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Probability and quantum foundation

J.F. Geurdes

Abstract: A classical probabilistics explanation for a typical quantum effect
in Hardy’s paradox is demonstrated.

1. Classical probability

The common claim is that a classical probability triple, (Ω,F, P ) cannot explain
quantum effects. Here the sample space Ω is any non-empty set. The σ-field, F is
obtained from the set of all subsets, P(Ω) = 2Ω, of Ω. F is called a σ-field [1] if,
(i) Ω ∈ F, (ii) E ∈ F ⇒ Ec = (Ω − E) ∈ F, (iii) E,F, ... ∈ F ⇒ E ∪ F ∪ .... ∈ F.
The triple is completed with a probability measure P , such that, (∀ : X ∈ F) (0 ≤
P (X) ≤ 1), P (Ω) = 1.

2. Pre-measurement characteristics, numerals and algebra

Let us inspect the possibilities of classical probability for Hardy’s paradox [2] where
quantum particles like electron and positron can be measured after mutual anni-
hilation. This appears to reject the possibility of pre-measurement characteristics
[3].

Apart from zero, unity and two the numerals of von Neuman and of Zermelo [4]
are disjoint. This fact may represent mutual exclusion of electron and positron. We
have, D0 = C0 = ∅. Von Neuman numerals are (n = 0, 1, 2, 3, ...)

Cn+1 = {C0, C1, ....., Cn} .(1)

Hence, C1 = {∅}, C2 = {∅, {∅}}, C3 = {∅, {∅} , {∅, {∅}}}, etc.
Zermelo’s system is

Dn+1 = {Dn} .(2)

Hence, D1 = {∅}, D2 = {{∅}}, D3 = {{{∅}}}, etc.
We establish mutual exclusion (annihilation) with C3, modeling particle 1 and

D3 modeling particle 2, for instance, as C3 ∩D3 = ∅.
The sample space equals Ω = C3 ∪D3, or

Ω = {∅, {∅} , {∅, {∅}} , {{∅}}} .(3)

This entails the σ-field F = P(Ω) = 2Ω. Explicitly:

F = {Ω, ∅, {∅} , {∅, {∅}} , {∅, {∅, {∅}}} , {∅, {{∅}}} , {{∅} , {∅, {∅}}} , {{∅} , {{∅}}}} ∪
{{{∅, {∅}} , {{∅}}} , {∅, {∅} , {∅, {∅}}} , {∅, {∅} , {{∅}}} , {{∅} , {∅, {∅}} , {{∅}}}} ∪
{{∅, {∅, {∅}} , {{∅}}} , {{∅}} , {{∅, {∅}}} , {{{∅}}}}

Note, D3, C3 ∈ F. The probability measure for Ω is P (X) = |X|/|Ω|, with, |X| the
cardinality of X, i.e. P ∼ Uniform(Ω). (Ω,F, P ) establishes classical probability.
Finally, let us introduce the ’union of a set’ [5], [6] operation,

∪Z = {x|(∃ : y ∈ Z)(x ∈ y)}(4)
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3. Application to Hardy’s physics

For set A = {C2} and B = D3 we see A ⊂ C = C3 and B = D = D3, hence,
B ⊂ D3. Obviously, A∩B = ∅. The A and B represent disjoint parts of the electron
and positron. Now, C2 ∈ A and that means, {∅, {∅}} ∈ A. Hence (eq. 4), x = ∅
and x = {∅} in C2 giving ∪A = C2 = {∅, {∅}} ∈ F. Identically, D2 ∈ B = D3.
Hence, x = {∅} = D1, such that ∪B = D2 = {{∅}} ∈ F. Now, C2 ∩ D2 =
{{∅}} ⇒ P (C2 ∩ D2) 6= 0. There exist subsets of C3 and D3 that, after taking
the union, allows for simultaneous probability 6= 0. Hence, classical probability
can do something similar to quantum mechanics if the ∪ on disjoint (sub)sets in
annihilation processes is physical.

4. Conclusion

A classical probabilistics explanation for a typical quantum behavior, similar to
tunneling, has been found. If ∪ cannot be excluded from physics it may repre-
sent a quantum physical process and establishes a classical explanation. A possible
physical picture for ∪ can perhaps be associated to a ’dark’ mirror-matter sector
[7], [8], [9] that may arise as a consequence of the experimentally established weak
interaction parity non-invariance [10], [11].
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