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Probability and quantum foundation

J.F. Geurdes

Abstract: A classical probabilistics explanation for a typical quantum effect
in Hardy’s paradox is demonstrated.

1. Classical probability

The common claim is that a classical probability triple, (Q, F, P) cannot explain
quantum effects. Here the sample space 2 is any non-empty set. The o-field, F is
obtained from the set of all subsets, P(Q) = 2, of Q. F is called a o-field [1] if,
i)QeF, (i) FeF=E‘=(Q—-FE)ecF, (i) E,F,..¢cF=FEUFU..€cF.
The triple is completed with a probability measure P, such that, (V: X € F) (0 <
P(X)<1), P(Q)=1.

2. Pre-measurement characteristics, numerals and algebra

Let us inspect the possibilities of classical probability for Hardy’s paradox [2] where
quantum particles like electron and positron can be measured after mutual anni-
hilation. This appears to reject the possibility of pre-measurement characteristics
[3].

Apart from zero, unity and two the numerals of von Neuman and of Zermelo [4]
are disjoint. This fact may represent mutual exclusion of electron and positron. We
have, Dy = Cy = (). Von Neuman numerals are (n =0,1,2,3,...)

(1) Cn+1 - {C(),Cl, ..... ,Cn}
Hence, C; = {0}, Cy = {0,{0}}, C3 = {0, {0}, {0, {0}}}, ete.

Zermelo’s system is
(2) Dpy1 = {Dn}

Hence, D1 = {0}, Dy = {{0}}, D3 = {{{0}}}, etec.

We establish mutual exclusion (annihilation) with C3, modeling particle 1 and
D3 modeling particle 2, for instance, as C3 N D3 = 0.

The sample space equals 2 = C3 U D3, or

3) Q={0,{0},{0,{0}}, {{0}}}.
This entails the o-field F = P(Q) = 2. Explicitly:

F = {Q,0,{0},{0,{0}},{0,{0,{0}}}, {0, {{0}}} , {{0} . {0, {0}}} , {{0} , {{0}}} } U
{10,403}, ({033}, {0, {0} , {0, {033} , {0, {0} , {{0}}}, {0}, {0, {0}}, {{0}}}} L
({00, {03}, {0313}, {{0}}, ({0, {03 }}, {{{0} }}}

Note, D3, C3 € F. The probability measure for Q is P(X) = | X|/|Q|, with, |X| the
cardinality of X, i.e. P ~ Uniform(Q). (Q,F, P) establishes classical probability.
Finally, let us introduce the 'union of a set’ [5], [6] operation,

(4) UZ ={z[(3:y € Z)(z € y)}
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3. Application to Hardy’s physics

For set A = {Cy} and B = D3 we see A C C = (3 and B = D = D3, hence,
B C Ds. Obviously, ANB = ). The A and B represent disjoint parts of the electron
and positron. Now, Cy € A and that means, {0, {0}} € A. Hence (eq. 4), z = 0
and = {0} in Cy giving UA = Cy = {0,{0}} € F. Identically, D, € B = Ds.
Hence, z = {0} = Dy, such that UB = Dy = {{0}} € F. Now, Cy N Dy =
{{0}} = P(Cy N D3) # 0. There exist subsets of C3 and D3 that, after taking
the union, allows for simultaneous probability # 0. Hence, classical probability
can do something similar to quantum mechanics if the U on disjoint (sub)sets in
annihilation processes is physical.

4. Conclusion

A classical probabilistics explanation for a typical quantum behavior, similar to
tunneling, has been found. If U cannot be excluded from physics it may repre-
sent a quantum physical process and establishes a classical explanation. A possible
physical picture for U can perhaps be associated to a ’dark’ mirror-matter sector
[7], [8], [9] that may arise as a consequence of the experimentally established weak
interaction parity non-invariance [10], [11].
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