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Abstract
In the paper we look into the epistemology of quantum theory. The starting point is

the previously established mathematical ambiguity. The perspective of our study is

the way that Schrödinger described Einstein’s idea of physics epistemology.

Namely, physical theory is a map with flags. Each flag must, according to Einstein

in Schrödinger’s representation, correspond to a physical reality and vice versa.

With the ambiguity transformed to quantum-like operators we are able to mimic

quantum theory. Therefore we have created little flags. The question is raised

whether nature itself is ambiguous. The created flags point at ambiguous nature. Or,

nature is not ambiguous and the ambiguity can be repaired in mathematics.

Keywords Quantum mimicry � Mathematical ambiguity � Semantics

of physical concepts (flags on the map)

1 Introduction

In the paper we will explore the structure of quantum theory to gain insight into the

foundation of this science. Because physics is an old and established natural science,

we claim that what we say here will affect chemistry, biology and fields of (social)

science (Haven and Khrennikov 2013) where quantum physics is applied.

Let us start with some very basic mathematics. Nobody can doubt the arithmetic

fact that, with the real number system at hand, 1 þ 1 ¼ ð1=2Þ þ ð3=2Þ. Furthermore

nobody can doubt the arithmetic fact that 3 � ð1=2Þ ¼ ð1=2Þ � 3. It also is an

elementary arithmetic fact that therefore y1þ1 ¼ y1=2y3=2 and that y3=2 ¼ ffyg3g1=2

and/or y3=2 ¼ ffyg1=2g3
because 3 � ð1=2Þ ¼ ð1=2Þ � 3.

To proceed to quantum mechanics. In that theory use is made of complex number

wave functions that finally lead to real numbers in Born’s probability interpretation.
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Therefore, we can make no objections to computations where complex numbers

occur as an intermediate result, as long as the final result is in the real numbers.

As a response to the discussion, described in e.g. Howard (1985), revolving

around Einstein’s criticism on the completeness of quantum mechanics (Einstein

et al. 1935) Bell wrote an important paper (Bell 1964). In short, Bell supposed that a

distinction can be made between entanglement caused by classical hidden variables

k and the quantum mechanical description of entanglement. His basic correlation

formula embraces all possible hidden variables models. In very general terms we

have:

Eða; bÞ ¼
Z
k2K

qðkÞAða; kÞBðb; kÞdk ð1Þ

In this formula, K is the set of values for the k. The a and b represent the unit length

parameter vectors to measure �1 spin. The qðkÞ represents the distribution of the

hidden variables k. The latter is positive definite and normalized,
R
k2K qðkÞ ¼ 1.

The Aða; kÞ and Bðb; kÞ represent the measurements of the spin on two distant spin

measuring instruments A and B. Bell, following EPR (Einstein et al. 1935) postu-

lated local hidden variables and assumed that k influences the outcome of mea-

surement. Ideally, Aða; kÞ ¼ �1 and Bðb; kÞ ¼ �1.

1.1 The Anti-axiom Ambiguity

In recent work we argued that Bell’s formula is the source of concrete mathematical

incompleteness. This work is supported by a complete counter model that can be

found in Geurdes et al. (2017). The incompleteness of Bell’s formula is

demonstrated by connecting each possible valid physics model under the umbrella

of Bell (1) to the anti-axiom; see e.g. (Yessenin-Volpin and Hennix 2001, p. 10).

Below a short version of the connection of the anti-axiom to each Bell model, is

presented.

Suppose we define a probability density for a single real variable x 2 R.

qXðxÞ ¼
�x; x 2 ½�1; 0�
þx; x 2 ½0; 1�
0; otherwise

8><
>: ð2Þ

We have, qxðxÞ� 0 for all x 2 R and
R
qxðxÞdx ¼ 1. Then let us also define a kind

of spin function: signðxÞ ¼ 1 when x� 0 and signðxÞ ¼ �1 when x\0. We use,

hðxÞ ¼ 1 for x� 0 and hðxÞ ¼ 0 for x\0 and, signðxÞ ¼ 2hðxÞ � 1 (Lighthill 1966;

Farasat 1996).

Please do subsequently note that Bell’s formula can always be transformed with

qðk; xÞ ! qðkÞqXðxÞ and e.g. A with Aða; k; xÞ ! Aða; kÞsignðxÞ. The qXðxÞ is

defined in (2). There is no physical reason that may disallow it to happen. The

reason is that there is no explicit physics theory behind the Bell formula. It can

therefore not be excluded from experiment that the evaluation of each Bell formula

is connected to the evaluation of the integral.
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E ¼
Z 1

�1

jxjsignðxÞdx ð3Þ

In Geurdes and Nagata (2019a, b) it was demonstrated that E is ambiguous. Key

element in the argument is jxjsignðxÞ ¼ x signðxÞ � signðxÞ in (3). In order to pro-

cess the signðxÞ � signðxÞ we note that e.g.

signðxÞ � signðxÞ ¼ fsignðxÞg1=2 � fsignðxÞg3=2 ð4Þ

is a possibility with complex numbers as intermediate result. There can be abso-

lutely no objections against the use of complex numbers as intermediate result. As

we already stated: 1 þ 1 ¼ 2 ¼ 1
2
þ 3

2
.

In the evaluation of fsignðxÞg3=2
we may employ two principles to compute E.

Let us study the following form

FðxÞ ¼ fsignðxÞg3=2 ð5Þ

Then, we can write down two principles

Principle 1 The evaluation of fsignðxÞg3=2
of the F(x) of (5) is based on first the

power 3 then the power 1/2.

Principle 2 The evaluation of fsignðxÞg3=2
of the F(x) of (5) is based on first the

power 1/2 then the power 3.

Note, furthermore, that signðxÞ can also be written as: exp 3ipð1 � hðxÞÞ½ �. From the

previous we can derive two conflicting forms for the E in (3). According to principle

1

E1 ¼
Z 0

�1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 3ipð1 � hðxÞÞ½ �

p
� fsignðxÞg1=2dx

þ
Z 1

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 3ipð1 � hðxÞÞ½ �

p
� fsignðxÞg1=2dx

¼
Z 0

�1

xði� iÞdxþ
Z 1

0

xdx ¼ 1

ð6Þ

and according to principle 2

E2 ¼
Z 0

�1

x exp
ip
2
ð1 � hðxÞÞ

� �� �3

�fsignðxÞg1=2dx

þ
Z 1

0

x exp
ip
2
ð1 � hðxÞÞ

� �� �3

�fsignðxÞg1=2dx

¼
Z 0

�1

xðð�iÞ � iÞdxþ
Z 1

0

xdx ¼ 0

ð7Þ

Therefore, the ambiguity
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signðxÞf g3
h i1=2

6� signðxÞf g1=2
h i3

ð8Þ

cannot be pushed aside in favour of a preferred particular view concerning Bell type

experiments.

Note that the anti-axiom shows from ð1=2Þ � 3 = 3 � ð1=2Þ. This implies

ambiguity in any physics experiment that follows Bell’s formula and inequalities

derived thereof. We also note that in defending Bell it is meaningless to fall back on

the computer challenge to reproduce the quantum correlation with a computer

simulation of the Bell experiment. The physics connection of the anti-axiom to the

formula destroys its meaning.

1.2 Epistemology Quantum Theory

In a letter from Schrödinger to Pauli, Schrödinger gives a description of Einstein’s

view of the epistemology of a physics theory. We quote from Howard (1990): ‘‘He

(Einstein) has . . .a map with little flags. To every real thing there must correspond
on the map a little flag, and vice versa’’. Let us employ this nice picture to find out

where in quantum theory is the place of the ambiguity. The question we raise here is

related to Wigner’s question why mathematics is so effective in describing nature

(Wigner 1959).

In order to perform our study, we try to mimic quantum behaviour with the use of

ambiguity based operators. Let us define for y 2 R the operators dP1=2 and cP3

dP1=2y ¼fyg1=2

cP3y ¼fyg3
ð9Þ

Note,

dP1=2ðcP3ð�1ÞÞ 6� cP3ðdP1=2ð�1ÞÞ: ð10Þ

The order of the operations is depicted with the brackets.

2 Quantum Mimicry

We ask the question whether it is possible that epistemological strange character-

istics of quantum theory actually arise from ambiguity in mathematics. In order to

study the role of the ambiguity in quantum theory, we aim to mimic some aspects of

it basing ourselves on the ambiguity. Let us start in the first place to define a wave

function for a time-of-observation interval 0	 t	 T and a space variable x 2 R,

with �1	 x	 1.

wðx; tÞ ¼ eitðhðxÞ � 1ÞC\ þ e�ithðxÞC[ ð11Þ

For the ease of the presentation we repeat the definition already used above. The h is

defined by a Heaviside function
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hðxÞ ¼
1; x� 0

0; x\0

�
ð12Þ

2.1 Normalization

The normalization reflects itself in the condition on the constants C\ and C[ . We

have,

jwðx; tÞj2 ¼ w
ðx; tÞwðx; tÞ ¼ jw\j2 þ jw[ j2 ð13Þ

With w\ ¼ eitC\ðhðxÞ � 1Þ and w[ ¼ e�itC[ hðxÞ. Equation (13) holds because

from (12) it follows, hðxÞðhðxÞ � 1Þ ¼ 0. From, (11) we may deduce that (x\0)

jw\j2 ¼ ðhðxÞ � 1Þ2jC\j2 ð14Þ

and so,

Z 1

�1

jw\j2dx ¼ jC\j2
Z 0

�1

dx ¼ jC\j2 ð15Þ

Furthermore, (x� 0)

jw[ j2 ¼ fhðxÞg2jC[ j2 ¼ jC[ j2 ð16Þ

Therefore,

Z 1

�1

jw[ j2dx ¼ jC[ j2
Z 1

0

dx ¼ jC[ j2 ð17Þ

and this together with (13) leads us to

Z 1

�1

jwðx; tÞj2dx ¼ jC\j2 þ jC[ j2 ¼ 1 ð18Þ

We can conclude that jC\j2 þ jC[ j2 ¼ 1 is the condition alluded to previously.

2.2 Hamiltonian

In the second place, let us define an operator Ĥðx; tÞ.

Ĥðx; tÞ ¼ ieitC\ðhðxÞ � 1ÞdP1=2
de�it=C\ð Þ þ hðxÞ ð19Þ

With Ĥ ¼ Ĥ\ þ Ĥ[ . In the previous formula especially the wide hat symbols need

some attention. The sequence

dP1=2
de�it=C\ð Þf ðx; tÞ

means: First multiply f(x, t) with e�it=C\. Second, take the square root of that

result. In symbols:
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dP1=2
de�it=C\ð Þf ðx; tÞ ¼ f e�it=C\

� 	
f ðx; tÞg1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�it=C\ð Þf ðx; tÞ

p

In a different form with cP3 this recipe gives

cP3
de�it=C\ð Þf ðx; tÞ ¼ f e�it=C\

� 	
f ðx; tÞg3

Let us subsequently suppose that x\0. Then the outcome of Ĥðx; tÞwðx; tÞ is

Ĥðx; tÞwðx; tÞ ¼ ieitC\ðhðxÞ � 1ÞdP1=2
de�it=C\ð ÞeitC\ðhðxÞ � 1Þ ð20Þ

Hence, in x\0,

Ĥðx; tÞwðx; tÞ ¼ ieitC\ � ð�1Þ
ffiffiffiffiffiffiffi
�1

p
¼ �wðx; tÞ ð21Þ

because for x\0, we have hðxÞ � 1 ¼ �1 and wðx; tÞ ¼ eitð�1ÞC\ � w\. Fur-

thermore, for x\0 we also have

i
o

ot
wðx; tÞ ¼ �wðx; tÞ ð22Þ

For x� 0 it subsequently is easy to acknowledge that Hðx; tÞwðx; tÞ ¼ wðx; tÞ.
Observe that w[ ¼ e�ithðxÞC[ which is w[ ¼ e�itC[ for x� 0. So,

Hðx; tÞw[ ¼ w[ . Moreover, i o
otw[ ¼ w[ . Hence, for T � t� 0 and �1	 x	 1

we may write the Schrödinger equation

Ĥðx; tÞwðx; tÞ ¼ i
o

ot
wðx; tÞ ð23Þ

and Ĥðx; tÞ such as defined in (20). A kind of Schrödinger equation is derived from

an ambiguity producing operator dP1=2 . Below, a similar form is obtained for D̂ in

x\0.

2.3 Hermiticity

Hermiticity of an operator is an indication for a possible physical existence of the

process measured with the operator. In the sense of Einstein; the flag stands where a

physics reality is. We refer to (Merzbacher 1970, p. 155). Therefore, it is required to

have

Z 1

�1

w
ðx; tÞĤðx; tÞwðx; tÞdx ¼
Z 1

�1

w
ðx; tÞĤðx; tÞwðx; tÞdx
� 



ð24Þ

For the clarity of presentation let us write Ĥ\ðx; tÞ for Ĥðx; tÞ and w\ðx; tÞ for

wðx; tÞ when x\0 and Ĥ[ ðx; tÞ for Ĥðx; tÞ and w[ ðx; tÞ for wðx; tÞ when x� 0.

Hence,
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Z 1

�1

w
ðx; tÞĤðx; tÞwðx; tÞdx
� 



¼
Z 0

�1

w

\ðx; tÞĤ\ðx; tÞw\ðx; tÞdx

� 



þ
Z 1

0

w

[ ðx; tÞĤ[ ðx; tÞw[ ðx; tÞdx

� 

 ð25Þ

Looking at the first term on the right hand of (25) we have for x\0

Z 0

�1

w

\ðx; tÞĤ\ðx; tÞw\ðx; tÞdx

� 



¼
Z 0

�1

Ĥ\ðx; tÞw\ðx; tÞ
� 	


w\ðx; tÞdx
ð26Þ

Because,

�w

\ðx; tÞ ¼ Ĥ\ðx; tÞw\ðx; tÞ

� 	
¼ Ĥ


\ðx; tÞw


\ðx; tÞ

and so,

Z 0

�1

w

\ðx; tÞĤ\ðx; tÞw\ðx; tÞdx

� 



¼ �
Z 0

�1

jw\ðx; tÞj2

¼
Z 0

�1

w

\ðx; tÞĤ\ðx; tÞw\ðx; tÞdx

ð27Þ

Hence in �1	 x	 0 the operator is Hermitian.

Looking at the second term on the right hand of (25) we see for x� 0

Z 1

0

w

[ ðx; tÞĤ[ ðx; tÞw[ ðx; tÞdx

� 



¼
Z 1

0

Ĥ[ ðx; tÞw[ ðx; tÞ
� 	


w[ ðx; tÞdx
ð28Þ

Because,

w

[ ðx; tÞ ¼ Ĥ[ ðx; tÞw[ ðx; tÞ

� 	
¼ Ĥ


[ ðx; tÞw


[ ðx; tÞ

it follows

Z 1

0

w

[ ðx; tÞĤ[ ðx; tÞw[ ðx; tÞdx

� 



¼
Z 1

0

jw[ ðx; tÞj2dx

¼
Z 1

0

w

[ ðx; tÞĤ[ ðx; tÞw[ ðx; tÞdx

ð29Þ

From the previous Eqs. (29) and (27) we can conclude that Ĥðx; tÞ is Hermitian.

This implies that a physical reality can exist behind the operator.
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2.4 Commutation

2.4.1 Principle forms Ĥ < and D̂<

Let us define an operator D̂\ for x\0, based on the cubic, as

D̂\ ¼ eitð�1ÞC\cP3
de�it=C\ð Þ ð30Þ

Note, for x\0, we have w\ðx; tÞ ¼ eitC\ðhðxÞ � 1Þ. Hence,

D̂\w\ðx; tÞ ¼ eitC\ð�1Þf�1g3 ¼ eitC\ ¼ �w\ðx; tÞ ð31Þ

Let us recall that x\0 implies from (19) that

Ĥ\ ¼ ieitC\ð�1ÞdP1=2
de�it=C\ð Þ ð32Þ

Because of (10) we may suspect that Ĥ\; D̂\
� �

6� 0. We also note that D̂\ is

Hermitian. With w\ and observing (31), an equivalent of Eq. (27)

Z 0

�1

w

\ðx; tÞD̂\ðx; tÞw\ðx; tÞdx

� 



¼ �
Z 0

�1

jw\ðx; tÞj2

¼
Z 0

�1

w

\ðx; tÞD̂\ðx; tÞw\ðx; tÞdx

ð33Þ

is valid for D̂\.

2.4.2 Operator Definition

Because the operators dP1=2 and cP3 are nonlinear, the introduction of a summation is

a tricky enterprise. Let us introduce the operator
P

. We only will need sum of two

terms. So,
P

ða; bÞ ¼ aþ b. Subsequently it is noted that cP3

P
ða; bÞ 6�

PcP3ða; bÞ,
i.e. ðaþ bÞ3 6� a3 þ b3. The operators are evaluated from right to left. So in e.g.PcP3ða; bÞ first we have cP3ða; bÞ ¼ ða3; b3Þ. Secondly, we haveP

ða3; b3Þ ¼ a3 þ b3. Let us subsequently look at the following definition

Ĥ\ðcÞ ¼
X

ðĤ\; cD̂\Þ ¼ Ĥ\ þ cD̂\ ð34Þ

If this operator works on w\ we see

X
ðĤ\; cD̂\Þw\ ¼

X
ðĤ\w\; cD̂\w\ÞX

ð�w\;�cw\ÞÞ ¼ w\

X
ð�1;�cÞ ¼ �w\ ð1 þ cÞ

ð35Þ

The last step in the previous equation is vital. D̂\ and
P

don’t commute.

Let us look at the commutator of the Hamiltonian of (34) and D̂\ i.e.
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Ĥ\ðcÞ; D̂\
� �

¼ Ĥ\ðcÞD̂\ � D̂\Ĥ\ðcÞ ð36Þ

We then have for the first term

Ĥ\ðcÞD̂\w\ ¼ Ĥ\ðcÞð�w\Þ ¼
X

ðĤ\; cD̂\Þð�w\Þ
¼

X
Ĥ\ð�w\Þ; cD̂\ð�w\Þ
� 	

¼
X

ðiw\; cw\Þ ¼ w\ ðiþ cÞ
ð37Þ

The term Ĥ\ð�w\Þ in the previous equation can explicitly be evaluated with,

Ĥ\ð�w\Þ ¼ ieitC\ hðxÞ � 1ð ÞdP1=2
de�it=C\ð ÞeitC\

¼ ieitC\ hðxÞ � 1ð ÞdP1=21 ¼ iw\

ð38Þ

In addition, the term cD̂\ð�w\Þ in (37) is explicitly

cD̂\ð�w\Þ ¼ceitð�1ÞC\cP3
de�it=C\ð ÞeitC\

¼ceitð�1ÞC\cP31 ¼ eitð�1ÞC\13 ¼ cw\

ð39Þ

The second term of (36) is D̂\Ĥ\ðcÞ. Looking at (35) this term results in

D̂\Ĥ\ðcÞw\ ¼ D̂\ð�ð1 þ cÞw\Þ ¼ ð1 þ cÞ3w\ ð40Þ

Here,

D̂\ð�ð1 þ cÞw\Þ ¼eitð�1ÞC\cP3
de�it=C\ð ÞeitC\ð1 þ cÞ

¼eitð�1ÞC\cP3ð1 þ cÞ ¼ ð1 þ cÞ3w\

ð41Þ

Note again, D̂\ and
P

do not commute. I.e. D̂\ð�ð1 þ cÞw\Þ 6�
D̂\ð�w\Þ þ D̂\ð�cw\Þ.

Hence, the commutator of (35) is

Ĥ\ðcÞ; D̂\
� �

w\ ¼ ðiþ cÞw\ � ð1 þ cÞ3w\ ð42Þ

This implies Ĥ\ðcÞ; D̂\
� �

w\ ¼ iw\ when c � �2:3247 with j�j � 1:823 � 10�7.

With � ¼ c� ð1 þ cÞ3
. In (35) the Hamiltonian equation is an eigenvalue equation

Ĥ\ðcÞw\ ¼ �ð1 þ cÞw\ ð43Þ

which is a Hermitian operator for eigenfunction w\.

2.4.3 Uncertainty

Now from the commutation Ĥ\ðcÞ; D̂\
� �

w\ ¼ iw\ it is possible to derive an

uncertainty relation noticing that w\ is not normalized but has
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Z 1

�1

dxjw\j2 ¼ jC\j2 ð44Þ

and jC\j2 finite, positive and real. If, similar to the quantum theory we are trying to

mimic, we write DH\ for the uncertainty in Ĥ\ðcÞ and DD\ for uncertainty in

D̂\, we have similar to quantum mechanics (Merzbacher 1970, p. 158 vv),

DH\DD\ � 1

2
jC\j ð45Þ

The jC\j from the previous equation arises from (15) and (44). The physical

measurements behind DH\ and DD\ are unknown. But that does not at all mean

that those flags on the map refer to nothing.

3 Conclusion and Discussion

The previous sections show that certain aspects of quantum theory can be construed

from the mathematical ambiguity. This may shine a different light on what is

generally called quantum weirdness. If we look at what Schrödinger wrote about

flags on a map representing for Einstein a 1-1 relation between theory and physical

entities, it can be observed that the mathematical ambiguity in the order of how bP1=2

and bP3 are operated on ð�1Þ i.e.

dP1=2ðcP3ð�1ÞÞ 6� cP3ðdP1=2ð�1ÞÞ ð46Þ

hides behind the uncertainty relation in (45). Note, ff�1g3g1=2 ¼ i and

ff�1g1=2g3 ¼ �i. The uncertainty for position and momentum measurement

(Merzbacher 1970) holds physical reality. We may, hence, wonder if the flags

construed inside the quantum formalism we mimic here, represent something in the

physical reality. Let us please observe that the connection of the concepts with the

to-be-explained phenomena in the foundation of science is not established fact. In

terms of the map-and-flags. Nobody knows if flags and reality are connected or

perhaps even that flags create reality or are introducing a reality on an other map.

The finding of the anti-axiom connection to each Bell experiment may appear as

a negative result. Nevertheless, to the author, the question raised here is interesting.

Is the ambiguity an ambiguity of nature or of our language to describe nature? The

former concurs with Wigner’s idea that mathematics effectively describes physical

nature. If the ambiguity in mathematics reflects an ambiguity of nature, then perhaps

there are ways to find this in experiment. The concept that the language is the

limiting factor concurs with Wittgenstein’s view of philosophy (Wittgenstein 1958,

lemma 119). There is actually no reason whatsoever why Wittgenstein’s lemma 119

might not be true for a theory of natural sciences as well. Another point we can raise

is the following. If successful application of mathematics in science is an important

trigger for the objectivity of mathematical knowledge Molinini (2019), then what is
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the ambiguity and its quantum theoretical application telling us about mathematical

knowledge?
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