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Abstract

The biochemistry of geotropism in plants and gravisensing in e.g.
cyanobacteria or paramacia is still not well understood today [1]. Per-
haps there are more ways than one for organisms to sense gravity. The
two best known relatively old explanations for gravity sensing are sens-
ing through the redistribution of cellular starch statoliths and sensing
through redistribution of auxin. The starch containing statoliths in a
gravity field produce pressure on the endoplasmic reticulum of the cell.
This enables the cell to sense direction. Alternatively, there is the re-
distribution of auxin under the action of gravity. This is known as the
Cholodny-Went hypothesis [2], [3]. The latter redistribution coincides
with a redistribution of electrical charge in the cell. With the present
study the aim is to add a mathematical unified field explanation to
gravisensing.

Keywords: Einstein gravity field, Maxwell electromagnetic field, relativis-
tic quantum Dirac equation, gravitropism.

1 Introduction

The biochemical and biophysical aspects of geotropism remain largely un-
known. The mechanisms that result in geotropism are poorly understood and
the signalling pathways remain elusive [4]. Despite of a considerable histori-
cal body of experimental knowledge there is still no clear idea what needs to
be researched experimentally [5]. However, we do know that the molecular
mechanism underlying gravity perception and signal transduction which con-
trols assymetric plant growth in response to gravity are likely to be linked to
the plant hormones cytokinins, auxins and the gibberellins [6]. It is generally
acknowledged that auxin and/or gibberellins are involved in ’tropic’ behavior
of plants. The inclusion of gibberellins in gravitropism is stated by e.g. Van-
denbussche et al. They note that a gibberellin signalling system may have its
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evolutionary molecular onset in Physcomitrella patens, where gibberellins at
relative high concentrations affect gravitropism [7]. Additionally, amyloplasts
are widely considered to act as statoliths and are thought to be present e.g. in
the rootcap cell [8].

In addition a bio-geoelectric effect in plants has been established following
gravity stimulation [9]. However the question is whether this bio-geoelectric
effect explains gravisensing or is just a side effect of it. In 1987, Björkman and
Leopold demonstrated an electrical current associated to gravity sensing [10].
A more recent study showed changes in cytosolic pH [11], denoted by pHc,
after gravistimulation for cells that are probably involved in graviperception
[12]. It is noted that during the initial stages of their life cycle, rootcap cells
can perceive gravity and cause orthogravitropic growth [13]. Other studies
suggest other places in addition to the rootcap for gravisensing [14]. Move-
ment of auxin in response to gravistimulation was already demonstrated [15].
Changes in pHc also occur in response to auxin stimulation [16]. In addi-
tion, proton, H3O

+ efflux seems to mediate the action of auxin [17] while root
growth strongly depends on pH. This evidence suggests a causal role of efflux
of H3O

+ in gravisensing [18].

2 Unified field theory

2.1 Bio-geoelectric response

The problem with gravisensing and a cellular electric response is that there
is no well established theoretical physics connection between gravity and a
possible cellular response. Of course the electric field can be explained by
mechano-reception through statoliths but there seem to be organisms that do
not contain starch statoliths for gravisensing organelles. The latter include,
Phycomyces,Neurospora and starch-free Arabidopsis mutants [19]. Perhaps
that other cell structures play the role of statolith. Perhaps other mechanisms
without statolith-like reception are involved. In the latter category one can
find e.g. neurobiological explanations of graviperception (see ref. [1]), or of a
link between actine cytoskeleton and gravisensing [20].

Older studies indicate that gibberellins are able to promote growth in wheat
coleoptiles by stimulating the breakdown of starch into sugar. The starch freed
plants responded relatively normal to gravistimulation [21]. Moreover, a maize
mutant lacking amyloplasts expressed geotropism [22], see also [23]. This draws
the attention back to the Cholodny - Went hypothesis with an electrical field
guided by or guiding the auxin redistribution in gravisensing. The author adds
that an explanation of auxin redistribution and one with statoliths are not by
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necessity mutual exclusive.

In any case the conclusion seems justified that a deeper understanding of
geotropism would benefit from an understanding of a mathematical description
of a possible relation between gravity and electromagnetism.

2.2 Gravisensing and cellular phytochrome

Adding to the already mentioned explanations there also exists a relation be-
tween phytochrome response in plants to red and far-red light and the geotropic
response. For instance the effect of irradiation with red-light on the capacity
of Avena coleoptiles to respond to geotropic stimulation has three phases [24]
(also [26]). The first is a period of increase in geoptropic responsiveness. The
second phase shows no difference between irradiated and not radiated coleop-
tiles and the third is characterized by less responisiveness to gravistimulation
in the irradiated coleoptiles. Moreover, Wilkins et al also found that geotropic
responsiveness of the Zea coleoptile was different than from Avena. In Zea a
decreased responsivenss developed after 8 hours [25]. Another indication for
red-light or phytochrome influencing gravitropism is the fact that hypocotyls of
dark grown Arabidopsis seedlings exhibit strong gravitropism whereas in red-
light gravitropism is strongly reduced [27]. Light has been shown to modulate
the gravitropic response of root or stem through the action of phytochrome [28].

Let us for this moment stop at the lumino biological side of gravity sensing
and turn to the mathematical physics of gravity sensing.

2.3 Gravity electromagnetic unification

In the course of his studies in the foundation of physics, Einstein stated the
importance of unifying the gravity field with the electromagnetic field [29]. In
the present paragraphs this form of unification is accomplished in case of a
weak gravity field. The unification runs over a mathematical form which is
Dirac’s relativistic quantum mechanical (DRQM) equation. By demonstrating
that the DRQM is intrinsic in weak gravity Einstein field equations, the rela-
tion with the electromagnetic field is laid with the use of the author’s previous
results [30]. Hence, establishing this fact implies the unification of the gravity
and the electromagnetic fields. For our present bio-sensing geotropism appli-
cation it is important that gravity can be treated as a form of electromagnetic
radiation.
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3 Equations

In the previous sections the context for the search was given. The next para-
graphs are devoted to the mathematics.

3.1 Preliminaries

Before embarking, let us first define the employed Minkowski metric tensor,
ηµ,ν = ηµ,ν = diag(−1, 1, 1, 1), or, η1,1 = η2,2 = η3,3 = −η0,0 = 1, and, ηµ,ν = 0,
when, µ �= ν, with, µ, ν = 0, 1, 2, 3. Secondly, raising or lowering an index is
performed with contraction using the Minkowski metric. For example, sup-
pose, aµ is a tensor, then ’raising the index’ is done with, aλ = ηλ,µaµ. Thirdly
the to be investigated derivation is based on ’weak distortion’ of the Minkowski
metric. This means that

gµ,ν(x) = ηµ.ν +
√
εϕµ,ν(x) (1)

with ϕµ,ν(x) ∼ O(
√
ε), terms ofO(ε2) will be suppressed and x = (x0, x1, x2, x3)

spacetime coordinates. Note that O(ε) is Landau’s ordering symbol.

3.2 Metric assumptions

The to be developed analysis is fairly general. However, below a specific ex-
ample is given to show that the conditions can be met. Let us furthermore
for notational convenience leave out the separating comma if there can be no
mistake in reading the indices.

In the derivation we will need the following facts. Firstly, gµνgµν = ηµνηµν = 4.
From equation (1) it then follows that ηµνϕµν(x) = 0 and from the epsilonics
it follows that εϕµν(x)ϕµν(x) ∼ O(ε2) and can be suppressed. Secondly, we
aim to have g = − det(gµν) = 1. Let us suppose, for example, that (ϕµν) =
diag(ϕ0, ϕ1, ϕ2, ϕ3), with, to be even more specific, ϕ0(x) = ϕ1(x) = f(x) and
ϕ2 = −h(x), ϕ3 = h(x) and f and h two real functions. Then, the determinant
equals

−g = det (gµν) = (−1 +
√
εϕ0)(1 +

√
εϕ1)(1 +

√
εϕ2)(1 +

√
εϕ3) (2)

We have, εϕµϕν = O(ε2). Because ϕ2 + ϕ3 = 0 and ϕ0 = ϕ1 = f(x) we
have gµνgµν = 4. The diagonal structure of ϕµ ν permits to have, ηµλϕµρ = 0.
Moreover, suppressing O(ε2)

−g = (−1 +
√
ε(ϕ0 − ϕ1))(1 +

√
ε(ϕ2 + ϕ3)) (3)

it follows, g = 1. The reason for g = 1 will become clear later on. This example
shows that there is a genuine metric gµν(x) that differs from the Minkowski
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metric and has the necessary characteristics. An additional assumption will be
that ∂λϕ

λ
ν = aν , with, aν absolute constant. Now it should be noted that for,

(ϕµν) = diag(ϕ0, ϕ1, ϕ2, ϕ3), we have ∂λη
λσϕσν = aν and hence, −∂0ϕ0 = a0

and ∂kϕk = ak, with, k = 1, 2, 3. This further restricts the example metric gµν
to

f(x) = a1x1 − a0x0 + f23(x2, x3) (4)

and, f23(x2, x3) containing the remainder in of space-time dependence of f(x).
Further,

h(x) = a3x3 − a2x2 + h01(x0, x1) (5)

and similarly h01(x0, x1) the remainder in of space-time dependence of h(x).
Note that e.g. ϕ2(x) = −h(x) and that in the previous further specification of
h(x) it is ensured that: ∂2ϕ2 = a2.

3.3 Field equations

As is well known, Einstein’s field equations, relating the Ricci tensor, Rµν(x),
the stress-energy Tµν(x) and the metric tensor, gµν(x), can be written as

Rµν = 8πG

(
Tµν − 1

2
gµνT

)
(6)

Note, T = T (x) = gµν(x)Tµν(x) and we use the notation 0T (x) for η
µν(x)Tµν(x).

In equation (6) G is the gravitation constant, while it is assumed that c = h̄ =
1. The field equations are rewritten slightly for the convenience of the analysis.
If κ

√
ε = 8πG, then,

Rµν = κ
√
ε

(
Tµν − 1

2
gµνT

)
(7)

The Ricci tensor in equation (7) can be decomposed into Rµν = rµν + sµν .
In terms of the affine connections the components of the Ricci tensor can be
rewritten. For completeness:

Γλ
µν =

1

2
gλσ (∂νgσµ + ∂µgσν − ∂σgµν) (8)

The constituents of the Ricci tensor can subsequently be written in terms of
the affine connections. For rµν

rµν = −∂λΓ
λ
µν + Γσ

µαΓ
α
νσ (9)

and sµν
sµν = ∂νuµ − Γσ

µνuσ (10)

Here uµ is defined as a contraction on the affine connection related to g =
− det(gµν).

uµ = Γλ
λµ = ∂µln (

√
g) (11)
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We suppose that g = 1 and in a previous section (section 3.2) we saw that this
is a genuine possibility among our other assumptions. In case g = 1, we have
uµ = 0 and hence, sµν = 0. The field equations can then be rewritten as

rµν = κ
√
ε

(
Tµν − 1

2
gµνT

)
(12)

3.4 Relation with QM

The basic equations for a derivation of Dirac’s relativistic quantum equation
will be given below. Because Rµν is, using g = 1, replaced by rµν in the
field equations, according to equation (9) we need to inspect forms like ∂λΓ

λ
µν .

Remembering the general form of the metric tensor in equation (1) we obtain
the following

∂λΓ
λ
µν =

√
ε

2
ηλσ

(
∂2
λµϕσν + ∂2

λνϕσµ − ∂2
λσϕµν

)
(13)

Note that the term ε∂λQ
λ
µν contained in ∂λΓ

λ
µν is O(ε2) because

2Qλ
µν = ϕλσ (∂µϕσν + ∂νϕσµ − ∂σϕµν) (14)

and contractions like ϕλσ∂µϕσν are O(ε) because ∂µϕσν ∼ O(
√
ε). Because of

the additional assumption ∂λϕ
λ
ν = aν and aν absolute constant suppressing

O(ε2)

∂λΓ
λ
µν = −

√
ε

2

(∇2 − ∂2
0

)
ϕµν (15)

From equation (8) and the definition of the metric in equation (1) we see that
Γλ
µν is O(ε). Hence, the product term of affine connections in the expression

for rµν in equation (9) is of order O(ε2) and can be suppressed. This leads to

rµν =

√
ε

2

(∇2 − ∂2
0

)
ϕµν (16)

From the field equations it then follows that

�2ϕµν = 2κ

(
Tµν − 1

2
gµνT

)
= kµν (17)

with �2 = (∇2 − ∂2
0) the D’Alembertian. From the previous equation, with

bν , possibly complex absolute constants, let us derive a vector φµ = bνϕµν and
kµ = bνkµν . With those two vectors φµ and kµ in the relation �2φµ = kµ, the
present author derived a DRQM [30],

γµ (∂µ −Gµ(x)) Ψ(x) = γµDµΨ(x) = 0. (18)
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Gµ are gauge functions and ∂µ = ∂
∂xµ

. The 4x4 matirces γµ obey a Clifford

algebra with (k = 1, 2, 3)

γk =

(
0 −iσk

iσk 0

)
(19)

and

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
0 1
1 0

)
. (20)

together with γ4 = diag(1, 1,−1,−1). Gµ(x) is related to U(1) gauge and Ψ(x)
is a complex four vector.

4 Meaning & discussion

4.1 Physics consequences

Deriving a relativistic quantum equation from the (weak) gravity field equa-
tions is from a physical point of view remarkable. In the first place because
relativistic quantum theory can be derived from classical gravity. Secondly and
because of a previous established relation between Maxwell’s classical electro-
magnetic field equations, we now have obtained a theoretical relation between
classical gravity and electromagnetic fields. The obtained relation is not simi-
lar to e.g. gravity lensing known from astronomy, because of the weak gravity
field we study.

Concludingly, with the present formalism a gravity field can be transformed
into an electromagnetic field and vice versa. The connection with the quan-
tum mechanical Dirac form shows this to be relevant for understanding of the
graviton. With the transformation an Einsteinian unification in field theory
has been accomplished [29].

5 Connection with a biochemical context

The metric gravity disturbance δgµν(x) can be written as
√
εϕµ,ν(x). If we also

define �F = �E+ i �B then the Maxwell equations without net charge (q = 0, �j =
�0) can be written as

∇× �F = i
∂

∂t
�F . (21)

In the previous we have demonstrated that for φµ = bνϕµν andkµ = bνkµν ,
with bν a constant array, that

�2φµ = kµ. (22)
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From reference [30] it follows that the �F from equation (21) is related to φµ

via the equation

∇φ(x) = �F (x)− i
∂ �C(x)

∂t
− i �J(x) (23)

with, generally, the current density, �j equal to ∇× �J and φ = φ0+φ1+φ2+φ3.
With �F = ∇× �C noticing �j = �0 , (21) follows from (23).

In [30] the relation ∇ · �C(x) = i ∂
∂t
φ(x) enables a connection between the elec-

tromagnetic field and functions derivable from the metric gravity disturbance
δgµν(x). Let us suppose �C depends on spacetime (x0, �x), with x0 = ct, through

the radius r =
√

x2 + y2 + z2. If we assume that �C(t, �x)T = (1, 1, 1)C(t, r), in
’natural units (c = h̄ = 1)’ with T the transposed, it then follows that

∇ · �C(x) =

(
x+ y + z

r

)
∂C(t, r)

∂r
. (24)

The relation with the gravity disturbance functions φλ is

C(t, r) = i

∫ r

0

dr′
r′φ̇

x′ + y′ + z′
(25)

with φ̇ the time derivative of φ. Hence, from (25) and �F = ∇ × �C it follows
that

�F = i�x× (ê1 + ê2 + ê3)
φ̇

x+ y + z
(26)

with êk unit vector of spatial direction k = 1, 2, 3. The expression (26) leads
to the electric vector

�E = −�x× (ê1 + ê2 + ê3)
Im φ̇

x+ y + z
(27)

and magnetic vector

�B = �x× (ê1 + ê2 + ê3)
Re φ̇

x+ y + z
. (28)

Note that | �E| = c| �B| in ’natural units (c = h̄ = 1)’ means Im(φ̇) = ±Re(φ̇).

Hence, we see that for the angle between �E, �B the following

cos �
(
�E, �B

)
=

�E

| �E| ·
�B

| �B| = − sgn
(
Im(φ̇)Re(φ̇)

)
(29)

obtains.
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From this we may conclude that a photon field can be obtained from the
gravity disturbance whereby the electric and magnetic vectors are either op-
posite or parallel.

The relation between the electric and magnetic field vectors of the generated
photon field to the metric tensor from gravity can be made more clear if we
write δg for the diagonal array in δgµν . With this notation we may write

φ =
1√
ε
Tr {diag(b) diag(δg)} (30)

and δg the gravity induced disturbance of the Minkovski metric. For complete-
ness, diag(δg) =

√
ε diag(ϕ0, ϕ1, ϕ2, ϕ3). Explicitly this leads to the photon

electrical and magnetic field vectors

�Eδg = −�x× (ê1 + ê2 + ê3) Im

(
Tr {diag(b) diag(δġ)}

(x+ y + z)
√
ε

)
(31)

and magnetic vector

�Bδg = �x× (ê1 + ê2 + ê3)Re

(
Tr {diag(b) diag(δġ)}

(x+ y + z)
√
ε

)
. (32)

�E = �Eδg and �B = �Bδg are the gravity to photon transformed electrical and
magnetic field vectors.

5.1 Photic gravity field and its hypothetical influence

on phytochrome

The gravity induced photon field (equations (31) and (32)) has a vanishing
Poynting vector. Hence, the effect of the constant presence of the gravity in-
duced photic field is different from the influence of red or far-red light because
in the latter case there will be a non-zero Poynting vector leading to exchange
of energy between the phototic field and the phytochrome molecule. In case
of the gravitophotic field the photon will only be supposed to have a disturb-
ing influence of the distribution of electrons over the molecule. In the present
theory the gauge invariance of the underlying Dirac equation is associated to
the distribution of charge. Recall that, in experiments, charge re-distribution
is demonstrated to be part of the geotropic response of the plant.

From the Dirac equation [30], associated to the Maxwell electromagnetic field
equations related to (31) and (32) we have

γµDµΨ = γµ

(
∂

∂xµ

−Gµ

)
Ψ = 0 (33)
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with γµ, 4 × 4 matrices satisfying the Clifford algebra γµγν + γνγµ = 2ηµν

wheras the Gµ are gauge function. Let us study the U(1) gauge transformation
Ψ → eiRΨ = Ψ′. If the gauge functions transform like

Gµ → Gµ + i
∂R

∂xµ
(34)

the Dirac equation (33) remains valid for Ψ′. As was demonstrated by the
present author [30], this leads to a re-distribution of net charge

q′′ = Re(q′) +∇ ·
{
Im

[
eiR

(
�J − i �C

∂R

∂t

)]}
(35)

with R the wave function transformation function, �J the vector of functions
leading to �j = ∇ × �J = �0 and �C such that, in our present example, �C T =
(1, 1, 1)C(t, r) and here the function C(t, r) as in (25). The term q′ in (35)

derives from q′ = ∇· �Q′. From [30] (formula (48)) it follows that �Q′ is equal to

�Q′ = i eiR
(
φ∇R− (∇R)× �C

)
(36)

where �Q = �0 in accordance with the original ’no net charge’ q = 0. Hence, �Q′

arises exclusively from the transformation of the wave function. Hence, grav-
ity induced electromagnetic field such as in e.g. (31) and (32) has gauges that
show a redistribution of net charge, i.e. a q → q′′ transformation following a
Ψ → eiRΨ = Ψ′ transformation plus restructuring into Maxwell’s e.m. field
equations witout ’magnetic charge’.

Of course a discussion can be started whether the previous transformation
of a gravity metric disturbance into electromagnetism needs statolith, or simi-
lar, transducers or not. The author claims that the gravity disturbance of the
Minkovsky metric is intrinsically alrady an electrromagnetic field and not in
need of any transduction of gravity to electromagnetism. In the latter case it
can be that the direct gravity influence on molecules part of the Cholodny -
Went hypothesis is true and that statoliths only amplify the already existent
primordial intrinsic signal and co-prepare the cells for the geotropic response.

5.2 Resonance structures related to �Eδg and �Bδg

In this section the attention is turned to the way the �Eδg and �Bδg can interfere
with the structure of the phytochrome. We start with Pfr, in (1), and show

that cos �
(
�Eδg, �Bδg

)
= ±1 enhances Pr in (8).
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Fig. 1. Electron resonance in ring D (upper) and C (lower) of the planar
tetrapyrrole chromophore.
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5.2.1 Configuration phytochrome chromophore

The trans geometry of the chromophore in Pfr arises after red-light absorption

of Pr. We have Pr
600nm−−−−→ Pfr. The tetrapyrrole system is a relatively flat

system of molecular π-orbitals. Hence, the drawings are a fair approximation
of the planar geometry of the chromophore.

Subsequently we may note that in this molecular π-orbital system, the elec-
trons in the π-orbital ’freely’ may propagate over the plane of the molecule.
This is mirrored by the consecutive double bonds in Fig. 1. Now, to follow
the faith of the electrons in the configuration let us take a look at (2). For
brevity, the upper (in the figure) ring is named the D pyrrole ring while the
lower is denoted by C.

In (2) the two π electrons are ’loosely’ related and (3) and (4) show the
propagation of this electron in the D ring. In (4) the electron is positioned on
O and hence there is the possibility that the H from the N moves to O, see (5).
Subsequently, the double bond closest to the O can be ’opened’ and a doublle
bonded N can arise in the D ring such as in (6). This electron propagates
through the D ring back to the C that makes the connection with the C ring
such as pictured in (7).

5.2.2 Gravity photon influence

In the first place it is reasonable to suppose that the propagation of elec-
trons in π-orbitals resembles the propagation through a wire. In that case it
is a well known fact that electric and magnetic field vector are orthogonal.
Noting the fairness of the approximative representation in (8), it is noted that
e.g. the electric vector in the C ring associated to the double bonded N i.e. the

H

C

N

E
��
B in the C ring of (8) is orthogonal to the electric field

vector in the double bond of N in the D ring i.e.

������N

O
H

E��
B in the D ring of (8). The lines next to the bonds end-

ing in either an E or a B represent the electro and magnetic field vectors along
the π bond.

Hence, we may see an allignment of the �ED and �BC along a pair �Eδg and

�Bδg, showing cos �
(
�ED, �BC

)
= ±1 similar to cos �

(
�Eδg, �Bδg

)
= ±1. Hence,
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the electric and magnetic form of the gravity photon can be considered to
enhance the spontaneous Pfr → Pr decay. If the gravity stimulus finds a phys-
iological response in the catalytic activity of Pfr [9] then the gravity stimulus
is also among the possible causes of ’deactivation’ of the cataylist. The already
mentioned hypocotyls of dark grown Arabidopsis seedlings that exhibit strong
gravitropism which is reduced in in red-light, does not disprove the previous
argument of gravireception on Pfr but could also suggest that for Arabidopsis
other processes related to active Pfr prevail over geotropism after growing in
the dark.

To the previous allignment hypothesis we could also add the following applica-

tion of cos �
(
�Eδg, �Bδg

)
= ±1 to a cytokinins Zeatin[6-(4-hydroxy-3-methyl-2-

butenyl)aminopurine]. It is known that higher plants contain hormones called
cytokinins that induce cell division in association with the auxins. The struc-
ture formula of Zeatin is

N
����

N
H C

H H

C

H

C

CH3

CH2OH

����N

C H

N

H

����
N����

Fig. 2. E-B folded Zeatin alligned along �Eδg and �Bδg.

In Fig. 2. the E-B folded form is presented. Of course, the side chain

N
H C

H H

C

H

C

CH3

CH2 OH

does not necessarily need to stand in the folded geometry of Fig. 2. to the

purine base. However, the cos �
(
�Eδg, �Bδg

)
= ±1 field enhances the purine

C N bond orthogonal in a plane with the C C bond of the side chain.

It can be imagined that the permanent presence of the cos �
(
�Eδg, �Bδg

)
= ±1

field, enhances the ’folding’ of the Zeatin side chain with the effect that e.g.
it has a higher probability to pass a barrier in a membrane to stimulate cell
division or to fit a cavity in an enzyme as a cofactor for enzymatic activity.
Concerning a possible cooperation between cytokinins and phytochrome, there
are indications that e.g. the altering of the circadian-clock in plants which can
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be influenced by cytokinins is also dependent on phytochrome (B) [31]. When
a circadian-clock depends on cytokinins and phytochrome then the two are
likely to be linked in their physiological activity which in turn might also find
expression in geotropism.

6 Conclusion and discussion

In the paper an electromagnetic field was obtained from a weak metric dis-
turbance, δg. The unifying principle that follows from the mathematics has
been subsequently applied to a long standing problem in plant biochemistry,
namely geotropism. In geotropism charge re-distribution occurs. If, initially,
no net charge and zero charge transport is assumed, then the gravity photic
field with the use of the U(1) gauge in the associated Dirac function, induces
a non-zero net charge distribution. If, subsequently, a wave function trans-
formation Ψ → eiRΨ = Ψ′ can be associated to a cytochemical process, then
we see that with a gravity induced electromagnetic field such as in e.g. (31)
and (32) a redistribution of net charge, i.e. a q → q′′ transformation fol-
lowing a Ψ → eiRΨ = Ψ′ transformation plus rewriting of Maxwell’s e.m.
equations, can occur. Secondly, it was argued that the gravity photon form

cos �
(
�Eδg, �Bδg

)
= ±1 enhances the decay of the active Pfr to the inactive Pr.

The electrical charge re-distribution is in a number of experiments associated
to the geotropical response. Note the mathematical transformation of a gravity
disturbance, δg into an electromagnetic field like in (31) and (32). From this
reformulation of weak gravity into electromagnetic field vectors ’inner’ U(1)
transformation shows a non-zero redistribution of electric charge, i.e. a gauge
from q = 0 to q′′ �= 0. Hence, the fundamental gravity - to - electric field
transformation in geotropism is in theory reduplicated through ’inner’ gauge

transformation. Note also that in U(1) the cos �
(
�Eδg, �Bδg

)
= ±1 is ’broken’.

Because initially the gravity field transformation resembles a photonic field
and phytochrome is involved in signalling photonic changes like photoperi-
odism, the proces of U(1) transformation appears to be situated at or in phy-
tochrome. Recall that it is experimentally demonstratred that physiologically
red-light reception, meaning a phytochrome-light reaction, is involved in en-
hanced geotropic behavior. If a gravity disturbance of the Minkovski metric is
disguised as a electromagnetic field such as in (31) and (32), the connection to
phytochrome is likely. The fact that the gravity photon also is able to enhance
’deactivation’ of the catalytic form of phytochrome, Pfr nicely fits a physio-
logical picture where exhaustion of resources is prevented by the stimulus itself.
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As a consequence of the previous arguments, we may note that the cytoskeleton
of the cell is most likely not a photo-receptive organelle. The transformations
from gravity to electromagnetic field, when not an intrinsic physical property,
together with the gauge transformations of the Dirac equation leading to a
re-distribution of charge, are therefore most probably not situated there.

Hence, the theory proposed here at its least tries to pin point the molecu-
lar structure fit for aspects of gravisensing in phytochrome carrying plants.
Of course the transformation is merely mathematical and theoretical. How-
ever, the formalism enables to draw a closer circle around the cellular mech-
anism of geotropism and gravisensing. The fact that the mathematics shows
that gravity can be treated as a kind of electromagnetic radiation points to
phytochrome because red-light radiation and physiological gravisensing find a
common ground there. Note the findings of E. Liscum and R. P. Hangarter

[27]. The application of cos �
(
�Eδg, �Bδg

)
= ±1 to Zeatin represents a new,

modified, form of the Cholodny - Went hypothesis.

Concerning the gibberellins, many biological active gibberellins look like A1,
i.e. contain only one double bond. Hence , it is unlikely that the proposed
allignment of electro and magnetic field vector with �Eδg and �Bδg would play a
role in the influence of gravity on intra-molecular configuration. Hence, from
this perspective it is unlikely that a reformulation of the Cholodny - Went
hypothesis such as for Zeatin is possible. If the modified Cholodny -Went hy-
pothesis carries weight, then one may conclude that gibberellins only play a
secondary role in geotropism. With the same admittedly face value reasoning

from cos �
(
�Eδg, �Bδg

)
= ±1, a similar point can be made in case of e.g. IAA.

The discussion ends by noting that the provided mathematics also points at
the ’graviton problem’ when the unification of the fields is intrinsic and does
not need a special biological substrate for the transformation of gravity into
the electric and magnetic field vectors, �Eδg and �Bδg. In any case, it makes
sense to employ the presented mathematical insight into an elusive problem as
the molecular mechanism of gravity sensing in organisms.
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