M2010

Probability and quantum foundation

J.F. Geurdes

Abstract: A classical probabilistics explanation for a typical quantum effect in Hardy's paradox is demonstrated.

1. Classical probability

The common claim is that a classical probability triple, (Ω, \mathbf{F}, P) cannot explain quantum effects. Here the sample space Ω is any non-empty set. The σ-field, \mathbf{F} is obtained from the set of all subsets, $\mathbf{P}(\Omega)=2^{\Omega}$, of $\Omega . \mathbf{F}$ is called a σ-field [1] if, (i) $\Omega \in \mathbf{F}$, (ii) $E \in \mathbf{F} \Rightarrow E^{c}=(\Omega-E) \in \mathbf{F}$, (iii) $E, F, \ldots \in \mathbf{F} \Rightarrow E \cup F \cup \ldots \in \mathbf{F}$. The triple is completed with a probability measure P, such that, $(\forall: X \in \mathbf{F})(0 \leq$ $P(X) \leq 1), \quad P(\Omega)=1$.

2. Pre-measurement characteristics, numerals and algebra

Let us inspect the possibilities of classical probability for Hardy's paradox [2] where quantum particles like electron and positron can be measured after mutual annihilation. This appears to reject the possibility of pre-measurement characteristics [3].

Apart from zero, unity and two the numerals of von Neuman and of Zermelo [4] are disjoint. This fact may represent mutual exclusion of electron and positron. We have, $D_{0}=C_{0}=\emptyset$. Von Neuman numerals are ($n=0,1,2,3, \ldots$)

$$
\begin{equation*}
C_{n+1}=\left\{C_{0}, C_{1}, \ldots ., C_{n}\right\} . \tag{1}
\end{equation*}
$$

Hence, $C_{1}=\{\emptyset\}, C_{2}=\{\emptyset,\{\emptyset\}\}, C_{3}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$, etc.
Zermelo's system is

$$
\begin{equation*}
D_{n+1}=\left\{D_{n}\right\} \tag{2}
\end{equation*}
$$

Hence, $D_{1}=\{\emptyset\}, D_{2}=\{\{\emptyset\}\}, D_{3}=\{\{\{\emptyset\}\}\}$, etc.
We establish mutual exclusion (annihilation) with C_{3}, modeling particle 1 and D_{3} modeling particle 2, for instance, as $C_{3} \cap D_{3}=\emptyset$.

The sample space equals $\Omega=C_{3} \cup D_{3}$, or

$$
\begin{equation*}
\Omega=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\}\} . \tag{3}
\end{equation*}
$$

This entails the σ-field $\mathbf{F}=\mathbf{P}(\Omega)=2^{\Omega}$. Explicitly:
$\mathbf{F}=\{\Omega, \emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\emptyset,\{\emptyset,\{\emptyset\}\}\},\{\emptyset,\{\{\emptyset\}\}\},\{\{\emptyset\},\{\emptyset,\{\emptyset\}\}\},\{\{\emptyset\},\{\{\emptyset\}\}\}\} \cup$ $\{\{\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\}\},\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\},\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\},\{\{\emptyset\},\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\}\}\} \cup$ $\{\{\emptyset,\{\emptyset,\{\emptyset\}\},\{\{\emptyset\}\}\},\{\{\emptyset\}\},\{\{\emptyset,\{\emptyset\}\}\},\{\{\{\emptyset\}\}\}\}$

Note, $D_{3}, C_{3} \in \mathbf{F}$. The probability measure for Ω is $P(X)=|X| /|\Omega|$, with, $|X|$ the cardinality of X, i.e. $P \sim \operatorname{Uniform}(\Omega) .(\Omega, \mathbf{F}, P)$ establishes classical probability. Finally, let us introduce the 'union of a set' [5], [6] operation,

$$
\begin{equation*}
\cup Z=\{x \mid(\exists: y \in Z)(x \in y)\} \tag{4}
\end{equation*}
$$

3. Application to Hardy's physics

For set $A=\left\{C_{2}\right\}$ and $B=D_{3}$ we see $A \subset C=C_{3}$ and $B=D=D_{3}$, hence, $B \subset D_{3}$. Obviously, $A \cap B=\emptyset$. The A and B represent disjoint parts of the electron and positron. Now, $C_{2} \in A$ and that means, $\{\emptyset,\{\emptyset\}\} \in A$. Hence (eq. 4), $x=\emptyset$ and $x=\{\emptyset\}$ in C_{2} giving $\cup A=C_{2}=\{\emptyset,\{\emptyset\}\} \in \mathbf{F}$. Identically, $D_{2} \in B=D_{3}$. Hence, $x=\{\emptyset\}=D_{1}$, such that $\cup B=D_{2}=\{\{\emptyset\}\} \in \mathbf{F}$. Now, $C_{2} \cap D_{2}=$ $\{\{\emptyset\}\} \Rightarrow P\left(C_{2} \cap D_{2}\right) \neq 0$. There exist subsets of C_{3} and D_{3} that, after taking the union, allows for simultaneous probability $\neq 0$. Hence, classical probability can do something similar to quantum mechanics if the \cup on disjoint (sub)sets in annihilation processes is physical.

4. Conclusion

A classical probabilistics explanation for a typical quantum behavior, similar to tunneling, has been found. If \cup cannot be excluded from physics it may represent a quantum physical process and establishes a classical explanation. A possible physical picture for \cup can perhaps be associated to a 'dark' mirror-matter sector [7], [8], [9] that may arise as a consequence of the experimentally established weak interaction parity non-invariance [10], [11].

References

[1] Rosenthal, J. (2006). A first look at Rigorous Probability Theory World Scientific, Singapore
[2] Hardy, L. (1992). Quantum mechanics, local realistic theories and Lorentzinvariant local realistic theories Phys. Rev. Lett. 68 2981-2984.
[3] Einstein, A. Podolsky, B. Rosen, N. (1935). Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47 777-780.
[4] Jaquette, D. (2002) Philosophy of mathematics: An anthology Blackwell Publ., Oxford UK.
[5] Randal Holmes, M. (2009). Elementary set theory with a universal set Volume 10 of the cahiers du centre de logique Academia Louvain-laNeuve(Belgium).
[6] Hajnal, A. \& Hamburger, P. (1999). Set Theory London Mathematical Society Student Texts 48, Camb. Univ. Press Cambridge (UK).
[7] Foot, R. (2004). Mirror matter-type dark matter Int. J. Mod. Phys. D13, 2161-2192, arXiv:astro-ph/0407623v1.
[8] Okun, B. (2007). Mirror particles and mirror matter: 50 years of speculation and search Physics-Uspekhi 50(4) 380-391, arXiv:hep-ph/0606202v2.
[9] Foot, R. (2007) Mirror dark matter arXiv:hep-ph/07062694v1.
[10] Lee, T.D. \& Yang, C.N. (1956). Question of Partity conservation in weak interaction Phys. Rev.104(1), 254-258.
[11] Ambler, E., Hayward, R.W., Hopes, D.D., Hudson, R.R., \& Wu, C.S. (1956). Experimental test of parity conservation in beta decay Phys. Rev.105, 1413-1414.

