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Abstract

In this thesis I present a virtual laboratory which implements five different
models for controlling animats: a rule-based system, a behaviour-based system, a
concept-based system, a neural network, and a Braitenberg architecture. Through
different experiments, I compare the performance of the models and conclude that
there is no “best” model, since different models are better for different things in
different contexts. The models I chose, although quite simple, represent different
approaches for studying cognition. Using the results as an empirical philosophical
aid, I note that there is no “best” approach for studying cognition, since different
approaches have all advantages and disadvantages, because they study different
aspects of cognition from different contexts. This has implications for current
debates on “proper” approaches for cognition: all approaches are a bit proper, but
none will be “proper enough”. I draw remarks on the notion of cognition abstracting
from all the approaches used to study it, and propose a simple classification for
different types of cognition.
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1. Introduction

“All human knowledge, up to the highest flights of science,
is but the development of our inborn animal instincts.”

—Charles Sanders Peirce (1932, p. 477)

The initial goal of this work was to show that knowledge can be developed by a cognitive
system parting from adaptive behaviour. My aim was to do this by building artificial systems
which develop in such a way that they exhibit knowledge, but not implemented directly. After
a relatively easy success of my goal, I stumbled with an interpretational problem: adaptive
behaviour can be seen as a form of knowledge, but also vice versa. So how can we know of the
system really acquired knowledge, or if it were just conditioning, when the same process can
be described from both perspectives?

I decided to try to clarify these issues by going deeper into basic notions of cognitive
science. What can we consider being cognition? Cognition comes from the Latin cognoscere,
which means ‘get to know’. We can say that cognition consists in the acquisition of knowledge.
We can say that a system is cognitive if it knows something. Humans are cognitive systems
because they know how to communicate, build houses, etc. Animals are cognitive systems
because they know how to survive. Autonomous robots are cognitive systems if they know how
to navigate. Does a tree know when spring comes because it blossoms? We should better slow
down, these issues will be discussed in Section 4.

In classical cognitive science and artificial intelligence (e.g. Newell and Simon, 1972;
Newell, 1990; Shortliffe, 1976; Fodor, 1976; Pylyshyn, 1984; Lenat and Feigenbaum, 1992),
people described cognitive systems as symbol systems (Newell, 1980). However, it seemed to
become a consensus in the community that if a system did not used symbols or rules, it would
not be cognitive. From this perspective, animals are not cognitive systems because they do not
use and have symbols. Nevertheless, if we open a human brain, we will not find any symbol
either. Opposing the symbolic paradigm, the connectionist approach was developed
(Rumelhart, et al., 1986; McClelland, et al., 1986), assuming that cognition emerges from the
interaction of many simple processing units or neurons. To my knowledge, there has been no
claim that “therefore a cognitive system should be able to perform parallel distributed
processes, otherwise it is not cognitive”. Still, there has been a long discussion on which
paradigm is the “proper” one for studying cognition (Smolensky, 1988; Fodor and Pylyshyn,
1988). The behaviour-based paradigm (Brooks, 1986; 1991; Maes, 1994) was developed also
opposing the symbolic views, and not entirely different from the connectionist. There have
been also other approaches to study cognition (e.g. Maturana and Varela, 1987; Beer, 2000;
Gärdenfors, 2000).

The actual main goal of this work is to show that there is no single “proper” theory of
cognition, but different theories that study cognition from different <perspectives|contexts>
and with different goals. Moreover, I argue that in theory any cognitive system can be modelled
to an arbitrary degree of precision by most of the accepted theories, but none can do this
completely (precisely because they are models). I believe that we will have a less-incomplete



1Since symbols are manipulated by rules, I will  use rule-based system as a synonym of symbol system.

2Tyrrell (1993) did a comparison, but of different action selection mechanisms and all from a behaviour-

based perspective.
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understanding of cognition if we use all the theories available rather than trying to explain
every aspect of cognition from a single perspective.

This view is currently shared by many researchers, but to my knowledge, there has been
no empirical study in order to backup these claims. For achieving this, I implemented different
models from different paradigms in virtual animats, in order to compare their cognitive
abilities. The models I use are not very complex, not to at all to be compared with humans, but
they are useful for understanding the generic processes that conform a cognitive system. After
doing several comparative experiments, I can suggest, using the simulation results as a
philosophical aid, that there is no “best” paradigm, and each has advantages and
disadvantages.

In the following section, I present a virtual laboratory developed in order to compare
the implementations in animats of models coming from five different perspectives: rule-based
systems1, behaviour-based systems, concept-based systems, neural networks, and Braitenberg
architectures. Because of space limitations, I am forced to skip deep introductions to each
paradigm for studying cognition, but the interested reader is referred to the proper material.
In Section 3, I present experiments in order to compare the performance of the animats in
different scenarios. With my results, in Section 4 I discuss that each model is more appropriate
for modelling different aspects of cognition, and that there is no “best” model. I also discuss
issues about models, and from my results I try to reach a broader notion of cognition merging
all the paradigms reviewed. I also propose a simple classification of different types of cognition.
In the Appendixes, the reader can find details about the original concept-based model I use
and about my virtual laboratory.

2. A Virtual Laboratory

Following the ideas presented in Gershenson, González, and Negrete (2000), I
developed a virtual laboratory for testing the performance of animats controlled by
mechanisms proposed from different perspectives2 in a simple virtual environment.
Programmed in Java with the aid of Java3D libraries, this software is available to the public,
source code and documentation included, at http://www.cogs.sussex.ac.uk/users/carlos/keb.

In my virtual laboratory, the user can create different phenomena, such as rocks (grey
cubes), food sources (green spheres), rain (blue semitransparent cylinders), lightnings (black
cylinders), and spots of different colours (circles): randomly or in specific positions. These also
can be generated randomly during the simulation at a selected frequency. Lightnings turn into
rain after ten time steps, and rain turns into food after fifty time steps.

All the animats have an energy level, which decreases when their hunger or thirst are
high, and is increased when these are low (energy, thirst, hunger 0 [0..1]). An animat dies if its

http://www.cogs.sussex.ac.uk/users/carlos/keb
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energy is exhausted. Eating food decreases their hunger. They can decrease their thirst by
drinking under rains. Hunger and thirst are increased if they attempt to drink or eat
“incorrect” stimuli. They lose energy if they touch lightnings or rocks. Basically, an animat in
order to survive just needs to eat when hungry, drink when thirsty, and avoid lightnings and
rocks. We can say that they are cognitive systems if they are successful, because they would
know how to survive. The animats can leave a coloured trail in order to observe their
trajectories. We can appreciate screenshots of the virtual environment in Figure 1 and Figure
2. A detailed technical description of the implementation of my virtual laboratory can be found
in Appendix B.

   

Figure 1. Virtual environment, ground view. Figure 2. Virtual environment, aerial view.

There are many models that would solve the problem of surviving is such an
environment, but I decided to implement representative models of different paradigms in
order to observe their differences and similitudes. These models are as follows: a rule-based
system typical of traditional knowledge-based and expert systems (e.g. Newell and Simon,
1972); Maes’ (1990, 1991) action selection mechanism, an already classical behaviour-based
system (Brooks, 1986; Maes, 1994); my original architecture of recursive concepts as an
example of the novel concept-based approach (Gärdenfors, 2000); a simple feed-forward
artificial neural network (for an introduction, see Arbib, 1995); and a Braitenberg-style
architecture (Braitenberg, 1984).

2.1. Rule-based animats

“For anything to happen in a machine some process must know enough to make it happen.”
—Allen Newell
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Rule-based animats have perceptual and motor functions that ignore the problems of
implementing perception and motion in physical agents, focussing only in the control
mechanism. They are inspired in classical knowledge-based systems (Newell and Simon, 1972;
Newell, 1990), which use logic rules manipulating symbols in order to control a system. Table
1 shows the rules that control the animats in their environment.

    if (rockNear OR lightningNear) then{
      avoid
    }else if ((thirst>=0.1) AND (rainPerceived)) then{
      if (rainAtRange) then{
        drink
      }else{
        approachRain
      }
    }else if ((hunger>=0.1) AND (foodPerceived)) then{
      if (foodAtRange) then{
        eat
      }else{
        approachFood
      }
    }else if ((thirst>=0.1) AND (lightningPerceived)) then{
      approachLightning
    }else if ((hunger>=0.1) AND (rainPerceived)) then{
      approachRain
    }else if ((thirst>=0.1) OR (hunger>=0.1)) then{
      explore
    }else{
      noAction
    }

Table 1. Control of rule-based animats.

If rule-based animats perceive a rock near them, they avoid it. If they are thirsty and
perceive rain, then if they can reach it drink, otherwise approach to it, and so on. They
approach lightnings when thirsty and rains when hungry because “they know” that these will
turn into rain and food respectively.

The perceptual system detects phenomena in all directions at a distance lesser than the
adjustable animat’s radius of perception, detects phenomena near when they are at a distance
lesser than the radius of the animat’s body, and detects phenomena at range when the animat
touches them. The motor system approaches phenomena in a straight line, explores with
random movements, and avoids obstacles semi-randomly turning about + or - 90 degrees.

Knowledge-based systems have several limitations (e.g. see Maes, 1994), and are not
optimal for implementing different types of system, but they are suitable for this task. We
could see them as models of cognizers, even humans, which in such conditions would
deliberately take those decisions. Classical cognitive science argues that humans are cognitive
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systems because they use rules and reasoning as the ones these animats could model (e.g.
Newell, 1990).

2.2. Behaviour-based animats

Maturana and Varela give the following definition: “behaviour is a description an
observer makes of the changes in a system with respect to an environment with which the
system interacts” (Maturana and Varela, 1987, p. 163). We should just remember that
behaviours are defined by an observer.

Behaviour-based systems (Brooks, 1986; Maes, 1994) have been inspired in ethology for
modelling adaptive behaviour and building adaptive autonomous agents. In problem domains
where the system needs to be adaptive, they have several advantages over knowledge-based
systems (Maes, 1994). But when it comes to modelling the type of cognition that knowledge-
based systems model, they have not produced any better results (Kirsh, 1991; Gershenson,
2002b).

I implemented Maes’ (1990; 1991) action selection mechanism (ASM) for controlling
my behaviour-based animats. It consists of a network of behaviours. Each behaviour has an
activation level, a threshold, and a set of conditions in order to be “executable”. An executable
behaviour whose activation level surpasses the threshold becomes active. The creatures
controlled by Maes’ ASM also have motivations such as hunger or safety, which also contribute
to the activation of behaviours. The behaviours are connected through “predecessor”,
“successor”, and “conflicter” links. There is a predecessor link between A and B (B precedes
A) if B makes certain conditions of A come true. For example, “eat” has “approach food” as
a predecessor. There is a matching successor link in the opposite direction for every
predecessor link. There is a conflicter link from A to B if B makes a condition of A undone.
Behaviours activate and inhibit each other, so after some time the “best” behaviour becomes
selected. For details of this ASM, the reader is referred to Maes (1990; 1991).

As with the rule-based animats, here I also simplify perceptual and motor systems
(actually using the same systems already described), since they take the form of procedures
such as “food perceived” or “avoid obstacle”, and these systems have to deal with the problem
of distinguishing food from non-food, or how to move in order not to crash. Figure 3 shows the
behaviour network of the animats.

The external conditions of the behaviours are obvious: rock or lightning near for
“avoid” , food perceived for “approach food”, food at range for “eat”, none for “explore”, etc.
The internal motivations are safety (constant) for “avoid”, hunger for the ones related with
food, thirst for the ones related with thirst, none for “approach lightning”, hunger, thirst and
curiosity (constant) for “explore”, and boredom (constant) for “none”.

Curiously, the animats, even when they make discriminations between the highest
motivations (approach food if more hungry than thirsty even if rain is closer), behave in a
reactive way (eat when they are not hungry), because of the activation of behaviours by the
successor links. Therefore, if the behaviour “none” is active for a long time, it will increase the
value of “explore”, and this “approach rain” if this one is present, because thirst is not a direct
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condition. Of course, I could fix Maes’ ASM adding the motivations as a condition for a
behaviour to become executable, or explore exhaustively the parameter space of the
mechanism. This last option is not an easy one, since indeed it takes some time to adjust all the
parameters by trial-and-error.

Figure 3. Behaviour network of behaviour-based
animats, based on Maes (1990; 1991).

2.3. Concept-based animats

Concepts can be considered as discrete categorizations (Gärdenfors, 2000), as opposed
to sensation and perception which can be considered as continuous categorizations. Concepts
can be seen as a discretization of the perceptual space.

For the concept-based animats I used with minor improvements my original, previously
developed, architecture (Gershenson, unpublished), named KEBA, where “concepts” are
recursively generated from regularities of the sensors and of other concepts, and linked to
actions by simple reinforcement learning. The activity of the concepts decides which action will
be executed. First versions of my virtual laboratory were developed to test this architecture,
and now I extended it in order to study all the animat types I present here. For a detailed
description of KEBA, see Appendix A.

Actually, KEBA is not at all an optimal architecture in pragmatic terms, since it takes
lots of effort in solving a problem which other architectures do quite easily. However, it was
created with an explanatory role, trying to understand how concepts, and logic, could be
developed from the interactions of an agent with its environment. One thing I have learned is
the importance of the gradual development (Piaget, 1968; Balkenius et al., 2001) for acquiring
proper performance in complex environments. The animats have a difficult time if they are set
right into a random complex environment. Nevertheless, if we set them in simple
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environments, so that they can learn different tasks at different times, gradually, they perform
better.

If we would be interested only in performance, we could define the concepts and
manually link them to actions.  However, that was not the intention, since it would easily work,
but not better in any interesting way than simpler models.

2.4. Neural network animats

Artificial neural networks (for an introduction, see Arbib, 1995) are mathematical
models, which consist of interconnected “units” or “neurons” which have activation values.
These values change accordingly to the state of the inputs to the network and to the
connections between neurons. Neurons multiply their inputs by given weights (which can be
adjusted by learning algorithms) and combine them accordingly to a specific function. They
were not used at first for controlling autonomous agents, but they have proven to be useful for
this purpose as well (e.g. Beer, 1996; Slocum, Downey, and Beer, 2000).

The neural animats have pairs of sensors for detecting food, rain, and rocks. Each
sensor is on one side of the animat, so for example the left sensor for rain becomes active when
there is rain on the left of the animat, and so on. For implementation purposes, we measure
a ponderation ratio of the size of the phenomenon over its distance, so that for example larger
objects at the same distance, or the closest of several objects of the same size,  will cause a
higher activity in the sensor. This would simulate the fact that for example if a lamp is very
bright but farther than a close dim one, a photosensor in a real robot could react more to the
far bright light. Each sensor perceives 180°, so that each pair of sensors is mutually exclusive
and combining them the animats perceive 360°. They also have two motors (left and right),
which simulate the movement of wheels. This setup is traditional of simulated and robotic
experiments with kephera-like robots. In Figure 4 we can appreciate a diagram of the structure
of these animats.

These animats use a three-layered feed-forward neural network for controlling their
motors. The inputs of the network are the sensors and the internal motivations hunger and
thirst. These activate eight input neurons, which combine their values for the inputs of six
hidden neurons. Two output neurons determine the speed of the motors, which have small
added random noise, in order to make the simulation a bit less unrealistic (Jakobi, Husbands,
and Harvey, 1995). The neurons simply multiply their inputs by fixed weights and sum them.
Then, the activation of the neuron will be this sum if it is higher than a threshold, and zero
otherwise. We can see a diagram of this neural network in Figure 5.

Note that there is no learning in this specific neural network, which is one advantage
of these models. Even so, they perform appropriately in their simple environment. Learning
can allow animats to adapt to specific conditions of their environment (Gershenson and
González, 2000).

If the animat is hungry or thirsty and touching a food source or rain, it eats or drinks,
respectively. The consummatory “behaviours” (eat and drink) are independent of the motor
activity. This causes that the animats cannot “stop and eat”, but only “eat on the go”.
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Figure 4. Motors and sensors of animats.

Figure 5. Network controlling neural animats.
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One advantage of solving the problem of survival at this level is that we are not
predetermining behaviours as “approach food” or “avoid” in order to be selected (Seth, 1998),
and the sensors are quite simple. Anyway, these animats also survive in their environment. One
small issue is that since they move in zigzag because of their wheels, they take more time to
reach, let us say a food source, than an animat with an implementation of “approach food”
(following a straight line). 

2.5. “Vehicle” animats

“Vehicles” are architectures introduced by Braitenberg (1984). They are autonomous
agents with direct links from sensors to motors. One example is a two-wheeled robot with two
light sensors. The left sensor is connected to the right motor, so that when there is more light
on the left of the vehicle, the right motor turns faster. The right sensor is connected to the left
motor. The behaviour this simple setup produces can be described as phototactic. If there is a
light to the left of the vehicle, the left sensor will become more active than the right, and
therefore the right motor will turn more than the left, and the vehicle will turn left (towards
the light). This movement sets up the light source on the right of the vehicle, and then it will
turn right. These sequences will make the vehicle approach to the light. Another simple
example, if we connect the left sensor to the left motor and the right sensor to the right motor,
then the vehicle will flee from light sources. Many interesting behaviours can be produced with
several sensors and different connections. Braitenberg vehicles have been extended, among
others, by Lambrinos and Scheier (1995) and by Seth (1998). The type of cognition exhibited
by Braitenberg architectures can be compared with the one exhibited by W. Grey Walter’s
tortoises (Walter, 1950; 1951).

My Braitenberg-style animats were handcrafted (i.e. not evolved). They have a similar
setup as the neural network animats, shown in Figure 4: six sensors and two motors. There are
direct links from the sensors to the motors, which have some small random noise: food and rain
sensors are connected to the opposite motors (left to right, right to left), and rock sensors are
connected to their corresponding motors (left to left, right to right). The speed of the motors
is multiplied by the energy of the animats (slower when energy is low), and the links of food
and rain sensors are multiplied with the values of hunger and thirst, respectively (faster when
motivations are high). As with neural network animats, Braitenberg animats have independent
consummatory behaviours: they eat if they are hungry while touching food and drink if thirsty
while touching rain. Figure 6 shows the connection diagram of the Braitenberg animats.

With this simple setup, Braitenberg animats are able to survive successfully in their
simple environment. The main idea is that they approach to food proportionally to their
hunger, to rain proportionally to their thirst, but also flee from rocks when they are close
enough, providing efficient obstacle avoidance. Because every sensor contributes to the motor
speed, both motors compete in such a way to produce the optimal behaviour, without
indecisions. Also, animats have noise in their motors proportional to their motivations, so when
they are hungry or thirsty they move randomly at a speed proportional to their internal need,
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providing a kind of random exploration. This noise is also present when they are “approaching
food” or any other behavioural description an observer could make, but this does not affect
their final performance, since Braitenberg architectures are quite robust to noise.

Figure 6. Direct connections of the
Braitenberg animats.

3. Experiments 

I have realized series of experiments in order to compare the different properties of the
architectures which control each type of animat. The reader is invited to download my virtual
laboratory and test the experiments I show here, and to devise her/his own.

I do not suggest that my simulations and experiments prove anything, but I think of
them as an aid to present and produce ideas. I agree with the possible critic who would say that
I am solving a toy problem, but most of the models, simulations or robots, do not go much
farther (See Hallam et al. (2002) for recent work). And the only way they go farther is by
adding more behaviours, stimuli, motivations, etc., but the degree of simplification is as terrible
as the one I have here.

I could also be criticized by some arguing that my experiments are not “really
cognitive”, because the animats do not have any kind of problem solving or symbol
manipulation. This is not correct. Every animat needs to solve the problem of surviving in its
environment (problems are determined by an observer). And rule-based animats can be said
to be using the symbols received by their perceptual system. Another critic can be that this
problem of survival is very simple and not “representation-hungry” (Clark and Toribio, 1995).
As we will see in Section 4, these problems are possible to solve as well with architectures from
different paradigms, but my ideas can be seen more clearly in this simple setup rather than in
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problem domains in which different architectures from different paradigms are specialized
because of computational efficiency.

I present experiments for observing the performance of the animats in shared scarce
and abundant environments. I also test the survival of the animats in individual environments
of fixed resources. In these experiments I also use a “control” animat with random action
selection. Then I test the ability of the animats to discriminate between the values of different
stimuli, as an example of a simple relational task. Finally, I test how different animats can cope
with conflicting goals. An experiment for testing KEBA is presented in Appendix A.1.

3.1. Survival in a scarce environment.

For this experiment, I set one animat of each type, and an animat with random action
selection, with no initial internal needs and highest energy value. I set the ratio of random
generation of phenomena to very low, making the rain and food scarce. Figure 7 shows the
history of internal states of the animats for this scenario.

Figure 7. Animats dying in a scarce environment. Rule=rule-based, Maes=behaviour-based,
KEBA=concept-based, ANN=neural network, Brait=vehicle, Rnd=random
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We can see that some animats, like the ANN, do not even have the opportunity of
tasting food or rain. The survival depends very much on luck: if a proper stimulus is generated
near them, and if other animats are not around so that they can satisfy themselves. Yet the
chances of obtaining necessary resources are too low, and therefore, eventually, all animats die.
In this presentation, the behaviour-based animat survived for a longer time. This and the rule-
based animat tend to survive more than the others in this setup, because they can move faster
than the “wheeled” animats with their direct behaviours, and the concept-based animats do
not even have time to learn what is edible and what is not. The random animats really do not
have a chance in such a scarce environment. Also, my implementation of the behaviour-based
animats resulted in reactive behaviour: the animats eat even when they are not hungry. This
“bully” strategy gives the other animats a harder time than if they would all eat only when they
would be hungry. I should note that this is not a property of the creatures in which the Maes’
ASM was originally implemented (Maes, 1991).

3.2. Survival in an abundant environment.

With the same initial conditions, I now set up a medium random generation ratio for
the phenomena, resulting in an abundant environment. We can observe the dynamics of the
internal states in Figure 8.

Even the random animat was able to drink a bit. That it randomly drank when it was
under the rain was just a coincidence. However,  this allows it to survive a bit more. The KEBA
animat is able to learn that food is edible, but the environment is too complex, and it sadly died
learning how to avoid obstacles. Still, we can see that the other animats perform quite well, and
we can see that they return to their initial internal states several times. Not that they will never
die (if the environment is filled with rocks, they will die), but we can see that they have a  good
performance. The Braitenberg animat has more trouble finding phenomena before the others,
because it moves slower since it models wheels. But the neural network animats as well, and
they perform better. Of course there is a chance element, but Braitenberg animats cannot keep
approaching a food source or a rain source as persistently as the neural network animats.

3.3. Individual survival in environment of fixed resources.

For this experiment, I set each animat individually in an environment with five randomly
generated rocks and five randomly generated food sources. There is no random generation of
phenomena. Figure 9 shows the history of the internal states.

The random animat is even able to eat some food by chance. All other animats
extinguished the food sources before dying. The KEBA animat is able to learn to eat food, but
it does this reactively, so as the Maes animat, it extinguished the food sources faster than the



3For a deeper study on the degree of reactivity and motivation in virtual creatures, see González, et al.

(2000) and Gershenson and González (2000).
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other animats, thus dying faster3. The KEBA animat survives less time than the Maes animat
because the first one needs to learn what not to eat or drink, whereas this is “innate” in the
second. In this setup the Braitenberg animat performed better than the neural network,
precisely because it cannot keep approaching to food sources as persistently as the neural
network does, and this makes it not to exhaust the resources so fast. The rule-based animat
performed better than the wheeled animats. This is because the rules determine that it should
eat only when the internal needs are higher than 0.1, and the wheeled animats eat “on the go”
if their internal needs are higher than zero. I made another trial patching the Braitenberg
animat to eat only when its hunger is greater than 0.1, and it survived for more than fifty
thousand time steps, at the same level of the rule-based animat. But this patch causes some
inconveniences: for example, if the Braitenberg animat has less than 0.1 hunger, it will not eat,
but anyway it will do approach food persistently in a not so smart way. These inconveniences
could be patched with a threshold.

Figure 8. Survival of some animats in an abundant environment.
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Figure 9. Survival of animats in a limited resources scenario.

3.4. Discrimination of stimulus value

All the previous experiments could be argued that were easy to solve because they had
very strong statistical correlations (Thornton, 2000), what Clark and Thornton (1997) have
called “type one” problems. Even if they are very simple, the animats should be able to solve
simple “type two” problems, where the task is more relational than statistical, and many
algorithms fail to reach a solution.

One very simple relational problem is to observe if the animats are able to distinguish
between food sources “larger than” others, when they are at the same distance of the animats,
independently of their order, position, or absolute size. An example of this setup can be
appreciated in Figure 10a.

All the animats are able to pass this test without problems. The only thing is that it does
not relate much to their “cognitive” architectures, but more with the fact that they are situated
in their environment. Actually, the problem is solved by interactions of the motor and
perceptual systems with the environment.

Rule-based, behaviour-based, and concept-based animats solve this problem because
their behaviour “approach food” simply approaches the closest food they perceive. The
distance to a phenomenon is measured from the border of the animat to the border of the
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phenomenon. Since larger foods have larger radiuses, the measured distance to the animats
will be lesser than the one of small foods, even if their centres are at the same distances from
the animats. Therefore, because of this relationship with the environment, the animats will
always distinguish the larger food, even when this was never programmed directly.

With the neural and Braitenberg animats the task is solved by their sensors, which
basically become more active to larger stimuli, so that they approach to these without
hesitation. An example of the locomotion pattern of a neural animat solving this task can be
appreciated in Figure 10b.

Figure 10. Discrimination of the value of different stimuli. a) Initial state.
b) Task solved by an ANN animat.

The fact that these tasks are solved not by the “cognitive” architectures we are
comparing but rather by the interaction of the perceptual and motor systems with the
environment, just reminds us of the importance of embodiment and situatedness while
modelling cognition (Varela, Thompson, and Rosch, 1991; Clark, 1997; Riegler, in press).

3.5. Buridan’s animat

The popular allegory of Buridan’s ass (actually in the original work of Jean Buridian it
was a dog, but anyway) tells the following: the animal has to choose between two equal
amounts of food. The conclusion was that it should choose at random.  Otherwise, he would
starve to death. In the virtual environment, we can set up a Buridian’s animat with the same
amount of thirst and the same amount of hunger, and at the same but opposite distances from
food and water. This problem can be seen as how to solve conflicting goals and/or motivations.

In order to test how the different animats performed in such a situation, I set them with
maximum hunger and thirst, at the same distance from food and rain, but with an obstacle on
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the way there. Figure 11 shows the initial setup and the trails which each animat followed,
together with their internal variables.

Figure 11. Buridan’s animat experiment. a) Initial setup of all animats. b) Rule-based animat. c)
Behaviour-based animat. d) concept-based animat. e) neural net animat. f) Braitenberg animat.

We can observe that the rule-based animats solve this situation without difficulties,
giving a preference to rain over food (this is convenient since rains last only fifty time steps).
Well, I designed the rules so that the animat solves this problem efficiently. My Maes animat
unfortunately turned out to be Buridan’s animat... it would indeed die in the indecision if the
rain would be there forever. Not to mention that the high internal needs surpassed the
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avoidance of the obstacle. Once the rain is transformed, the animat goes for food. The problem
here was that the behaviour nodes for water and food give the same importance to thirst and
hunger. I could patch this situation giving more weight to thirst, or by introducing conflicter
links between these consummatory behaviour nodes. I should note again that this is a problem
particular of my implementation, since the original Maes’ creatures did not suffer from this
deficience. The KEBA animat, after several repetitions of the same environment, is able to
learn most of the concepts required for a successful run: the only thing is that it bumped into
the obstacle and lost a bit of energy, but apart from that its behavioural sequence is similar to
the one of the rule-based animat. The neural animat has no problems with the indecisions, and
successfully drinks and eats “on the run”, without switching. This is not so of the Braitenberg
animat, which indeed switches between phenomena, and is unable to satisfy its thirst
completely. The neural animats turned out to be more persistent than the Braitenberg ones,
but these issues could be tuned up. Actually, the wheeled robots do not give preference of rain
over food, but they give preference to the phenomena on their left side. This is because the
right motor is computed first, making the animats closer to the phenomena on the left.
Overinterpreting the situation, I could call this “animat preference lateralization”, as a
ridiculous attempt to save the appearances. Again, the wheeled robots seem slower because
of their locomotion patterns. In real robots this can easily be overcome with faster motors.

One surprising thing was that the wheeled robots could decide where to go without
indecisions, even when this was not contemplated when they were designed.

4. Discussion

I take my virtual laboratory and the experiments performed in it as a philosophical aid
for discussing the suitability and equivalence of models. I do not take my simulations as a proof
of my ideas, but as “opaque thought experiments” (Di Paolo, Noble, and Bullock, 2000).

With the ideas generated so far, I try to broaden the notion of cognition in order to
propose one valid in as many contexts as possible. Finally I propose a simple classification of
different types of cognition.

4.1. About the architectures

From the few experiments I presented, we can see that there is no general “best”
architecture for the simple task of surviving in the presented virtual environment. We can say
that each animat is better in different situations. But it seems that this is more a consequence
of the particular implementation than of the paradigm on which it stands, because the models
can be adjusted and refined to any desired degree of detail. In order to judge which
architecture is better, we need to refer to a particular context. Their performance cannot be
generally measured, but only relatively to specific tasks. We cannot say that one animat is
cognitive because it uses rules and another is not because it has only direct connections. The
cognition of a system is independent of its implementation. Thus, we have to observe their
cognition basing ourselves on their performance.
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Some models were very easy to implement in software code (rule-based, Braitenberg),
others not so much (KEBA, Maes), but occasionally it is a different story if we want to
implement an architecture in a real robot. Moreover, if a model works in a simulation and/or
robot, it does not mean that animals function in the same way. Some models are very robust
(Braitenberg), others would break up quite easily (rule-based). Some models are quite good
if we have just practical purposes (rule-based), if we want things only to work, and this also
depends on the experience of the engineer. But if we are interested in using them as
explanatory models, the simplicity of their implementation might be secondary (KEBA). Also,
if we would like to increment the systems, for example to include more environmental stimuli
and internal variables, some would need to be redesigned (rule-based), others could be easily
extended (Maes, KEBA). Also some models would have more ease in adapting to changes of
their environment (KEBA, neural network) than others (rule-based, Braitenberg), but this
does not mean that we cannot adjust different architectures in order to obtain the desired
behaviour.

The animats could be criticized by saying that they are specific to their environment,
and that if we take them out of their toy world, they would not exhibit cognition at all. Well,
if we change the environment of any cognitive system too much, it will break (in the Ashby’s
(1947) sense) inevitably (raise the temperature few thousand degrees, remove oxygen, or just
leave a man in the middle of the ocean, and tell him “adapt! Don’t you know how?”). This
seems to be a matter of adaptability rather than about cognition (but of course adaptability is
tightly related to cognition). Yes, they are specific to their environment, but any cognitive
system is.

There are dozens of other models which could be implemented in order to try to solve
this or other problem. For example, we have developed a complex behaviour production
system which exhibits many properties of animal behaviour desired in such a model (González,
2000; Gershenson, 2001), but it is not as easy to implement as any of the models I implemented
here. We could use a huge nice set of differential equations, or GasNets (Husbands et al.,
1998), or random boolean networks (Kauffman, 1969; Gershenson, 2002c), or an extension of
the quantum formalism (Aerts 2002), just to name some alternatives. Moreover, we can say
that different models, architectures, and paradigms, can be studying different aspects of
cognition (Gershenson, 2002b). Will we find ever a “best” model? Well, as I said, it depends
on our purposes and our context.

4.2. Equivalence of different models

“If you are perverse enough, you can describe anything as anything else”
—Inman Harvey

Different models of the same phenomenon have this phenomenon in common, but this
simple fact does not make the models equivalent. They would be equivalent if they could
produce the same results/prediction/behaviour in the same situations. They would be
equivalent to a certain degree if they only produce some of this similar performance. What I



4More precisely, we also need a clock for modelling any dynamical system, since original Turing Machines

do not contemplate the temporal aspect of computation. I thank Inman Harvey for pointing this out to me.

5A general way of deciding if all the models are equivalent would be the following: If a model can simulate

a UTM, then it could simulate through this any other model. It has been shown that there are several models

which can simulate  a  UTM (e.g. Berlekamp, Conway, and Guy, 1982; Wolfram, 2002), and we could think of even

more, such as neural networks. But even when we could think that we could implement a UTM  with any of the

architectures I used, or even with my animats, would this have any explanatory or practical relevance? Well, it

would show that models with this property would not only be equivalent, but we could model a model with another

model and vice versa, just as I will show shortly with rule-based systems and neural networks.
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said for relationships between models can also be said for the relationships between model and
modelled. It is clear that we will not reach complete equivalence, because the differences
between models or between model and modelled would have to disappear (the best model of
a cat is the same cat (Rosenblueth and Wiener, 1945), the best model of a model is the same
model). So actually we can only speak about equivalence to a certain degree.

But we can already say that all the models presented here are equivalent to a certain
degree, because in most cases the animats eat when they are hungry, drink when they are
thirsty and so on. The question is, how high can this degree of equivalence go?

Let us begin with a mental exercise. Since the models were programmed in a computer,
in theory they can be mapped into a Universal Turing Machine(UTM) (Turing, 1936), well,
basically because they are computable, and Turing used his machine precisely to define
computability4. Therefore there is a function which would map the models to a UTM. Could
we find an inverse function, such that, any model already in the UTM, could be mapped back
to any other model? The idea is tempting, but it is not as easy as that, because basically the
model to be mapped to would need to have the capabilities of the UTM5 (which in theory it
has because it can be implemented in a UTM, but we would like the capabilities as a property
of the model, not of its implementation).

Well, let us see an example. Neural networks are mathematical models. Russell and
Whitehead (1910-13) showed that all mathematics can be described in terms of logic. Therefore
we can describe any neural network in terms of logic rules. Of course implementing them that
way is not practical. But in this context we can certainly say that neural networks could be seen
as rule-based systems. But also neural networks can be designed to produce rules (e.g.
Balkenius and Gärdenfors, 1991; Gärdenfors, 1994). Actually the neural network animat can
be said to be modelling the rules of the rule-based animat, but also vice versa! And, at least for
my particular setup, we could say this for all the animats. We can see any animat as being a
model of any other. If we want it to mimic the behaviour of other model more tightly, we just
need to adjust the implementation, but in theory, there is no task that an architecture can do
and another cannot do with proper extensions and patches. Then, we can say that in theory all
the implemented architectures can be equivalent to any desired degree of detail.

Any implemented model could then be described in terms on another paradigm, and
therefore there is nothing a paradigm can describe which another one cannot. Of course, there
are different aspects of cognition modelled with less effort and in a more natural way from
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different perspectives. That is why we should not reject other paradigms, because we can see
that different paradigms describe with more ease different aspects of cognition.

This is all nice in theory, but what about in practice? Well, it seems that it would be not
so easy to implement a medical expert system for an intensive care unit using only neural
networks, nor it would be easy to perform character recognition implementing only rules.
Because then, in theory, any paradigm could also simulate human cognition with any degree
of detail, but none has been even near. It seems that we are falling into a problem if we do not
stop and identify the differences between the models and the modelled.

4.3. About models

“Explanations are for ourselves, not for the explained”

We can make a more general distinction between models and the modelled with the
ontological notion of relative being and absolute being (Gershenson, 2002a). The absolute being
(a-being) is the being which is independent from the observer, and is for and in the whole
universe. Therefore, it is unlimited and uncomprehensible, although we can approximate it as
much as we want to. The relative being (re-being) is the being which is for ourselves, and it is
different for each cognizer, and therefore dependent from the observer. It is relative because
it depends on the context where each cognizer is. This context is different for all cognizers, and
even the context of a cognizer can be changing constantly, with his or her notions of what re-is.
It is limited because cognizers have limits.

Everything re-is a generalization of what a-is. This is because things a-have an infinitude
number of properties, but can re-have only a finitude of them, no matter how huge. Therefore,
we need to ignore most of these properties (e.g. the spins of the electrons of a table), making
a generalization of what things a-are. However, it seems that most of the properties
contemplated by different cognizers are the most relevant for their contexts, and there is not
much inconvenience in ignoring many properties. But we need to be aware that we will never
have a complete description of what things a-are, because it would have to be infinite and
unlimited.

Different re-beings can generalize an a-being different properties, which might overlap
or not. They can also make this generalization observing at different abstraction levels
(Gershenson, 2002a). Re-beings can be seen as metaphors of an a-being. Figure 12 shows a
diagram of how cognizers can only abstract limited parts of an a-being.

Returning to models, they can clearly be considered as special cases of re-beings which
try to approximate “the real thing” (a-being). All models, by definition, are simplifying. It
depends on what we are interested in modelling and how we justify our simplifications that we
can judge the suitability of a model6. 
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But there is clearly no “best” model outside a context. Some could argue that better models
are the ones in which prediction is both maximally accurate and minimally complex. But this
is inside the context of information theory.

Figure 12. Relative beings as approximations of absolute being.

I argue that there is no way of determining which re-being is better or worse, good or
bad. But one thing we can do, is to distinguish from different degrees of incompleteness. All
models are incomplete, but if a model contains several models, it will be less incomplete than
those models. This would be valid only in the context of <understanding|explaining>, because
in a pragmatic context we would just want a model to work with the less effort. But if we try
to contain as much re-beings, models, contexts, as possible, one will encounter fewer
contradictions inside the less incomplete re-being, model, context.

Returning even more, to models and architectures of cognition, we can say that not only
there is no general good model or architecture. And we will have a less incomplete
understanding of cognition only if we study it from as many perspectives/contexts/paradigms
as possible. Each model is abstracting different aspects of what cognition a-is: any cognitive
behaviour can be described in terms of rules, parallel distributed processing, behaviours,
mathematics, etc. And now I can say that all these models are equivalent in the degree that
they model the same aspect of cognition. All my animats were modelling the same
phenomenon: knowing how to survive in a simple environment. Of course some models might
be easier to apply.  Some might be more illuminating than others, and so on.  Nevertheless,
they are just different <ways of | perspectives for> describing the same thing. And this does
not mean that cognition is characterized by rules, behaviours, or whatever. Things do not
depend on the models we have of them.

So, what a-is cognition then?



7This phrase is original of Arturo Frappé.
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4.4. About cognition

Cognition has been studied from a variety of contexts, such as philosophy, artificial
intelligence, psychology, dynamical systems theory (Beer, 2000), etc. And it is because of this
that in each context cognition is considered with different eyes, and to be a different thing. So
in different contexts we will be able to define cognition as the manipulation of symbolic
representations (Newell, 1990), or as autopoiesis (Stewart, 1996, based on Maturana and
Varela, 1980), or as the ability to solve a problem (Heylighen, 1990), or as the ability to adapt
to changes in the environment, or as “the art of getting away with it”7. We can say that
cognition re-is a different thing in different contexts, but can we say what cognition a-is? No,
but we can approach as much as we want to. The way of achieving this is to make our context
as less-incomplete as possible, by containing as many contexts as possible. Therefore, we will
not be able to dismiss a model just because it is of a certain paradigm, since all paradigms
suffer from limitedness8. We can only learn from any model of cognition. We cannot say
whether a model is right or wrong outside a context. Of course, less-incomplete models will be
more robust and will be valid in more contexts. For example, we cannot judge internal
representations in a neural context just because these are not <observed|described> at that
level.

I will try to reach a broader notion of cognition basing ourselves on the results and ideas
exposed previously. I can make some general remarks:
• Systems can be judged to be cognitive only inside a specific context. For example, in a

chess-playing context, a bee is not cognitive, but in a navigational context, it is. People
agree in contexts, and these are contrasted with experience of a shared world, so we are
not in danger of any radical relativism or wild subjectivism.

• Cognition is a description we give of systems, not an intrinsic constituent of them, i.e.
systems do not have cognition as an element, we observe cognition from a specific
context. The cognition of a system does not depend on its implementation.

• If a system performs a successful action, we can say that it knows what to do in that
specific situation. This success is tied to a context and to an observer. Therefore, any
system performing a successful action can be considered to be a cognitive system. This is
a most general notion of cognition, and other types of cognition and definitions can be
applied in different contexts with different purposes without contradicting this notion.
So, a tree knows when spring comes because it blossoms, in a specific context (not

common in cognitive science, though (yet...)). And a protein knows how to become
phosphorilized, and a rock knows how to fall... if we find a context where this makes sense.

It might seem that we are falling a bit into a language game. Yes, but we are victims of
the same language game when we speak about human cognition! We are the ones who judge
that a tree may know when to blossom, and consider this as knowledge. But this is not different
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from the process we make when we judge the knowledge of a human. We can describe human
problem solving in terms of behaviour and classical conditioning, but we can also describe
biology in terms of epistemology.

I am not insinuating that atoms and humans have the same cognitive abilities, there is
a considerable difference in complexity, but not in the “essential” nature of cognition (well, the
ability to do things “properly” is not entirely essential, since we judge this properness). (But for
example an oxygen atom knows how to bind itself to two hydrogen atoms, and humans do
not!).

We can measure this complexity9, but we should note that this can only be relative to
an abstraction level (Gershenson, 2002a). And there are many definitions and measures of
complexity, so again there is no “most appropriate” measure outside a context. Moreover,
Kolen and Pollack (1994) have shown that complexity is dependent on the observer and how
she/he measures a phenomenon.

So, what does cognitive science should study? I would suggest that cognition at all
levels, not only at the human, in order to have the broadest notion of cognition. This is not just
out of the hat. People already speak about bacterial (Jonker et al., 2001), immunological
(Hershberg and Efroni, 2001), plant, animal(Vauclair, 1996; Bekoff,  Allen, and Burghardt,
2002), machine, social, economical cognitions. What is out of the hat is proteic, molecular,
atomic, planetary, etc. cognitions. Of course all of this is our interpretation, but if we take “the
real thing”, what cognition a-is, we humans are not different from any other system. What
changes is just how we describe ourselves (and our complexity. This complexity allows us to
identify new abstraction levels, and this is very important, but at the end we all are a bunch of
molecules, a mass of quarks, and infinitude of nothings...) “How does the immune system
knows which antigens are foreign of the organism?” is not a question very different of “How
do people know when someone is lying?”. And research in complex systems (see Bar-Yam
(1997) for an introduction) has shown that systems classically considered as cognitive can be
modelled with the same models of systems which are classically not considered as cognitive,
and also vice versa.

That we are interpreting cognition does not mean that there is no objective notion of
cognition. What it means is that it is everywhere, and therefore there is no general way (outside
a specific context) to draw a borderline between “cognition” and “non-cognition”.

How useful is to describe the behaviour of a particle in terms of cognition, when physics
already describes it with a different terminology? It is not about usefulness. We should just
realize that cognition, in essence, a-is the same for all systems, since it depends on its
description. What makes us different is just the complexity degree and the names we use to
describe our cognition.
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4.5. Different types of cognition

We can quickly begin to identify different types of cognition, and this will relate the
ideas just presented with previous approaches for studying cognition. Of course this does not
attempt to be a complete or final categorization, but it should help in understanding my ideas.

We can say that classical cognitive science studies human cognition. But of course many
disciplines are involved in the study of human cognition, such as neuroscience, psychology,
philosophy, etc. Human cognition can be seen as a subset of animal cognition, which has been
studied by ethologists (e.g. McFarland, 1981) and behaviour-based roboticists (e.g. Brooks,
1986). But we can also consider the process of life as determined by cognition and vice versa,
as the idea of autopoiesis proposes (Maturana and Varela, 1980; 1987; Stewart, 1996), in which
we would be speaking about cognition of living organisms. Here we would run into the debate
of what is considered to be alive, but in any case we can say that biology has studied this type
of cognition. Artificial cognition would be the one exhibited by systems built by us. These can
be built as models of the cognition of the living, such as an expert system, an octapod robot,
or my virtual animats. But we can also build artificial systems without inspiration from biology
which can be considered as cognitive (the thermostat knows when it is too hot or too cold).
Most of these types of cognition can be considered as adaptive cognition, since all living
organisms also adapt to modest changes in their environment, but also many artificial and non-
living systems. Cybernetics (Wiener, 1948), and more recently certain branches of artificial
intelligence and artificial life (e.g. Holland, 1992) have studied adaptive systems. We can
contain all the previous types of cognition under systemic cognition. complex systems (Bar-
Yam, 1997), and general systems theory (Turchin, 1977) can be said to have studied this type
of cognition. I cannot think of a more general type of cognition because something needs to
exhibit this cognition, and that something can always be seen as a system. We can see a
graphical representation of these types of cognition in Figure 13.

Figure 13. Different types of cognition.
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It is curious that cognitions which are considered to be simpler contain the ones
considered to be more complex. It seems that it is that when we speak for example about
human cognition, we do not see humans as a system, and when we speak for example about
cognition in living organisms, we do not think right away about human cognition. We should
also note that all types of cognition can be studied at different levels and from different
approaches.

This is only one way of categorizing different types of cognition, but there can be several
others. One could be by measuring the statistical correlations between the “inputs” and the
“outputs” of a cognitive system (if we can identify them). If the outputs can be obtained by
pure statistical correlations, then the cognition is simpler than if it requires complex
transformation or re-representation of the inputs (Clark and Thornton, 1997; Thornton, 2000).
The more transformation the inputs require, the higher and complex the cognition would be.
So for example a rock would have low cognition, because if it is on the ground (input), it will
stay there (output), and if it is on the air (input), it will fall (output). Now try to do the same
predictions/descriptions with a cat, and we can see that they have higher cognition. This
categorization is also not universal, but it seems to be useful in several contexts, rather than in
a single one.

We could also identify different levels of cognition, similar to the observed levels of
behaviour proposed (Gershenson, 2001; 2002b).

5. Conclusions

In classical cognitive science, it seems that there was the common belief that human
cognition was a symbol system (Newell, 1990). I believe that the confusion was the following:
human cognition can be modelled by symbol systems (at a certain level), but this does not
mean that human cognition (absolutely) is a symbol system. But the same applies to all models.
Human cognition (absolutely) is not a parallel distributed processor, nor any other model
about which we can think. Things do not depend on the models we have of them. That some
aspects of cognition (e.g. navigation) are implemented more easily under a certain paradigm,
does not mean that natural cognitive systems do it the same way.

The implemented animats are cognitive at the same degree, because they model the
same aspect of cognition roughly with the same success. Systems are not cognitive because they
implement a specific architecture. Of course different architectures can be more parsimonious,
others more explanatory, others easier to implement, etc.; but this is dependent of the context
in which we are modelling.

Different cognitive models and paradigms can be said to be modelling different aspects
of cognition. They are different metaphors, with different goals and from different contexts.
Therefore, we will have a less-incomplete view of cognition if we take into account as many
paradigms as possible.

There have been several proposed definitions of cognition, in different contexts. I
proposed a notion which is applicable to all of these contexts and possibly more (although this
makes it less practical).
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A human doing the same things the animats do would be considered cognitive, just
because her/his behaviour would be described with different terminology. But if the observed
processes are the same, I believe that there is no intrinsic cognitive difference related to a
specific task between two different systems if they solve the same task in the same context with
the same success. This is why I say that cognition is observed. Just as a brain needs a body and
an environment (Clark, 1997), a cognitive system also needs an observer.

Someone could say that “real” cognition is given when a system (such as a mature
human) is able to explain and understand, and that we are the ones describing other systems,
thus giving the cognition. I would agree, but even go further: we are the ones describing our
own cognition, along with that of any cognitive system. Our cognition does not depend only on
our nature, but also on how we <observe|describe> it.
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