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CHSH and local hidden causality
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Abstract

Mathematics equivalent to Bell’s derivation of the inequalities, also
allows a local hidden variables explanation for the correlation between
distant measurements.
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1 Introduction

Bell inequalities [2] are a well studied subject. To many the experimental
verification of the violation of inequalities e.g. [1], [5] is sufficient evidence for
the completeness of quantum theory. Here, it will be demonstrated that Bell’s
form of local hidden correlation

P@b) = [ pA@ By (1)

can be transformed to violate Bell’s inequality. We have, @ and b for unitary
parameter vectors of e.g. Stern-Gerlach magnets in an ortho-positronium de-
cay experiment. A represents the extra hidden parameters in a set A. The
probability density p, is a classical density. The measurement functions A, (@)

and B, (b) project in {—1,1}. Bell showed, using the expression below, that
models with a classical probability density may not violate the inequality®.

- -

P(d,b) — P(%,7) = / paAN(@)B(D) Ax(F)Bx(§) { Ax(B)B(§) — Ax(@) B (b) }

AEA
(2)

'Tf there is no confusion the d\ will be suppressed.
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1.1 Singlet state Bell inequality

Bell expressed the singlet state of the electron and positron in the positronium
as V : a(lal = 1)V : MA € A) {A,\( @) + By(d@) = 0}. The following steps are
elementary. Let us take, ¥ = = b and y = ¢. With the singlet, we see that
equation (2) can be written as

P - P,A = [ m{AB)AN0 - A\@)4r(0)} (3)
AEA
Or, noting 1 — A, (a@)AA(€) > 0,
P@b) - PEA| < [ nHM@40| - a@a@) @
AEA
Because, (G)AA(E)‘ =1 and p, classical, we have the Bell inequality
(@) — P(b,8)| < 1+ P(@7) (5)
The quantum correlation is: P, (Z,y) = — (- ¢). If in two-dimensions, @ =
(\_/—%, %), b = (\%2, %) and ¢ = (0, 1), then, inequality is violated because,

0— \_/—% <1- % is false. Associated to this inequality in equation(5) a more
general inequality, the CHSH inequality [3], exists. The principle is the same.

2 Sets and Integrals

Keeping an eye on equation (2), hidden parameters sets can be defined

-

Qp = {/\ € AJAX(@)Ba(b) = AX(Z) BA(¥) = il} (6)
and .

Q) = {\ € AJAN(@)Bx(D) = —A\(#)BA(§) = +1} (7)
Given, @, b, & and 7, either, A;(@)Bx(b) = A\(Z)Bx(f) or Ar(@)Ba(b) =
— A\(Z)Ba(i]) for arbitrary, A € A. Moreover, A,(@)By(b) = +1 for arbitrary,
A € A. Hence, A = Qo U Q. UQ_ and equation (2) is

P@H-PE N = [ pAN@B) (7) { A\(@) Br() — Ax(@) Ba(b) }

il

From Q folows A, (@) B\ (b) Ax(Z)Bx(y) = —1 and {A,\(a_c’)B)\@) - A,\(d)B)\(b)} =
2A,(%)Bx(¥). Hence,

P@b) - P@@5) =2 [ mA@)Bi(d) (9)

AEQp
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Suppose, P(a, l;) = 0, as ’starting position’ in the experiment. This gives a
reformulation of P(Z, ) where Z and ¥ are different form @ and b. Hence,

PEN=2 [ pA@BG (10)

AR p(a,5)=0

=,

Note that according to equation (1) and the 2 sets we may write for P(a,b) = 0

Pah=0= [ apa@e®+ [ a- [ s

AL p(a,5)=0 AEQL b f)=0 AEQ_ b f)=0

Moreover, generally P(Z,v) # P(a, l;) which follows from comparing equation
(10) with (11). Because, in €y, we see for arbitary A\ € Qg that A,(@)Bx(b) =
—A\(Z)BaA(7) = %1, it follows from equation (11) that we may rewrite P(Z, )
as

1 — =

S D@ 9) = / pr — / P (12)

AR p(a,By=0 AL pa5)=0

—

Equations (6) and (7) show that the €2 sets depend on @, b, © and . Given
P(@,b) = 0, this fixes the @ and b. Hence, Qpas=o = Puip@i=o(TY);

implicit in equation(12). Start the experiment with two parameters @ and b
that produces the condition P(@,b) = 0 and let & and ¥ free?. T does not afect
B\ () and vice versa, hence, no locality violation.

3 Violation CHSH

We will show that there is a classical probability density that allows violation
of the CHSH |D| < 2, with,

D =P(14,15) — P(14,28) — P(24,15) — P(24,2p) (13)

Here, 14(p) and 24(p) are unitary vectors randomly selected by A(B).

3.1 Probability density

We postulate a density for (A1, Ay) € [7 7] [\_/—%, %] = A withn=1,2
1 <\, < L
B m<Mmss
P { 0, elsewhere (14)

This density is Kolmogorovian.

2see the discussion section



4 J.F. Geurdes

3.2 Selection of parameters

We establish the parameter vectors that the observers A and B will use. For
A, 14 = (1,0) and 24 = (0,1). For B, 15 = (5, 73) and 2B = (5 ) If
we take the quantum correlation, it follows, qu(l 4, 1) = f? Prn(14,2p) =

%, Pn(24,1p) = % and P,,(24,25) = ﬁ. Quantum mechanics violates

|D| < 2, because |D| = 2\/§ is found. Because, py,pr, = 5 for (A, \2) €

[%, %] X [\‘/—%, \}5] and Q. p 5-0(T 7) C [%, %] X [&—%, %], we obtain from
equation (12)

P(Z,§) = / dhdg — / A (15)
ACQ p(a,5y=o0(T:Y) ACQ_ p(a,5)=0(T:9)

If, subsequently, observer A selects 1,4, then the hidden parameter Aq is in
[\/1 1- f] C [\_/%, f] If, A selects 24 then ), is in [—1 + = 75 f] C [\7—%,%}
Similarly, if B selects 1p, then then Ay is in [0, \%] C [\/%, \}5] Finally, if B
selects 2p, then Ay is found in | \/1 0] C [ Nt \1[] The intervals responding
to settings do not violate locality: A settings are associated to A; intervals,
B settings to Ay intervals. Suppose A selects 14 and B selects 15. We turn
to Q. pap—ola,16). I Q, pap_o(la,1p) = 0 and Q_p (1A,1B) =
[Z5+ 1= 5] %[0, 5], from equation (15) it follows that P(Ly, 13
a selection of Q ;5 _o(Z, ) is possible giving [D] > 2.

ﬁ' Hence,

4 Conclusion and discussion

The result of violating | D| < 2 with proper {2 4| P(d,l?):O(f? /) and locality obey-
ing interval selection rules, is surprising. The mathematics was similar to the
one used by Bell [2]. Moreover, no violations of locality were introduced. In
a random selection experiment there is a non-zero probability that, combined
with the deterministic interval selection, a proper selection of €2 +|P(@5)=0 (Z,7)
is obtained. When Bell’s reasoning is sound, no violation should be possible at
all with the use of classical local hidden models given the employed parame-
ters. Note that other violating instances can be treated similarly. If there can
be no reasons given why locality and causality selections of €2 4 P(E,I;):O(f7 )
are impossible, then a local hidden variable explanation of experiments can-
not be excluded. The transformation of (1) is based on a single fixing of d
and I;, independent of the ¥ and ¢. If one assumes that the functional form
of Ax(-) and B,(-) changes in time (see also [4] for the role of time in Bell’s
theorem) then the fixing of P(d@,b) = 0 can take place at times different than
the measurement parameters selection and the sets in equations (6) and (7)
will always be possible.
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