix with nmax = 40 unit
cells, each of which is comprised of three peptide groups. The soliton persists for 20–30 ps in the presence of thermal noise.

Since the energy released by a single ATP molecule suffices to initiate Q = 3 amide I exciton quanta, it is
reasonable to expect that the protein solitons are sustained by the available metabolic energy despite the
presence of ambient thermal noise. The feasibility of protein solitons as means for transportation of energy
in biological systems is further supported by the general agreement between the simulated soliton lifetime
of about 30 ps and the experimentally measured lifetime of amide I vibrational modes in sperm whale
myoglobin, which has been reported to be at least 15 ps [43]. It should be noted, however, that the average
length of the eight α-helices of myoglobin is only 2.2 nm and the longest α-helix is 3.8 nm [44]. Thus, the
solitons can reach 4–5 times faster the opposite α-helix end where they can be absorbed or suffer amplitude
loss during bouncing. Consequently, the lifetime of the soliton as measured in globular proteins might not
be indicative of the lifetime in any longer α-helices, such as those found in transmembrane proteins or in
ion channels [45, 46].
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Figure 7: Dynamics of a soliton moving inside the massive single-chain model of a protein α-helix with M̃ = 3M and w̃ = 3w
at T = 310 K, for Q = 3 amide I energy quanta under the influence of different sets Si of Wiener processes, visualized through
the exciton quantum probability |an|2 at each protein unit cell n. The Gaussian pulse of amide I energy is applied at the
N-end of a protein α-helix with nmax = 40 unit cells, each of which is comprised of three peptide groups. The protein soliton
starts from the same initial thermalized state of the lattice but exhibits different trajectories for different actualizations Si of
the thermal noise.

5. Three-spine model with lateral coupling

Having demonstrated that the massive single-chain model of a protein α-helix exhibits greatly enhanced
thermal stability, we have further investigated the more elaborate three-spine Davydov model [47], which has
been subject to intense scrutiny in 1990s. Through careful examination of the original articles, we discovered
that the highly influential works by A. C. Scott [14, 20] contain a biologically inadequate Hamiltonian for
the phonon lattice in which only the longitudinal coupling by hydrogen bonds is considered, but there is
no lateral coupling between the peptide groups, which are provided by the covalent C-C and C-N bonds by
the protein backbone spiral. This omission has far-reaching biological consequences because Scott’s model
effectively describes three uncoupled spines much like our isolated 1M spine model and not like the massive
single-chain model of a protein α-helix. We point out that Davydov’s original Hamiltonian [47, Eq. (3.3)]
actually contains lateral couplings between the lattice sites and these are considered to be stronger than the
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longitudinal couplings by hydrogen bonds. The general three-spine Hamiltonian is the sum of three parts

Ĥex =
∑
n,α

[
E0â

†
n,αân,α − J1

(
â†n,αân+1,α + â†n,αân−1,α

)
+ J2

(
â†n,αân,α+1 + â†n,αân,α−1

)]
(24)

Ĥph =
1

2

∑
n,α

[
p̂2
n,α

M
+ w1 (ûn+1,α − ûn,α)

2
+ w2 (ûn,α+1 − ûn,α)

2

]
(25)

Ĥint =
∑
n,α

[χrûn+1,α + (χl − χr) ûn,α − χlûn−1,α] â†n,αân,α (26)

where J1 = 967.4 µeV is the nearest neighbor dipole-dipole coupling energy along a spine, J2 = 1535.4 µeV
is the nearest lateral neighbor dipole-dipole coupling energy between spines, w1 = 13 N/m is the spring
constant of the longitudinal hydrogen bonds in the lattice of peptide groups, w2 is the spring constant of
the lateral coupling of the lattice of peptide groups due to covalent bonds in the protein backbone, and
α ∈ {0, 1, 2} is an index denoting each of the three spines in the protein α-helix. To keep our notation
concise in the Hamiltonians and avoid writing mod3 in subscripts, we consider it implicitly understood that
the index α is subject to modulo 3 arithmetic, namely α+ 1 = 3 ≡ 0 and α− 1 = −1 ≡ 2, with ≡ denoting
the congruence modulo 3 relation.

By setting w2 = 0, we obtain exactly Scott’s model [14, Eq. (1.3)] in which the three spines are uncoupled.
In contrast, by choosing different values w2 ≥ w1, we obtain Davydov’s original three spine model with
coupled spines. Using the ansatz (7) and the generalized Ehrenfest theorem, the system of stochastic
Langevin equations of motion for the full three-spine model becomes

ı~
d

dt
an,α = −J1 (an+1,α + an−1,α) + J2 (an,α+1 + an,α−1) + [χrbn+1,α + (χl − χr)bn,α − χlbn−1,α] an,α

(27)

d2

dt2
bn,α =

w1

M
(bn−1,α − 2bn,α + bn+1,α) +

w2

M
(bn,α−1 − 2bn,α + bn,α+1)

− Q

M

[
χr |an−1,α|2 + (χl − χr) |an,α|2 − χl |an+1,α|2

]
− Γ

d

dt
bn,α +

√
2ΓkBT

M

d

dt
Wn,α(t) (28)

Computer simulations were then performed with an initial symmetric discrete Gaussian pulse of amide I
energy, which was equally distributed over all three spines:

1√
3
eıα∆ω2

{
A2,αe

−ı2∆ω1 , A1,αe
−ı∆ω1 , A0,α, A1,αe

+ı∆ω1 , A2,αe
+ı2∆ω1

}
(29)

where A0,α =
√

0.322, A1,α =
√

0.24, A2,α =
√

0.099, and the phase modulation was present along the spines
∆ω1 = π

12 , but not laterally between the spines ∆ω2 = 0. The solitons were visualized by the quantum
probability of finding the amide I exciton inside the nth protein unit cell

P (an) =
∑
α

|an,α|2 = |an,0|2 + |an,1|2 + |an,2|2 (30)

At zero temperature, T = 0 K, the soliton plots for Q = 3 are indistinguishable from the simulation
shown in Fig. 3c, with soliton speed of 439 m/s. The numerical differences between the massive single-chain
model of a protein α-helix and the three-spine model are negligible as they are on the order of 5 × 10−7.
Due to the symmetric initial conditions, the soliton plots of the three-spine model at zero temperature are
identical for all values of the lateral coupling spring constant w2 (see Appendix F).

The lateral coupling w2 in the protein α-helix, however, is of paramount importance in the presence of
thermal noise at physiological temperature, T = 310 K. In order to compare the effects of varying w2, we
have generated a set of 3×40 = 120 Wiener processes and pre-thermalized the protein lattice in the absence
of amide I excitons, Q = 0. Then, we have performed computer simulations with exactly the same initial
thermalized state of the lattice and the same set of 120 Wiener processes.

13



50

20

0

40

30

10

50

20

0

40

30

10

50

20

0

40

30

10

0 40302010

Ti
m

e 
(p

s)

Protein unit cell (n)
0 40302010

Ti
m

e 
(p

s)
Protein unit cell (n)

0 40302010

Ti
m

e 
(p

s)

Protein unit cell (n)
0 40302010

Ti
m

e 
(p

s)

Protein unit cell (n)

a b

c d

w2 = 0
50

20

0

40

30

10

0.3

0.2

0.1

0

w2 = 1

w2 = 2 w2 = 5

Figure 8: Dynamics of a soliton moving inside the three spine model of a protein α-helix with different strength of the lateral
coupling w2 (measured in units of w1) at T = 310 K, for Q = 3 amide I energy quanta under the influence of a fixed set of 120
Wiener processes, visualized through the exciton quantum probability

∑
α |an,α|2 at each protein unit cell n. The Gaussian

pulse of amide I energy is applied at the N-end of a protein α-helix with nmax = 40 unit cells, each of which is comprised of
three peptide groups. The protein soliton starts from the same initial thermalized state of the lattice.

In the absence of lateral coupling, w2 = 0, the model has the properties of three uncoupled spines of
hydrogen bonds and the soliton is dispersed rapidly within 2 ps (Fig. 8a). This is consistent with the results
of poor thermal stability of solitons in the single isolated spine (Fig. 4a) and reproduces the findings by
Lomdahl and Kerr [27]. Therefore, Scott’s model without lateral coupling is simply a triplet of single isolated
spines, each of which lacks thermal stability, and hence is not a model of intact protein α-helix. When the
lateral coupling w2 is introduced, at values of 1×, 2× or 5× the strength of the hydrogen bonds w1, the
thermal stability of the protein soliton is drastically increased to 30 ps (Fig. 8b-d). This result is consistent
with the findings obtained from the massive single-chain model of a protein α-helix (Fig. 7).

The observed thermal stability of the three-spine model with lateral coupling is corroborated by recent
computational study by Brizhik and collaborators [48], where an elaborate spiral protein lattice with greater
number of lateral couplings is considered. In the latter model, each peptide group is coupled to 6 neighboring
peptide groups in the spiral, whereas in our three-spine Hamiltonian (25), each peptide group is coupled to
only 4 neighboring peptide groups. Because we were still able to obtain extended soliton lifetime, we consider
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our three-spine Hamiltonian as the minimal model that guarantees thermal stability. Further inclusion of
additional (diagonal) lateral couplings can only reinforce the model against thermal noise [48].

Previous work by Cruzeiro-Hansson and Takeno classified the Davydov model in three regimes: the
quantum regime, in which both the exciton and the lattice are treated quantum mechanically; the mixed
quantum-classical regime, in which the exciton is treated quantum mechanically but the lattice is considered
classical; and the classical regime, in which both the exciton and the lattice are treated classically [49–51].
Within this classification, our treatment is fully quantum because we use only the Schrödinger equation (6) to
derive the equations of motion for both the excitons and the expectation values of the lattice displacements.
Our derivations, outlined in detail in [18], are formally equivalent to the full quantum mechanical derivations
by Kerr and Lomdahl [23, 24].

The fundamental difference between the classical and the quantum treatment of the lattice is not the
mathematical form of (28), but its physical interpretation: In classical physics based on Hamilton’s equa-
tions, the physical quantities bn,α represent the lattice displacements from their equilibrium positions. This
means that the classical Davydov soliton with given exciton distribution has a fixed lattice deformation
that is responsible for the self-trapping effect. In quantum physics based on the Schrödinger equation, how-
ever, the physical quantities bn,α represent the expectation values of the lattice displacements from their
equilibrium positions. Only when we average over all measurement outcomes for the lattice displacements,
we will obtain bn,α = 〈Ψ(t)|ûn,α|Ψ(t)〉. This means that the quantum Davydov soliton with given exciton
distribution does not have a fixed lattice displacement, but is in so-called Glauber state, which is a quan-
tum coherent superposition of different lattice deformations (9) [52, 53]. Therefore, the quantum nature
of the Davydov soliton is manifested in the fact that the exciton dynamics (27) does not depend on the
possible actualization of a particular lattice displacement upon quantum measurement, but depends on the
expectation value from all possible lattice displacements that could be measured.

Another point where our work differs from the one by Cruzeiro-Hansson and Takeno [49–51] is their
claim that the introduction of a Langevin thermal bath coupled to the protein lattice necessarily forces
the whole system to behave classically. Their observation of rapid dispersal of solitons in a single isolated
spine cannot be used for justification of the latter claim because the use of lattice Hamiltonian lacking
lateral coupling does not provide a valid model of intact protein α-helix. Furthermore, our demonstration
of extended soliton lifetime of 30 ps in the presence of a Langevin thermal bath shown in Fig. 8 clearly
contradicts the hypothesis that the mere presence of Langevin terms is detrimental for Davydov’s model.
A mathematically rigorous derivation of Langevin molecular dynamics, for the case of a composite quantum
system that is weakly coupled to a heat bath of many fast particles, has been recently developed by Hoel and
Szepessy [54]. Thus, we maintain the view that the system of equations (27) and (28) represents a quantum
Langevin model [34–36] of protein α-helix immersed in water-based solvent at physiological temperature.

It is interesting to note that Savin and Zolotaryuk in [55] have previously modified Davydov’s model of
single spine by introducing an on-site potential that accounts for the effects of the other two lateral spines,
thereby enhancing the soliton’s thermal stability. This latter model is also simplified similarly to our massive
single-chain model of a protein α-helix, which shows that the stabilizing effect of the extra on-site potential
could be mimicked by increased (tripled) mass of the individual lattice sites. Furthermore, because the
added on-site potential in the Savin–Zolotaryuk model has a spring constant K = 30.5 N/m, it effectively
describes the behavior of a protein unit cell from the three-spine model with lateral coupling w2 ≈ 2w1

for symmetric initial distribution of the Gaussian amide I energy pulse. This latter limitation, however, is
also shared by the massive single-chain model of a protein α-helix, which describes only symmetric solitons.
Instead, for studying the quantum dynamics of asymmetric initial distributions of the Gaussian amide I
energy, one needs to use the full three-spine model with lateral coupling and solve the three times larger
system of stochastic differential equations (27) and (28).

Taken together, the results obtained from both the massive single-chain model of a protein α-helix and
the three-spine model support the thermal stability of protein solitons for a biologically feasible period of
time exceeding 30 ps. Furthermore, they pinpoint the omission of lateral couplings in the three-spine lattice
as a potent factor that disintegrates the soliton in the presence of thermal noise thereby undermining the
veracity of any inferences with regard to biological utility of the protein solitons.
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6. Concluding remarks

Protein functions involve physical work and as such can be performed only at the expense of free energy
released by biochemical reactions. The hydrolysis of a single ATP molecule is sufficient to initiate three
amide I quanta, which could then propagate along the protein α-helices and be utilized for the execution of
various physiological activities. The quantum system of equations of motion (14) and (15) for amide I energy
quanta coupled to lattice phonons in proteins could be analyzed within the continuum approximation in
order to derive self-trapped propagating quasiparticles referred to as solitons [11, 12, 37, 56–59]. The lifetime
of these solitons is potentially infinite at zero temperature, T = 0 K, which allows for analytic derivation
of soliton energy, effective mass, and speed of energy transportation [13, 19, 38, 60, 61]. Realistic biological
systems, however, operate at physiological temperature, T = 310 K, at which the ambient thermal noise
exerts a disrupting effect on the soliton’s stability [21, 27, 28, 39–42, 62]. Therefore, in this study we have
explored the thermal stability of protein solitons in a biological context using a Langevin modification (19)
of the quantum system of equations of motion.

Computer simulations, based on a set of biophysical parameter values established for proteins, have
demonstrated that the soliton lifetime at physiological temperature is strongly dependent on the number Q
of initiated amide I exciton quanta and the type of theoretical model chosen, namely, whether a single α-helix
spine is investigated in isolation or the full protein α-helix with three coupled α-helix spines is considered.
In the model of a single isolated α-helix spine, the solitons disintegrate quickly by the ambient thermal noise
with a lifetime of several picoseconds, which does not suffice for transportation of energy at a biologically
meaningful distance. In the model of the full protein α-helix, however, the presence of Q = 3 amide I quanta
ensures a cooperative stabilizing effect upon the formed soliton for a time period over 30 ps, which is long
enough for the soliton to traverse the full extent of an α-helix with nmax = 40 lattice sites. Thus, our
computational results establish that multiquantal solitons in full protein α-helices with three α-helix spines
possess the required thermal stability in order to support energy transportation in proteins of living systems
[48, 63]. This robustness against thermal noise of the generalized Davydov model with lateral coupling also
lends indirect support for the predicted importance of topological solitons for protein folding in relation to
their biological function [64, 65].

Here, our main goal was to characterize the conditions under which thermal stability of Davydov solitons
is achieved. The presented three-spine Davydov model indeed highlights the minimal engineering of the
quantum Hamiltonian that supports thermally stable solitons. By adding extra coupling parameters and
considering vibrational motion in all 3 spatial dimensions, however, one might be able to achieve even better
performance. The possibility of further tweaking and upgrading the model quantum Hamiltonian, we leave
for future investigations.

Appendix A. Soliton width

The biological feasibility of Davydov’s model has been heavily criticized in 1990s by different authors
using a combination of suboptimal parameter choices including extreme narrowing of the initial soliton width
to a single lattice site, namely, triggering the soliton with a bare exciton. In previous exploratory works,
we have shown that wider solitons exhibit higher stability and move at lower speeds [16, 18]. This suggests
that biological systems may harness soliton stability by applying the amide I energy through wide Gaussian
pulses extending over three to five lattice sites (peptide groups) along each α-helix spine. In fact, biochemical
data unambiguously shows that the free energy from ATP hydrolysis is not released by a single event of
pyrophosphate bond cleavage, but released sequentially by several molecular events involving destruction
and formation of ionic or hydrogen bonds in the hydration shell of the Mg2+ ion. The free energy value of
0.63 eV used throughout this work is for the hydrolysis of Mg2+-ATP to Mg2+-ADP [66] as described by
the following chemical reaction:
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After the hydrolysis of the outer pyrophosphate bond, the Mg2+ ion detaches from the γ-phosphate and
attaches to the α-phosphate, while retaining its ionic bond to the β-phosphate [67]. The linear extension of
the four negatively charged O− atoms in the three phosphate groups exceeds 1 nm after the cleavage, which
is consistent with a Gaussian energy pulse delivered onto three to five C=O groups in the protein α-helix. In
fact, the Gaussian pulse that we have used in the present simulations contains >80% of the amide I energy
concentrated over the middle three C=O groups from the total of five.

The wavelength of a single infrared photon with energy 0.63 eV is 1968 nm. Because the span of
five peptide groups along the spine is only 2.25 nm, there has to be a mechanism that focuses the pulse
of free energy released from ATP onto the receptive protein α-helix. Furthermore, the efficiency of this
physical process should be high, thus allowing the protein to utilize locally the ATP energy for accomplishing
biological functions with almost unit probability. Due to the large wavelength and lack of infrared lensing
mechanism in living systems, it is unlikely that the ATP energy is absorbed by the protein in the form of
infrared photons. Instead, it is more plausible that the physical delivery of free energy results from direct
interaction, e.g. of the four electrically charged O− atoms from the ATP phosphate groups and several
(three to five) C=O groups in the protein α-helix.

Alexander Davydov himself repeatedly emphasized the importance of the soliton width being extended
over several C=O groups for the enhancement of soliton stability [68, 69]. In fact, the localization of the
amide I energy onto a single site removes the phonon dressing and produces a bare exciton that moves with
high speed and easily loses amplitude even at zero temperature [16] (see also Appendix C).

Appendix B. Harmonic approximation of the intramolecular interactions

Longitudinal and lateral interactions between peptide groups inside the protein α-helix, respectively due
to hydrogen bonds or covalent C-C and C-N bonds, are modeled as harmonic oscillators. This leads to the
possibility that under extreme compression, neighboring peptide groups are allowed to pass unphysically
through each other. The physical observable bn,α − bn+1,α < 0 indicates dilation, whereas bn,α − bn+1,α > 0
indicates compression of the lattice between sites n, α and n + 1, α. Therefore, to investigate whether
the harmonic approximation is justified for Davydov’s model, we have computed the maximal compression
max [bn,α − bn+1,α] in the protein as a function of time t. Because the peptide groups are separated by
a distance of 450 pm along the protein α-helix spines, the unphysical situation that peptide groups pass
through each other will occur when bn,α−bn+1,α > 450 pm. Previously, we have shown that protein solitons
correspond to compression waves in the lattice [16]. Here, we find that the maximal compression of the
protein lattice occurs when the soliton bounces off the protein α-helix end, and that the compression is
less than 2.5 pm for a symmetric soliton in the three spine model with lateral coupling w2 = 2w1 at zero
temperature, T = 0 K (Fig. 9a). The introduction of thermal noise at physiological temperature, T = 310 K,
increases the lattice compression by ≈ 20 times, but at no time point in the simulation the compression
exceeded 50 pm (Fig. 9b). These results demonstrate that the harmonic approximations for longitudinal and
lateral interactions in the Davydov model are indeed fully justified and no peptide groups pass unphysically
through each other.
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Figure 9: Dynamics of the maximal compression max [bn,α − bn+1,α] for a symmetric soliton in the three spine model with
lateral coupling w2 = 2w1 either at zero temperature, T = 0 K, or at physiological temperature, T = 310 K.

Appendix C. Soliton speed

Solitons are generated by pulses of amide I energy. Due to the discreteness of the protein lattice, these
energy pulses can only be discrete distributions over the peptide groups. Previously, we have demonstrated
that the soliton speed is inversely related to the soliton’s width, namely, narrow solitons are faster than
wider solitons [16]. This means that by collecting the total unit probability onto a single peptide group
in the form of a bare amide I exciton, the discrete Davydov model will generate the fastest soliton whose
speed is the maximal speed supported by the protein lattice for fixed nearest neighbor dipole-dipole coupling
energy J , spring constant of the hydrogen bonds w, and strength of the exciton-phonon coupling χ. For the
massive single-chain model of a protein α-helix, with J = 967.4 µeV, w̃ = 3× 13 N/m, χr = χl = 35 pN, at
zero temperature T = 0 K, the soliton moves at speed v = 947 m/s (Fig. 10a), which is 1

4 of the speed of

sound in the protein lattice vs = r
√

w
M = 3722 m/s.

Previous analysis based on the continuum approximation of Davydov’s equations has found supersonic
solutions for certain conditions imposed on the parameters J,w, χ [70]. To test whether the discrete protein
lattice can support supersonic solitons, we have performed simulations by increasing the value of the dipole-
dipole coupling energy J , while keeping w and χ fixed to their established biological values. By doubling
the dipole-dipole coupling energy to J = 2× 967.4 µeV, the soliton speed increased to 2000 m/s (Fig. 10b).
Further increment of the dipole-dipole coupling to J = 3 × 967.4 µeV led to soliton dispersal even though
the simulation is performed at zero temperature (Fig. 10c). If one uses the 6 ps time point at which part of
the amide I energy distribution hits the end of the protein α-helix, subsonic soliton speed of v = 3000 m/s
could be measured, but this speed is not meaningful because the soliton is rapidly dispersed. Similarly, if
the dipole-dipole coupling is increased to J = 4×967.4 µeV, the amide I energy distribution may hit the end
of the protein α-helix at 4 ps time point, registering supersonic speed v = 4500 m/s, but again this is not
biologically useful as the soliton is highly unstable and easily dispersed (Fig. 10d). From these simulations
can be concluded that the discreteness of the protein lattice has pronounced negative effects on fast moving
solitons, but only minimal effects on slow moving solitons where the resulting dynamics is comparable with
the one obtained from the continuum approximation.

Appendix D. Multi-exciton ansatz

The choice of ansatz for the multi-exciton quantum state is based on restricted bosonic Hartree–Fock
(RBHF) trial wave function (8), which contains a product of identical single-particle wave functions [71–
74]. In the theory of dilute Bose gases, the choice of this restricted ansatz is known as Gross–Pitaevskii
approximation [75, 76]. The restricted ansatz has been introduced by Zolotaryuk [22] to study multi-particle
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Figure 10: Dynamics of a soliton generated by unit pulse applied at a single peptide group inside the massive single-chain
model of a protein α-helix with M̃ = 3M and w̃ = 3w at T = 0 K, for Q = 3 amide I energy quanta and different values of the
nearest neighbor dipole-dipole coupling energy J (measured in units of 967.4 µeV), visualized through the exciton quantum
probability |an|2 at each protein unit cell n. The unit pulse of amide I energy is applied at the N-end of a protein α-helix with
nmax = 40 unit cells, each of which is comprised of three peptide groups.

Davydov solitons in proteins, and is also common in the study of multiquantal soliton propagation on an
optical fiber [77]. Expansion of the operator product in (8) can be achieved with the multinomial theorem
[18] (∑

n

anâ
†
n

)Q
=
(
a1â
†
1 + a2â

†
2 + . . .

)(
a1â
†
1 + a2â

†
2 + . . .

)
. . .
(
a1â
†
1 + a2â

†
2 + . . .

)
︸ ︷︷ ︸

Q terms

=

[
a2

1

(
â†1

)2

+ 2a1a2â
†
1â
†
2 + a2

2

(
â†2

)2

+ . . .

]
. . .
(
a1â
†
1 + a2â

†
2 + . . .

)
︸ ︷︷ ︸

Q−1 terms

=
∑

k1+k2+...+kn=Q

Q!

k1!k2! . . . kn!

(
a1â
†
1

)k1 (
a2â
†
2

)k2
. . .
(
anâ

†
n

)kn
(31)
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Its main advantage for computational studies is that for a lattice with total of N sites, it requires consider-
ation of only N differential equations for the N different exciton quantum probability amplitudes.

More general number state method of analysis for Q ≥ 2 was proposed by Scott and collaborators [78]
who introduced unrestricted bosonic Hartree–Fock (UBHF) trial wave function, which contains a product
of different single-particle wave functions [72–74, 79, 80]

Q∏
q=1

(∑
n

an,qâ
†
n

)
=
(
a1,1â

†
1 + a2,1â

†
2 + . . .

)(
a1,2â

†
1 + a2,2â

†
2 + . . .

)
. . .
(
a1,Qâ

†
1 + a2,Qâ

†
2 + . . .

)
︸ ︷︷ ︸

Q terms

=

[
a1,1a1,2

(
â†1

)2

+ (a1,1a2,2 + a1,2a2,1) â†1â
†
2 + a2,1a2,2

(
â†2

)2

+ . . .

]
. . .
(
a1,Qâ

†
1 + . . .

)
︸ ︷︷ ︸

Q−1 terms

=
∑

k1+k2+...+kn=Q

S
[
ak11,qa

k2
2,q . . . a

kn
n,q

] (
â†1

)k1 (
â†2

)k2
. . .
(
â†n
)kn

(32)

where S is the symmetrization operator [79, 81, 82] whose action is to produce a symmetric sum of Q!
k1!k2!...kn!

terms taking care of site repetitions, for example

S
[
a1

1,qa
2
2,q

]
= a1,1a2,2a2,3 + a1,2a2,1a2,3 + a1,3a2,1a2,2 (33)

In total, there will be N multichoose Q different symmetrized quantum probability amplitudes((
N
Q

))
=

(
N +Q− 1

Q

)
=

(N +Q− 1)!

Q!(N − 1)!
(34)

This means that with the unrestricted ansatz, the number of differential equations rapidly grows with Q.
In the case of single-chain lattice with N = 40 sites, one would need a supercomputer in order to solve the
large number of differential equations: 820 for Q = 2, 11480 for Q = 3, and 123410 for Q = 4. Simulations
of the three spine model with N = 120 sites would be even more demanding on resources as there will
be 295240 equations for Q = 3. Thus, the unrestricted ansatz makes it practically impossible to explore
computationally the three-spine model. In contrast, the utility of the restricted ansatz (8) is that it provides
reasonable means for computer simulations of Davydov’s three-spine model.

Investigating the numerical accuracy of the restricted exciton ansatz (8), though an interesting open
question, it is however, beyond the scope of this present work. Here, we have focused our efforts on
elucidating how different modifications of the model Hamiltonian may affect the thermal stability of the
generated solitons. Through systematic exploration of the available parameter space, we have been able to
optimize the initial conditions and obtain thermally stable solitons. Our results challenge previous claims
that the system of differential equations derived by the restricted exciton ansatz (8) does not possess sufficient
thermal stability [23, 27]. We have shown that such claims originate from improper consideration of a single
protein α-helix spine in isolation. If the contribution of the other two lateral spines is properly accounted
for, either by tripling the mass of each lattice site in the massive single-chain model of a protein α-helix or
by inclusion of lateral coupling in the three spine model, the soliton lifetime exceeds 30 ps at physiological
temperature, T = 310 K, and is sufficient for propagation over biologically meaningful distance.

Appendix E. Dynamics of discrete sech-squared solitons in the massive single-chain model of
a protein α-helix

Discretization of continuous distributions into the form given by Eq. (21) was performed by centering the
exciton energy pulse onto 5 peptide groups, and controlling the spread so that 95% of the exciton probability
is localized in the interval from −2.5r to 2.5r. Then, definite integrals were computed with a bin size of
r = 0.45 nm, which is the distance between neighboring peptide groups along the spine. The resulting
probabilities |An|2 were truncated to 3 decimal places and their total sum was normalized to 1.
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Figure 11: Dynamics of a sech-squared soliton moving inside the massive single-chain model of a protein α-helix with M̃ = 3M
and w̃ = 3w at T = 310 K, for Q = 3 amide I energy quanta under the influence of different sets Si of Wiener processes,
visualized through the exciton quantum probability |an|2 at each protein unit cell n. The sech-squared pulse of amide I energy
is applied at the N-end of a protein α-helix with nmax = 40 unit cells, each of which is comprised of three peptide groups.
The protein soliton starts from the same initial thermalized state of the lattice but exhibits different trajectories for different
actualizations Si of the thermal noise.

For the Gaussian pulse, we have used σ = 1.2755 r to compute the bins

|An|2 =
100

95
×
ˆ (n+0.5)r

(n−0.5)r

1√
2πσ

exp

(
− x2

2σ2

)
(35)

with corresponding moduli A0 =
√

0.322, A1 =
√

0.24, A2 =
√

0.099.
To test the possible effect of initial sech-squared shape of the exciton pulse on thermal stability, we have

used σ = 1.3647 r to compute the bins

|An|2 =
100

95
×
ˆ (n+0.5)r

(n−0.5)r

1

2σ
sech2

(x
σ

)
(36)

with corresponding moduli A0 =
√

0.37, A1 =
√

0.237, A2 =
√

0.078.
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Computer simulations have shown that the dynamics of the discrete sech-squared exciton pulse (Fig. 11)
is almost identical to the dynamics produced with discrete Gaussian pulse (Fig. 7). Thus, the thermal
stability of discrete sech-squared and discrete Gaussian pulses is the same. This indicates that the ef-
fects of discretization of the protein lattice dominate over any differences in the initial shape of continous
distributions of free energy that are released from ATP.

Appendix F. Relationship between the massive single-chain model and the three-spine model

At zero temperature, T = 0 K, symmetric initial distributions of the exciton energy in the three-spine
model lead to quantum dynamics that is mathematically equivalent to the one obtained with the massive
single-chain model of a protein α-helix, with M̃ = 3M and w̃ = 3w. To show that, we explicitly write the
implications from the initial symmetry as

an,α = an,α±1 =
1√
3
ān (37)

bn,α = bn,α±1 = bn (38)

Substitution of (37) and (38) in the three-spine model (27) gives

ı~
d

dt

1√
3
ān = −J1

1√
3

(ān+1 + ān−1) + J2
1√
3

2ān + [χrbn+1 + (χl − χr)bn − χlbn−1]
1√
3
ān (39)

The common factor of 1√
3

can be canceled out. After introducing the gauge transformation ān = ane
− ı

~ 2J2t,

we obtain

ı~
d

dt
an = −J1 (an+1 + an−1) + [χrbn+1 + (χl − χr)bn − χlbn−1] an (40)

This is exactly (14) from the massive single-chain model.
At zero temperature, T = 0 K, we do not need to introduce any Langevin terms for the phonon lattice.

Substitution of (37) and (38) in the three-spine model (28) further gives

d2

dt2
bn =

w1

M
(bn−1 − 2bn + bn+1)− Q

M

1

3

[
χr |an−1|2 + (χl − χr) |an|2 − χl |an+1|2

]
(41)

This is exactly (15) as seen by taking into account that w1

M = w̃
M̃

and Q
M

1
3 = Q

M̃
. The lateral coupling term

is eliminated due to bn,α−1 − 2bn,α + bn,α+1 = 0. Noteworthy, the origin of the factor of 1
3 comes from the

equal distribution of the exciton amplitudes across the three spines, and not from triple mass of the lattice.
It is exactly due to the mathematical equivalence between the system (40), (41) and the system (14),

(15), that we can interpret the massive single-chain model of a protein α-helix in two valid ways:

If we have
∑
n |an|

2
= 1, we can state that the massive single-chain model of a protein α-helix is a coarse-

grained description of three-spine model with symmetric initial distribution of the exciton energy across the
three spines, where the coarse graining comes from combining the probabilities within each protein unit cell
together

P (an) =
∑
α

|an,α|2 = 3× 1

3
|an|2 = |an|2 (42)

Alternatively, if we have
∑
n |an|

2
= 1

3 , we can state that the system (14), (15) describes not a mas-
sive single-chain model of protein α-helix, but one of three identical spines in the three-spine model with
symmetric initial conditions.

Because the latter two interpretations involve only an overall scaling factor of 1
3 , it is clear that the

observed soliton dynamics in the plots remains unchanged. This also explains why the model of single
isolated spine with Q = 1 is equivalent to symmetric three-spine model with Q = 3 at zero temperature.

In the presence of thermal noise at physiological temperature T = 310 K, the above derivations may not
be always justified because the thermal noise injected at each of the three spines is statistically independent.
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Figure 12: Dynamics of asymmetric solitons moving inside the three spine model of a protein α-helix at zero temperature,
T = 0 K, or in the presence of thermal noise, T = 310 K, for Q = 3 amide I energy quanta, visualized through the exciton
quantum probability

∑
α |an,α|2 at each protein unit cell n. The initial energy pulse is given by (43) for panels (a,b) and (44)

for panels (c,d). The fixed set of 120 Wiener processes for the simulations with thermal noise (b,d) is the same set used in
Fig. 8.

This means that in the absense of lateral coupling between the spines, w2 = 0, the presence of thermal noise
at each spine will immediately destroy the symmetry in the phonon displacements, hence bn,α−1 − 2bn,α +
bn,α+1 6= 0. In the limit of infinitely stiff lateral coupling, w2 →∞, however, the protein unit cell will behave

as a single block with triple mass, M̃ = 3M , for which the phonon displacements are fixed laterally by (38).
Since the contribution by the lateral coupling term is eliminated due to bn,α−1 − 2bn,α + bn,α+1 = 0, the
massive single-chain model of a protein α-helix could be viewed as providing a coarse-grained description of
three-spine model with w2 →∞ under symmetric initial conditions.

Appendix G. Dynamics of asymmetric sech-squared solitons in the three-spine model

Previous investigations of the three-spine model within the continuum approximation, have revealed
several types of solitons, among which the ground state soliton (entangled or hybrid soliton) whose energy
is 50 times lower than the energy of a soliton in a single spine, and, thus, expected to have much higher
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thermal stability than the latter one [61]. For the totally symmetric soliton, the three spines are excited
with the same phase, ∆ω2 = 0, whereas for hybrid solitons the excitations in the spines have lateral phase
shifts, ∆ω2 = ± 2π

3 .
Because the parameter space of the three-spine model is vastly increased compared to the massive single-

chain model, a thorough numerical investigation would require its own dedicated study. Nevertheless, here
we present numerical simulations for the three-spine model with lateral coupling w2 = 2w1 in the presence
of Q = 3 exciton quanta under two types of asymmetric initial conditions based on the discrete sech-squared
exciton pulse: (i) with lateral asymmetry in the phase and equal amplitude of the exciton pulse on all three
spines, or (ii) with lateral asymmetry in the phase and equal amplitude of the exciton pulse on only two of
the three spines.

The first type of asymmetric soliton (Fig. 12a,b) was excited with the initial pulse

1√
3
eıα∆ω2

{
A2,αe

−ı2∆ω1 , A1,αe
−ı∆ω1 , A0,α, A1,αe

+ı∆ω1 , A2,αe
+ı2∆ω1

}
(43)

where A0,α =
√

0.37, A1,α =
√

0.237, A2,α =
√

0.078, and the phase modulation was present both along the
spines ∆ω1 = π

12 and laterally between the spines ∆ω2 = 2π
3 .

The second type of asymmetric soliton (Fig. 12c,d) was excited with the initial pulse

1√
2

sign(α)eıα∆ω2
{
A2,αe

−ı2∆ω1 , A1,αe
−ı∆ω1 , A0,α, A1,αe

+ı∆ω1 , A2,αe
+ı2∆ω1

}
(44)

where the spine indexed with α = 0 was empty and the exciton energy was distributed onto the other two
spines indexed with α = 1, 2 for A0,α =

√
0.37, A1,α =

√
0.237, A2,α =

√
0.078, ∆ω1 = π

12 and ∆ω2 = 2π
3 .

At zero temperature, T = 0 K, the first type of asymmetric soliton that is distributed over all three spines
moves at speed of 439 m/s (Fig. 12a), whereas the second type of asymmetric soliton that is distributed
only over two of the three spines is a little bit slower, due to stronger self-trapping, and moves at speed of
429 m/s (Fig. 12c). Interestingly, the thermal stability of both types of asymmetric solitons is about 30 ps
(Fig. 12b,d), and virtually identical to the symmetric soliton (Fig. 8c). This lack of significant difference
in thermal stability between symmetric and asymmetric solitons could be very useful from a biological
perspective, namely, the discrete lattice of peptide groups in protein α-helices could utilize any initial
distribution of metabolic free energy with the same high efficiency. Or to put it differently, our numerical
results suggest that the proteins do not require some highly specialized initial state in order to generate
solitons. Instead, any sufficiently localized energy pulse, regardless of its initial distribution onto the spines
could reshape itself into the proper soliton-like form that guarantees thermal stability for at least 30 ps.
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