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Abstract. This paper studies proof systems for the logics of super-strict implication

ST2–ST5, which correspond to C.I. Lewis’ systems S2–S5 freed of paradoxes of strict

implication. First, Hilbert-style axiomatic systems are introduced and shown to be sound

and complete by simulating STn in Sn and backsimulating Sn in STn, respectively (for

n = 2, . . . , 5). Next, G3-style labelled sequent calculi are investigated. It is shown that

these calculi have the good structural properties that are distinctive of G3-style calculi,

that they are sound and complete, and it is shown that the proof search for G3.ST2 is

terminating and therefore the logic is decidable.
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1. Introduction

The goal of this paper is to develop proof systems for normal and non-normal
logics of super-strict implication (SSI) �. SSI is a refinement of C.I. Lewis’
strict implication (�) that has been studied in [4,5]. The idea behind SSI is
to free strict implication from its paradoxes. For this, A � B is defined as
true whenever A � B is true and, moreover, A is possible.1

Thus the formulas of Antilogical Antecedent (AA) and Tautological Con-
sequent (TC)

⊥ � B (AA) A � � (TC)

All authors have contributed equally to this work.
1 The idea of strengthening strict implication in this way goes back to Priest [21].

Constructions similar to � were also studied in [32,33], where � is analysed in terms of a

dynamic semantics and �A is treated as a presupposition; and in [22,23,26] (see further

references therein) and [7], where � is analysed as a variably strict conditional > and �A
as the corresponding outer modality ¬(A > ⊥). Compare [27,34] for related accounts.
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are both invalid for �. These are also known as the first and second paradox
of strict implication.

By avoiding these paradoxes, � provides a better explication of
entailment-related uses of implication than �. In this respect, we agree with
connexivists [15] and relevantists [1,29], but we disagree with Lewis [11, p.
250], who proposed a formal argument—his so-called independent proof —for
the validity of ⊥ � B. His argument is based on accepting the following in-
ferential principles: ∧-elimination (∧E), ∨-introduction (∨I), and disjunctive
syllogism (DS). These principles are all the ingredients needed for ex falso
quodlibet (i.e., the derivation of an arbitrary formula B from a contradiction
A ∧ ¬A):

A ∧ ¬A∧E
A∨I

A ∨ B
A ∧ ¬A ∧E¬A

DS
B

Moreover, if we take � to be an object language representation of the un-
derlying derivability relation—i.e., if we assume the deduction theorem for
�—then we must accept the following version of the first paradox of strict
implication: (A ∧ ¬A) � B. Neither connexivists nor relevantists are con-
vinced by this argument: they reject ex falso quodlibet and at least one of
the principles used in Lewis’ proof. In particular, connexivists usually reject
∧E or correspondingly the object-language law of Simplification ‘(A ∧ B)
implies A’ (SI)2; relevantists usually reject DS.

The rejection of ex falso quodlibet, be it based on the rejection of ∧E or
of DS, involves a major departure from classical logic since it means that at
least one of ∧, ∨, and ¬ does not satisfy its Boolean semantics.

We believe this is too high a price to pay. We rather prefer to supple-
ment classical propositional logic with an implication connective � aimed
at expressing entailment-related uses of implication, in the same spirit as
Lewis’ �. It turns out that for � the paradoxes of � become invalid, since
the antecedent ⊥ of the first paradox (AA) is impossible and the antecedent
A of the second paradox (TC) is not always possible. What becomes valid,
instead, is the negation of the first paradox, ¬(⊥ � B) (No Antilogical An-
tecedent, NAA), and its symmetric counterpart, ¬(B � ⊥) (No Antilogical
Consequent, NAC). Furthermore, � allows us to express � as well as the

2 Routley takes the failure of simplification as a distinctive feature of connexive logics,
but this is not so since, e.g., Wansing’s system C rejects DS but accepts simplification and
∧E, cf. [16].
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unary modal operators � and � as follows: �A = (� � A), �A = ¬ �¬A,
A � B = �(A ⊃ B), where ⊃ stands for the material implication. We show
that logics of SSI preserve all validities of a semantics for � in the following
weak sense: if A � B is valid (in a semantics for �) then, �A ⊃ (A � B)
is valid (in the corresponding semantics for �), see Corollary 7. As a con-
sequence, logics of � can be seen as logics of � freed from paradoxical
instances.

Moreover, as shown in [4,5], both normal and non-normal logics for � are
Boethian logics:3 � is a non-symmetric implication validating both Aristo-
tle’s Thesis (AT) and weak Boethius’ Thesis (wBT):

¬(A � ¬A) ¬(¬A � A) (AT)

(A � B) ⊃ ¬(A � ¬B) (A � ¬B) ⊃ ¬(A � B) (wBT)

But the logics of SSI are not fully connexive, since strong Boethius’ Thesis
BT (obtained by replacing ⊃ with � in wBT), does not hold. In this re-
spect, � is similar to Pizzi’s consequential implication [20]. As the latter, �
is motivated by the rejection of AA, TC, and the acceptance of the Boethian
connexive principles AT and wBT. And as for consequential implication, the
stronger BT fails for �. However, � differs from consequential implication in
crucial aspects. First, by the way in which the strict implication is strength-
ened. Consequential implication, A→ B, strengthens the strict implication
by imposing that both �B ⊃ �A and � B ⊃ � A are true, whereas super-
strict implication only imposes that � A is true. Second, by the reason for
which adding BT is problematic (see Propositions 3.18 and 3.19 from [20]
and our Section 5.3).

In previous work, logics for � were studied mostly from a semantical
perspective: [4] introduced relational semantics for normal logics of � and
[5] for some non-normal ones. The only proof systems introduced were la-
belled sequent calculi for normal logics of � [4], but no proof system has
been introduced yet for non-normal ones and no fully object-language ax-
iomatisation of these logics, be it normal or non-normal has been provided.
This paper fills these gaps by introducing a sound and complete Hilbert-
style axiomatisation of the logics of � for semantics corresponding to Lewis’
systems S2–S5, as well as labelled sequent calculus for each of these logics.4

3In [4,5] logics of SSI were called weakly connexive. The more appropriate label
Boethian was suggested by Claudio Pizzi.

4 We avoid considering the weaker logic corresponding to Lewis’ S1, for the sake of
brevity.
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The underlying idea is this: We already know that (non-normal) relational
models provide a semantics for Lewis’s non-normal logic S2 for �, the logic
of all formulas in the language L� that are valid in reflexive non-normal
relational models. Furthermore, via the standard modal translation of � in
terms of � (defining A � B as �(A ⊃ B)), Lemmon [9] provided a modal
axiomatisation of S2. In this paper we introduce an axiomatic system for the
companion super-strict implication logic ST2 of all formulas in the language
L� that are valid in reflexive non-normal relational models (now used to
interpret �). For the completeness results, we rely on the fact that �, �,
and � are expressible in terms of � and vice-versa: this allows us to use
the method of translation and backtranslation developed and used by one of
the authors to axiomatise many different conditional logics [23–25]. That is,
we prove the Soundness Theorem of S2 with respect to the class of reflexive
non-normal relational models by simulating the system ST2 in the system
S2. Vice versa, Completeness is obtained by backsimulating S2 in ST2.

Based on this ground result, we further consider axiomatic extensions
of ST2. More precisely, we provide axiomatic systems for the logics ST3,
ST4 and ST5, the logics of valid L�-formulas over the reflexive non-normal
relational models which also are, respectively, transitive, transitive and nor-
mal, normal and with an equivalence relation as accessibility relation. The
corresponding Soundness and Completeness results are proved similarly via
simulation and backsimulation methods using respectively the known results
for the corresponding systems of strict implication S3, S4 and S5.

Finally, we introduce the labelled calculi G3.STn for the logics STn (2 ≤
n ≤ 5). We prove that such calculi have good structural properties: height-
preserving admissibility of the rules of weakening and contraction, syntactic
admissiblity of cut, and the height-preserving invertibility of all rules. We
also provide corresponding Soundness and Completeness results. We prove
Completeness by simulating the axiomatic system for STn within the cal-
culus G3.STn. Finally, we prove the decidability of G3.ST2 by showing the
termination of proof-search and, as a consequence, we prove that models for
ST2 have the finite model property.

The rest of the paper is organised as follows: Section 2 presents the syn-
tax and semantics for logics of � and of � and shows that they are inter-
translatable. In Section 3 we discuss valid and invalid principles for �, and
introduce an axiomatisation of ST2, which we then prove sound and com-
plete in Section 4, as explained above. Section 5 does the same for the logics
ST3–ST5, and discusses the problem of adding BT to normal systems. Sec-
tion 6 presents labelled sequent calculi G3.ST2–G3.ST5. Section 7 shows that
these calculi have good structural properties and Section 8 proves that they
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Figure 1. Relations between the systems of strict implication (front

plane) super-strict implication (two back planes) and the properties of

the accessibility relation (r = reflexive, t = transitive, s = symmetric) in

normal (top plane) and non-normal (bottom plane) relational semantics

are sound and complete and that G3.ST2 is decidable. Finally, Appendix A
shows that the deduction theorem for material implication holds in ST2 and
S2. We shall use the deduction theorem in our proofs throughout the paper.

The paper thus investigates two kinds of proof systems for super-strict
implication: the Hilbert-style systems ST2–ST5 (Sections 2–5) and the la-
belled sequent calculi G3.ST2–G3.ST5 (Sections 6–8). These are indepen-
dent of each other, and a reader interested in only one of them can read the
relevant part without reference to the other part. Nonetheless, we will show
some interesting interrelations between the two kinds of proof systems: the
Hilbert-style systems will be used in one proof of the completeness of the
labelled calculi (Theorem 39) and the latter will be used in one proof of the
soundness of the former (Corrolary 40) (Figure 1).

2. Syntax and Semantics

This Section introduces the syntax and semantics for super-strict implication
and states the inter-translatability with strict implication.
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2.1. Syntax

The language L� of modal logics and the language L� for logics of super-
strict implication are generated by the following grammars (where p is in
some non-empty set of sentential variables P, which for simplicity we assume
at most countable):

A:= p | ¬A | A ∧ A | A ∨ A | A ⊃ A | �A (L�)
A:=p | ¬A | A ∧ A | A ∨ A | A ⊃ A | A � A (L�)

Parentheses follow the usual conventions and the modal operators � and �
bind lighter than all other operators. Capital roman letters will be used as
meta-variables for formulas (of the appropriate language). The weight of a
formula, w(A), is given by the number of binary operators occurring therein.
For both languages, we denote by � an arbitrary propositional tautology
(for example p ∨ ¬p); ⊥ = ¬�; and (A ≡ B) = (A ⊃ B) ∧ (B ⊃ A). In
the language L�, we define �A = ¬ �¬A. In the language L�, we use the
following abbreviation for the inner modality �A = (��A), the dual being
� = ¬ �¬. Strict implication (�) is defined in L� as A � B = �(A ⊃ B)

and in L� as A � B = � � (A ⊃ B) = �(A ⊃ B).5 The formulas that L�
and L� have in common constitute the classical propositional language L
(over P). A formula from L will be called classical.

2.2. Semantics

We here present Kripke’s semantics for non-normal logics. This semantics
is based on the fact that non-normal systems, such as S2 and S3, can be
consistently extended with the axiom � � A: we can have models with
accessible points where every formula, ⊥ included, is possible. Kripke used
this fact to extend the well-known relational semantics for normal modalities
with so-called non-normal points where every formula is possible and no
formula is necessary, see [2,8,31]. We use ℘(W ) to designate the powerset
of W and the long arrow notation f : X −→Y to designate that f is a total
function from X to Y .

Definition 1. (Models) A relational model M is a tuple 〈W,R,N, V 〉,
where W �= ∅, R is a reflexive relation over W , N ⊆ W , and V : P −→℘(W ).

W are the worlds, to be denoted by w, v, u, . . .. R is the accessibility relation,
and we write wRv for v being accessible from w. Reflexivity means that

5Another option is the more complicated A � B = ¬(¬(A ⊃ B) � ¬(A ⊃ B)).
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all worlds are accessible to themselves (wRw). N are the normal worlds
with respect to which truth in a model and validity will be defined. V is a
usual valuation function, assigning to each propositional variable p a set of
worlds V (p)—the worlds where p is true (also called p-worlds, for short). Our
relational models are sometimes also called reflexive non-normal relational
models.

The models for L� and L� are in fact the same. However, we need to
distinguish the model relation for L�, designated by �, from the model
relation for L�, designated by �� (when necessary).

Definition 2. Truth in a world in a model for L� is defined standardly for
sentential variables and for the classical connectives ¬, ∧, ∨, and ⊃; for �
we have:

w � � A iff w ∈ N and ∀v ∈ W (wRv implies v � A)

Definition 3. Truth in a world in a model for L� is defined as in a model
for L� for classical connectives and it is defined as follows for �:

w �� A�B iff (i) w ∈ N and
(ii) ∃v ∈ W (wRv and v �� A) and
(iii) ∀v ∈ W (wRv implies v �� A ⊃ B )

A formula is true in a model if it is true in all normal points of that
model; it is valid in a class of models whenever it is true in all models in
that class. A logic (over L� or L�) is the set of all formulas that are valid
in some class of models. In particular, we consider the following logics over
L� (L�):

• S2 (ST2) is the set of formulas that are valid in the class of all models;

• S3 (ST3) is the set of formulas that are valid in the class of all transitive
models, where a model is transitive if ∀w, v, u ∈ W (wRv & vRu ⊃ wRu)

• KT (STT) is the set of formulas that are valid in the class of all normal
models, where a model is normal if N = W ;

• S4 (ST4) is the set of formulas that are valid in the class of all normal
transitive models;

• S5 (ST5) is the set of formulas that are valid in the class of all normal,
transitive and symmetric models, where a model is symmetric if ∀w, v ∈
W (wRv implies vRw).
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2.3. Intertranslatability

We are now going to show that logics over L� are intertranslatable with
logics over L� by means of two truth-preserving translations ◦ and •.

Definition 4. The translation ◦ : L� −→ L� is defined by

1. p◦ = p

2. (¬A)◦ = ¬A◦

3. (A � B)◦ = (A◦ � B◦) for � ∈ {∧,∨,⊃}
4. (A�B)◦ = �(A◦ ⊃ B◦) ∧ � A◦

We call A◦ the translate of A. When A is classical, we have A◦ = A. In
particular �◦ = � and ⊥◦ = ⊥.

Definition 5. The backtranslation • : L� −→ L� is defined by

1. p• = p

2. (¬A)• = ¬A•

3. (A � B)• = (A• � B•) for � ∈ {∧,∨,⊃}
4. (�A)• = (��A•)

We call A• the backtranslate of A. The backtranslation uses the fact that
the models are reflexive and hence serial. ��A (our �A) expresses not
only �A but also � �.6 As before, when A is classical, we have A• = A. In
particular �• = � and ⊥• = ⊥.

The following shows that the translation is semantically well behaved.
That is, C and C◦ express the same proposition:

Lemma 6. For all C ∈ L�, we have w �� C iff w � C◦.

Proof. By induction on the complexity of the formula. It suffices to verify
C = (A�B), assuming the property holds for A,B (IH).

w ��(A�B) iff w ∈ N & ∃v ∈ W (wRv & v �� A)
& ∀v ∈ W (wRv implies v �� A ⊃ B) ��

iff w ∈ N & ¬∀v ∈ W (wRv implies v �� A)
& w ∈ N & ∀v ∈ W (wRv implies v �� A or v �� B)

iff w ∈ N & ¬∀v ∈ W (wRv implies v � A◦)
& w ∈ N & ∀v ∈ W (wRv implies v � A◦ or v � B◦) IH

iff w � �(A◦ ⊃ B◦) ∧ ¬�¬A◦ �
iff w �(A�B)◦ ◦

6For non-serial models, we would need (�A)• = ¬(¬A• � ¬A•).
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A similar fact can be proven for •, but we won’t need it.
From the previous Lemma, we obtain our weak validity preservation re-

sult:

Corollary 7. If � A◦ � B◦ then �� � A ⊃ (A�B).

Proof. Suppose � A◦ � B◦. That is � �(A◦ ⊃ B◦) by definition of � in
L�. Consider an arbitrary normal world w of some reflexive non-normal
relational model, and assume w �� �A. That is, in w and according to ��,
we have ¬(��¬A) by definition of �. Thus, in w but according to �, we
obtain ¬( ��∧�(� ⊃ ¬A◦)) by Lemma 6. Hence �⊥∨¬�¬A◦. And thus
(since w is normal) ¬ �¬A◦, that is � A◦. Thus overall w � �A◦ ∧�(A◦ ⊃
B◦), so that w �(A�B)◦. Hence by Lemma 6 again, w �� A�B. Since we
proved � A ⊃ (A�B) for an aribtrary normal world w, we can conclude
�� �A ⊃ (A�B).

3. Axiomatic Systems for S2 and ST2

We are now going to introduce axiomatic systems for the logics S2 and ST2.
As usual, an axiomatic derivation from the set of assumptions Γ is a sequence
of formulas such that each formula is an axiom or a member of Γ or it follows
from formulas preceding it by a rule of the system. We use Γ �S A to say
that the formula A is derivable from the set of assumptions Γ in the system
S; we omit the subscript whenever the system is clear from the context. A
theorem is a formula derivable from the empty set of assumptions; we write
�S A when A is a theorem of the system S.

3.1. Lemmon’s Axiomatisation

The following Hilbert-style axiomatisation of S2 was given by Lemmon [9]:

Definition 8. (Lemmon’s axiomatisation of S2)

Axioms of S2

PT Classical propositional tautologies in the language L�
K �(A ⊃ B) ⊃ (�A ⊃ �B)

T �A ⊃ A

Rules of S2

MP If Γ � A and Γ � A ⊃ B then Γ � B

rN If A is an instance of one of the axioms, then � �A

BR If � �(A ⊃ B) then � �(�A ⊃ �B)
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K is also known as the Distribution axiom, T as the Truth axiom, MP is
Modus Ponens for ⊃, rN stands for restricted Necessitation, BR is Becker’s
rule. S2 was shown to be sound and complete for relational models in L�
[8].

3.2. Super-Strict Axiomatisation

By T* and K* we designate the axioms T and K written for �.
We can similarly ask for the logic of super-strict implication in relational

models (the super-strict companion ST2 to S2). We use a Hilbert-style ax-
iomatisation:

Definition 9. (axiomatisation of ST2)

Axioms of ST2

PT Classical propositional tautologies in L�
AT ¬(A� ¬A) Aristotle’s Thesis

PA (A�B) ⊃ �A Possible Antecedent

INC (A�B) ⊃ �(A ⊃ B) Inclusion

AND (A�B) ∧ (A�C) ⊃ (A�B ∧ C) Conjunction of Consequents

TID � � � Tautological ID

SPRES �(A ⊃ B) ∧ �A ⊃ (A�B) Strong Preservation

T* �A ⊃ A Truth axiom for �
Rules of ST2

MP If Γ � A and Γ � A ⊃ B, Modus Ponens

then Γ � B

rLLE If a ≡ B is an instance of PT, Restricted Left Logical Equivalence

then � (A�C) ⊃ (B �C)

rRW If A ⊃ B is an instance of PT, Restricted Right Weakening

then � (C �A) ⊃ (C �B)

BR* If � �(A ⊃ B) Becker’s rule

then � �(�A ⊃ �B)

rN* If A is an instance of restricted Necessitation

T*, K*, PA, INC or SPRES,

then � �A

AT is Aristotle’s Thesis. PA expresses that the conditional implies the pos-
sibility of the antecedent. INC has the object language form of a postulate
known as Inclusion in belief revision theory and expresses that the condi-
tional implies the strict conditional. SPRES is a form of Preservation called
Strong Preservation (in belief revision theory). Together with PA and INC,
this expresses the definition of � in terms of �. AND is a standard axiom
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of conditional logic which expresses that the consequent of a conditional is
closed under conjunction. TID is the identity for �, but more importantly
it expresses that � is possible (in the sense of �). T* expresses that the in-
ner modality implies truth. The rules rLLE and rRW are restricted versions
of Left Logical Equivalence and Right Weakening, which are normal rules of
conditional logic. BR* can be seen as the translate of the rule BR.7 The rule
rN* is again restricted, to the instances of T*, K*, PA, INC or SPRES. The
restriction does not mean that the formulas to which rN* can be applied
need to be axioms, they only need to be of a certain form.8 The notion of a
derivation is the same here as before.

3.3. Principles of Super-Strict Implication

Lemma 10. The following principles are invalid:

ID A�A Identity Conditional

C (A�B) ⊃ (¬B � ¬A) Contraposition

SA (A�C) ⊃ (A ∧ B �C) Strengthening the Antecedent

TC A� � Tautological Consequent

AA ⊥ �B Antilogical Antecedent

SI A ∧ B �A Simplification

CEM (A�B) ∨ (A� ¬B) Conditional Excluded Middle

BT (A�B) � ¬(A� ¬B) (strong) Boethius Thesis

S (A�B) ⊃ (B �A) Symmetry

Proof. To disprove the first eight principles, we use a frame (i.e., a model
without valuation) with a normal world w ∈ N such that R(w) = {w},
changing only the valuation for each principle.
ID. Let w �� ¬p. Then p � p is false in w, since there is no accessible p-world.
C. Assume w �� p ∧ q. Then p � q is true in w, but ¬q �¬p is false in w,
since there is no accessible ¬q-world.

7In non-serial frames we would need to use a modified version.
8Note that K* follows from rN* and T* (see Lemma 11). Observe also that we could

have restricted necessitation to all axioms of ST2 (and K*) except for TID, instead of
restricting it to T*, K*, PA, INC, and SPRES, cf. Lemma 34. We have chosen a more
minimal axiomatisation that is sufficient to prove completeness. Two other options are:
(1) to drop rN* and extend rRW for C = � to formulas � ⊃ X where X is an instance
of T*, K*, PA, INC and SPRES, or (2) drop rN* as well as PA, INC, and SPRES, and
adopt instead as additional axioms the boxed versions �Y where Y = T*, K*, PA, INC,
SPRES.
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SA. Assume w �� p ∧ ¬q ∧ r. Then p � r is true in w, but p ∧ q � r is false
in w, since there is no accessible world where p ∧ q is true.
TC. ⊥�� is false in w since there is no accessible ⊥-world.
AA. See TC.
SI. Let w � p ∧ ¬q. Then p ∧ q � p is false in w, since there is no accessible
p ∧ q-world.
CEM. Let w � ¬p∧ q. Then p � q is false since there is no accessible p-world,
and p �¬q is false for the same reason.
BT. As in ID—p � p is false in w, hence there is no accessible world where
p � p is true. Hence BT is false in w.
S. We extend the previous frame to R(w) = {w, v}. Let the valuation be
such that w �� p ∧ q and v �� ¬p ∧ q. Then we have p � q in w. But we do
not have q � p in w, since there is an accessible q-world which is not a p-wo-
rld.

ID is a standard principle of conditional logic—the axiom of Identity. C
is Contraposition, and SA is the often criticized Strengthening of the An-
tecedent. TC and AA are the paradoxes of strict implication Tautological
Consequent and Antilogical Antecedent, SI is Simplification, CEM is Condi-
tional Excluded Middle and equivalent to the converse of wBT (CwBT), BT
is strong Boethius Thesis, and S is Symmetry.

Apart from CEM, BT and S, all these principles are valid for strict im-
plication (replacing � by �). Since � invalidates TC and AA, it avoids the
paradoxes of strict implication. Since � invalidates SI, it shares the connex-
ivists’ doubts about C. I. Lewis’ independent proof. Since � invalidates S, it
can be thought of as a directional connective, as any implicative connective
should be. As David Lewis’ counterfactual, � invalidates CEM, and thus dif-
fers essentially from Stalnaker’s conditional. The invalidity of BT is largely
due to the fact that BT would imply the possibility of any A�B, and hence
in particular of A� ⊥, which is always false (see below). The remaining in-
validities may be motivated as follows: The reaction of the non-monotonic
reasoning tradition to strict implication was not that much to criticise TC
and AA, but rather SA. Indeed, SA was rejected by the early proponents of
this tradition—Stalnaker [30] and Lewis [12]. These authors also endorsed
unrestricted Right Weakening (RW) as well as Identity (ID), and thus also
Simplification (SI). As a consequence, they needed to reject Contraposition
(since C + RW implies SA). Super-strict implication shares rejection of SA
and C with these accounts.9 Super-strict implication however differs from

9C holds for strict implication, as well as for the so-called evidential conditional [3,28].
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the non-monotonic reasoning tradition and variably strict conditionals in
that ID is invalid and that RW is sensibly restricted, so that the invalidity
of SI may equally be explained from the invalidity of ID or the restricted
use of RW.

Lemma 11. The following principles are derivable:

K* �(A ⊃ B) ⊃ (�A ⊃ �B) Distribution for �
MI (A�B) ⊃ (A ⊃ B) implied Material Implication

MP(�) A,A�B � B Modus Ponens for �
NAA ¬(⊥ �B) No Antilogical Antecedent

NAC ¬(A� ⊥) No Antilogical consequent

wBT (A�B) ⊃ ¬(A� ¬B) weak Boethius Thesis

C* � ¬B ∧ (A�B) ⊃ (¬B � ¬A) Restricted Contraposition

�ID �A ⊃ (A�A) Possibility to ID

ID � (A�A) ⊃ �A ID to Possibility

DW (A�B) ⊃ (A�B ∨ C) Disjunctive weakening

OR (A�C) ∧ (B �C) ⊃ (A ∨ B �C) Disjunction of Antecedents

RM (A�C) ∧ ¬(A� ¬B) ⊃ (A ∧ B �C) Rational Monotonicity

CM (A�C) ∧ (A�B) ⊃ (A ∧ B �C) Cautious Monotonicity

wTR (A�B) ∧ (B �C) ⊃ (A�C) weak Transitivity

CTR (A�B) ∧ (A ∧ B �C) ⊃ (A�C) Cumulative Transitivity

Proof. We use the deduction theorem for ⊃ in ST2 (Appendix, Lemma 52),
MP and other classical reasoning, often without saying (e.g. ⊃ contraposes
and is transitive).
K*. Applying rN* to a formula of form K*, we obtain �(�(A ⊃ B) ⊃
(�A ⊃ �B)). By T* we thus get �(A ⊃ B) ⊃ (�A ⊃ �B). This is K*.
MI. Follows from INC and T*.
MP(�). Follows from MI.
NAA. � � by TID. That is ¬ � ⊥. Therefore ¬(⊥ � B) by contraposing
PA.
NAC. ⊥ ⊃ ¬A is PT. Thus (A�⊥) ⊃ (A�¬A) by rRW. Since ⊃ con-
traposes, we obtain ¬(A�¬A) ⊃ ¬(A�⊥). Yet ¬(A�¬A) by AT. Hence
¬(A �⊥).
wBT. Suppose for reductio that A�B and A � ¬B. Hence A�⊥ by AND.
This contradicts NAC.
C*. Suppose � ¬B and A� B. The second implies �(A ⊃ B) by INC. Thus
�(¬B ⊃ ¬A) by rRW. Together with � ¬B this yields ¬B �¬A by SPRES.
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�ID. Suppose � A. ��� by TID. But � ⊃ (A ⊃ A) is PT. Hence ��(A ⊃
A) by rRW. That is �(A ⊃ A). Together with � A, this yields A�A by
SPRES.
ID �. By PA.
DW. B ⊃ B ∨ C is PT. Thus (A�B) ⊃ (A�B ∨ C) by rRW.
OR. Suppose A�C and B �C. From the first we get �(A ⊃ C) by INC,
and �A by PA, thus �(A ∨ B): By rRW (��¬(A ∨ B)) ⊃ (��¬A).
Since � A, i.e., ¬(��¬A), we obtain ¬(��¬(A∨ B)). That is �(A∨ B).
Similarly from B �C we obtain �(B ⊃ C). This together with �(A ⊃ C)
yields �(A∨B ⊃ C) by AND and rRW. Together with �(A∨B) we obtain
A ∨ B �C by SPRES.
RM. Suppose A�C and ¬(A�¬B). From the first we obtain � A and
�(A ⊃ C) (cf. the proof for OR). From �(A ⊃ C) we obtain �(A ∧ B ⊃
C) by rRW. Contraposing SPRES, from ¬(A�¬B) we obtain ¬ �A or
¬ �(A ⊃ ¬B). Since � A, we must have ¬ �(A ⊃ ¬B). That is �(A ∧ B).
This together with �(A ∧ B ⊃ C) delivers A ∧ B �C by SPRES.
CM. Suppose A� B and A� C. From the first, we get ¬(A�¬B) by wBT.
Together with A� C this yields A ∧ B �C by RM.
wTR. Suppose A�B and B �C. Thus �A, �(A ⊃ B) and �(B ⊃ C).
The two last yield �(A ⊃ C) by AND and rRW. Together with �A this
yields A�C.
CTR. Assume A�B and A ∧ B �C. Thus �(A ⊃ B), and �(A ∧ B ⊃ C)
by INC. Hence �(A ⊃ C) by AND and rRW. From A� B we also obtain
� A. Together with �(A ⊃ C), this yields A � C by SPRES.

Due to the soundness result proven below, these derivabilities are validi-
ties, and a standard semantic proof is possible as well (left to the reader).10

K* is K for �, MI stands for the fact that the conditional (here �)
implies Material Implication and MP(�) stands for Modus Ponens for �.
NAA stands for No Antilogical Antecedent, NAC is the reverse and stands for
No Antilogical Consequent, wBT is weak Boethius Thesis, C* is a restricted
form of Contraposition (C), � ID restricts Identity (ID), together with
ID � this says that the identity conditional expresses the inner possibility.
OR, RM and CM are standard principles of non-monotonic or variably strict
conditionals, where OR is also known as Disjunction in the Antecedent,
RM stands for Rational Monotonicity, and CM for Cautious Monotonicitiy.

10 For example for MI: Suppose A�B is true in w. Thus by the defining clause (iii)
for all v ∈ W such that wRv we have that A ⊃ B is true in v. By reflexivity we obtain
that A ⊃ B is true in w.
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wTR is weak Transitivity, and CTR is known as Cumulative Transitivity.11

wTR is not to be confused with (strong) Transitivity (TR): (A�B) ∧ (B �
C) �(A�C).

By adopting NAA, the super-strict implication rejects the first paradox
of strict implication (AA) by accepting the negation,12 NAC also expresses
that there can be no impossible antecedent conditional. Indeed, A�⊥ usu-
ally expresses that A is impossible in terms of the outer modality. So that by
NAC, � has no outer modality. More importantly, adopting NAC—the hall-
mark of non-vacuism [23]—comes down to treating all impossible antecedent
conditionals as false. By wBT combined with AT, the logic of super-strict
implication is a Boethian logic, although it is not fully connexive. Interest-
ingly and contrary to strict implication, super-strict implication validates a
restricted version of RW (DW) without validating SA, since it invalidates
C. Finally, strong Transitivity (TR) is invalid for superstrict implication but
derivable for strict implication � in S3.

Due to OR, RM and CM, super-strict implication shares important sim-
ilarities with the non-monotonic reasoning tradition. Indeed, starting with
Stalnaker [30] and D. Lewis [12], this tradition adopted the latter two prin-
ciples as admissible restrictions of the problematic principle SA. The simi-
larity is best seen by considering an equivalent axiomatisation of ST2—call
it ST2′—where we replace SPRES by RM and �ID.13 ST2′ can be com-
pared to one of the most famous systems of (non-monotonic) conditional
logic – the system VW of D. Lewis [12]. This system can be axiomatised by
MP, the unrestricted versions LLE, RW, and the axioms PT, ID, OR, AND,
CM, RM, INC, T*.14 Thus the only difference is that ST2 has the restricted
versions rLLE, rRW, rN*, the restricted ID in the form of �ID and TID,
and that additionally PA and AT hold, and that OR and CM need not be
stated explicitly.

11 CTR is sometimes denoted CUT.
12Interestingly the negation of the second paradox (TC): ¬(A � �) (No Tautological

Consequent NTC) is invalid due to TID.
13SPRES and �ID are derivable in ST2. Conversely, SPRES is derivable by RM and

�ID and the remaining axioms: From RM we get �(A ⊃ B) ∧ �A ⊃ (A�(A ⊃ B)),

using LLE applied to the PT equivalence A ≡ (A ∧ �). But (A�(A ⊃ B)) ⊃ �A by PA

and �A ⊃ (A�A) by �ID. Furthermore (A�(A ⊃ B)) ∧ (A�A) ⊃ (A�B) by AND

and rRW. Chaining the results, we obtain �(A ⊃ B) ∧ �A ⊃ (A�B).
14INC is redundant, as it follows from ID, RW, OR. Readers might be more acquainted

with the axiomatisation for VW where instead of INC and T* we have MI. The two axioma-
tisations are equivalent: INC and T* imply MI; MI implies T*. We use the axiomatisation
with INC and T* for comparative reasons.
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The essential difference, however, to the non-monotonic reasoning tradi-
tion is this: Non-monotonic reasoning does not only reject C to avoid SA all
by maintaining RW, it also needs to reject wTR to avoid SA all by main-
taining RW and ID (since wTR + ID + RW also implies SA). Super-strict
implication takes a different route by maintaining wTR but allowing only
restricted forms of ID (TID, �ID). Furthermore, although our ground logic
for (non-normal) super-strict implication does not adopt unrestricted RW
as an axiom, we will shortly see that we can consistently extend the logic of
super-strict implication to systems where unrestricted RW holds.

In the following, we establish completeness of the axiomatisation of super-
strict implication, using a method developed by Raidl [23,24]. The ‘neutral
conditional’ examined in [22,23] is a similar strengthening of an underlying
conditional >, namely (A �′ B) = (A > B) ∧ ¬(A > ⊥). The similarity lies
in the fact that our super-strict conditional can equivalently be conceived
as (A�B) = �(A ⊃ B) ∧ ¬�(A ⊃ ⊥). The difference is that Raidl uses
a semantics where the underlying > satisfies the unrestricted LLE and the
unrestricted RW, so that �′ satisfies them as well. These however do not
hold unrestrictedly for our (non-normal) super-strict implication. For this
reason our Lemma 16, required to prove our completeness result here, needs
to be obtained by an intermediary step.

4. Soundness and Completeness of ST2

We here prove soundness and completeness of the system ST2 in our (re-
flexive non-normal) relational models used to interpret the language L�.15

4.1. Soundness

Lemma 12. (Simulation) For all χ ∈ L�, if �ST2 χ then �S2 χ◦.

Proof. By induction on the length of the derivation. Derivations of length
1. Then χ is an axiom of ST2. Eight cases are possible: either χ is an instance
of PT, AT, PA, INC, AND, TID, SPRES, or T*.
PT. Suppose χ is an instance of PT in the language L�. Thus there is
a classical formula ϕ[p1, . . . , pn] with variables in p1, . . . , pn and there are
formulas ψ1, . . . , ψn such that χ = ϕ[ψ1/p1, . . . , ψn/pn]. It is then provable
by induction on the complexity of ϕ that χ◦ = (ϕ[ψ1/p1, . . . , ψn/pn])◦ =

15Appendix A shows that the deduction theorem for ⊃ holds in ST2. Hence most proofs
here and in the next Section could have been shortened. Nevertheless we have opted for
direct proofs.
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ϕ[ψ◦
1/p1, . . . , ψ

◦
n/pn] (compare Lemma 1 from [23]). But the latter formula

is an instance of PT in L�. Hence it is derivable in S2.

AT. Suppose χ is an instance of AT. The translate is of the form ¬(�(A ⊃
¬A) ∧ ¬�¬A). ¬ �¬A ∨ �¬A is PT in L�. (A ⊃ ¬A) ⊃ ¬A is PT. Hence
�((A ⊃ ¬A) ⊃ ¬A) by rN. Therefore �(A ⊃ ¬A) ⊃ �¬A by K. Since ⊃
contraposes, we get ¬ �¬A ⊃ ¬�(A ⊃ ¬A). By PT, we obtain the translate
of AT.

PA. The translate of PA is of the form �(A ⊃ B) ∧ � A ⊃ ¬(�(� ⊃ ¬A) ∧
� �). Assume �(A ⊃ B), �A. Therefore ¬ �¬A. (� ⊃ ¬A) ⊃ ¬A is PT.

Hence �(� ⊃ ¬A) ⊃ �¬A by rN, K and MP. Thus ¬ �¬A ⊃ ¬�(� ⊃ ¬A).
Since ¬ �¬A, we obtain ¬ �(� ⊃ ¬A). Therefore also ¬ �(� ⊃ ¬A) ∨
¬ � �, that is ¬(�(� ⊃ ¬A) ∧ ��).

INC. The translate of INC is of the form �(A ⊃ B) ∧ � A ⊃ �(� ⊃ (A ⊃
B)) ∧ ��. Assume �(A ⊃ B), � A. From the first we obtain �(� ⊃ (A ⊃
B)) by PT, rN, K and MP. And �� holds by T.

AND. The translate of AND is of the form �(A ⊃ B) ∧ � A ∧ �(A ⊃ C) ∧
� A ⊃ �(A ⊃ B∧C)∧ � A. Assume �(A ⊃ B), � A, �(A ⊃ C). It suffices

to prove �(A ⊃ B ∧ C). We have (A ⊃ B) ⊃ ((A ⊃ C) ⊃ (A ⊃ B ∧ C))
by PT. Thus �(A ⊃ B) ⊃ �((A ⊃ C) ⊃ (A ⊃ B ∧ C)) by rN, K and MP.
Hence �(A ⊃ B) ⊃ (�(A ⊃ C) ⊃ �(A ⊃ B ∧ C)) by K and transitivity of
⊃. Therefore �(A ⊃ B ∧ C), applying MP twice.

TID. The translate of TID is of the form �(� ⊃ �) ∧ � �. We have � �
due to T and �(� ⊃ �) due to PT and rN.

SPRES. The translate of SPRES is of the form �(� ⊃ (A ⊃ B)) ∧ � � ∧
¬(�(� ⊃ ¬A) ∧ � �) ⊃ �(A ⊃ B) ∧ � A. Assume �(� ⊃ (A ⊃ B)), � �,
¬(�(� ⊃ ¬A) ∧ ��). From �(� ⊃ (A ⊃ B)) we obtain �(A ⊃ B) by PT,
rN, K, MP. From ¬(�(� ⊃ ¬A) ∧ � �) we obtain ¬ �(� ⊃ ¬A) ∨ ¬ � �.
But since � �, we have ¬ �(� ⊃ ¬A). This implies � A: ¬A ⊃ (� ⊃ ¬A)
by PT, and hence �¬A ⊃ �(� ⊃ ¬A) by rN, K, MP. Thus ¬ �(� ⊃ ¬A) ⊃
� A.

T*. The translate of T* is �(� ⊃ A)∧ �� ⊃ A. From �(� ⊃ A) we obtain
� ⊃ A by T, and hence A.

Derivations of length n + 1. Suppose the property (if �ST2 χ then �S2 χ◦)
holds for all derivations of length n or smaller, our induction hypothesis
(IH), and assume the derivation of χ is of length n + 1. Then there are two
possibilities. Either χ is one of the axioms of ST2, or it is obtained by one
of the rules of ST2 (MP, rLLE, rRW, BR*, or rN*). In the first case, the
reasoning is as above. Thus let us consider the second case.
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MP. Suppose χ is obtained by MP. Then there are previous formulas α and
α ⊃ χ in the derivation, such that �ST2 α and �ST2 α ⊃ χ. By IH, �S2 α◦

and �S2 (α ⊃ χ)◦, thus �S2 α◦ ⊃ χ◦. Therefore �S2 χ◦ by MP.
rLLE. Suppose χ is obtained by rLLE. Then there are formulas A, B, C,
such that χ = (A�C) ⊃ (B �C) and A≡B is PT in L�. Thus (A≡B)◦

is PT in L� (same argument as for PT). Hence A◦ ≡B◦ is PT. Therefore
(A◦ ⊃ C◦) ⊃ (B◦ ⊃ C◦) is also PT (PT is closed under substitution of
equivalents). Thus �(A◦ ⊃ C◦) ⊃ �(B◦ ⊃ C◦) by rN, K and MP. By a
similar argument, we obtain �A◦ ⊃ �B◦. Hence �(A◦ ⊃ C◦) ∧ � A◦ ⊃
�(B◦ ⊃ C◦) ∧ � B◦. Therefore �S2 ((A�C) ⊃ (B �C))◦.
rRW. Similar reasoning.
BR∗. Suppose χ is obtained by BR∗. Then there is a previous formula in
the derivation whose translate is �(� ⊃ (A ⊃ B)) ∧ ��. By IH we have
�(� ⊃ (A ⊃ B)) in S2. We have �(� ⊃ (A ⊃ B)) ⊃ �(A ⊃ B) by PT,
rN, K and MP. Since �(� ⊃ (A ⊃ B)), we obtain �(A ⊃ B). We also
have �(A ⊃ B) ⊃ �((� ⊃ A) ⊃ (� ⊃ B)) by PT, rN, K and MP. Since
�(A ⊃ B), MP delivers �((� ⊃ A) ⊃ (� ⊃ B)). Thus �(�(� ⊃ A) ⊃
�(� ⊃ B)) by BR. Therefore �(� ⊃ (�(� ⊃ A) ⊃ �(� ⊃ B))) by PT, rN,
K, MP. Since we have already shown that we have � � in S2, we obtain
�(� ⊃ (�(� ⊃ A) ∧ �� ⊃ �(� ⊃ B) ∧ � �)) ∧ ��, using PT and MP.
But this is the translate of χ.
rN*. Suppose χ is obtained by rN*. Thus, there is a previous formula θ in
the derivation, such that χ = � θ, and θ is either an instance of T*, K*, PA,
INC or SPRES.
Suppose θ is an instance of T*. We need to find a derivation of χ◦ = (� θ)◦,
which is of the form �(� ⊃ (�(� ⊃ A) ∧ � � ⊃ A)) ∧ � �. We have � �
by T. Thus it suffices to prove the first conjunct. We also have �(� ⊃ A) ⊃
(� ⊃ A) by T. Thus �(�(� ⊃ A) ⊃ (� ⊃ A)) by rN applied to T. By PT,
K, and MP we obtain �(�(� ⊃ A) ⊃ A). By a similar reasoning we obtain
�(�(� ⊃ A) ∧ �� ⊃ A), and ultimately χ◦.
Suppose θ is an instance of K*. We need to find a derivation of χ◦ = (� θ)◦,
which is of the form �(� ⊃ (�(� ⊃ (A ⊃ B))∧ � � ⊃ (�(� ⊃ A)∧ � � ⊃
�(� ⊃ B)∧ ��)))∧ � �. We get �� from T. Thus it suffices to establish
the first conjunct. We get �(�(� ⊃ (A ⊃ B)) ⊃ �((� ⊃ A) ⊃ (� ⊃ B)))
by PT, rN, BR. And we get �(�((� ⊃ A) ⊃ (� ⊃ B)) ⊃ (�(� ⊃ A) ⊃
�(� ⊃ B))) by applying rN to K. Thus by PT, rN and two instances of K,
�(�(� ⊃ (A ⊃ B)) ⊃ (�(� ⊃ A) ⊃ �(� ⊃ B))). Using PT, rN and K
again we get the result, and ultimately χ◦.
Suppose θ is an instance of PA. We need to find a derivation of χ◦ = (� θ)◦,
which is of the form �(� ⊃ (�(A ⊃ B) ∧ � A ⊃ ¬(�(� ⊃ ¬A) ∧ � �))) ∧
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� �. � � holds by T. We have �((� ⊃ ¬A) ⊃ ¬A). Thus by BR �(�(� ⊃
¬A) ⊃ �¬A). Since ⊃ contraposes, we have (�(� ⊃ ¬A) ⊃ � ¬A) ⊃
( �A ⊃ ¬�(� ⊃ ¬A)) as PT. Applying rN, K, the previous result and MP,
we obtain �( �A ⊃ ¬�(� ⊃ ¬A)). But ( �A ⊃ ¬�(� ⊃ ¬A)) ⊃ (� ⊃
(�(A ⊃ B)∧ � A ⊃ ¬(�(� ⊃ ¬A)∧ � �))) is PT. Hence rN, K, the previous
result and MP deliver �(� ⊃ (�(A ⊃ B) ∧ � A ⊃ ¬(�(� ⊃ ¬A) ∧ ��))).
Suppose θ is an instance of INC. We need to find a derivation of χ◦ =
(� θ)◦, which is of the form �(� ⊃ (�(A ⊃ B) ∧ �A ⊃ �(� ⊃ (A ⊃
B)) ∧ � �)) ∧ � �. This works by a similar reasoning as for PA. We have
�((A ⊃ B) ⊃ (� ⊃ (A ⊃ B))) by PT, rN. Thus �(�(A ⊃ B) ⊃ �(� ⊃
(A ⊃ B))) by BR. Also �(� ⊃ � �) by applying rN to T (and then
contraposing with PT, using rN K). Using this result, PT, K and MP, we
obtain �(� ⊃ (�(A ⊃ B) ∧ �A ⊃ �(� ⊃ (A ⊃ B)) ∧ ��)).
Suppose θ is an instance of SPRES. We need to find a derivation of χ◦ =
(� θ)◦, which is of the form �(� ⊃ (�(� ⊃ (A ⊃ B)) ∧ � � ∧ ¬(�(� ⊃
¬A)∧ ��) ⊃ �(A ⊃ B)∧ � A))∧ ��. This works by a similar reasoning as
for the previous ones. By rN applied to T, we obtain �(� ⊃ ��). By PT,
rN, and BR, we obtain �(�¬A ⊃ �(� ⊃ ¬A)). Thus by PT, rN, K and MP,
we also obtain �(�¬A ⊃ (�(� ⊃ ¬A)∧ ��)). Since ⊃ contraposes, and by
rN, K and MP we get �(¬(�(� ⊃ ¬A)∧ � �) ⊃ � A). By PT, rN, and BR
we obtain �(�(� ⊃ (A ⊃ B)) ⊃ �(A ⊃ B)). Again using PT, rN, K and MP
we get �(�(� ⊃ (A ⊃ B))∧¬(�(� ⊃ ¬A)∧ ��) ⊃ �(A ⊃ B)∧ �A). One
further application of PT, rN, K and MP allows us to get �(� ⊃ (�(� ⊃
(A ⊃ B)) ∧ � � ∧ ¬(�(� ⊃ ¬A) ∧ � �) ⊃ �(A ⊃ B) ∧ �A)).

Theorem 13. ST2 is sound for reflexive non-normal relational models in
L�.

Proof. Suppose �ST2 A. Thus �S2 A◦ by Lemma 12. Hence � A◦ in reflexive
non-normal relational models by the known soundness of S2 for reflexive
non-normal relational semantics [8]. Hence �� A by Lemma 6.

A direct semantic proof of soundness is possible as well. Since this is a
standard procedure, we leave it to the reader. Let us illustrate nonetheless
with AND: Suppose w �� A�B and w �� A �C. Thus (i) w ∈ N , (ii) ∃v ∈
W such that wRv and v �� A and (iii) ∀v ∈ W if wRv then v �� A ⊃ B
and v �� A ⊃ C. From the last two, we obtain that ∀v ∈ W if wRv then
v �� A ⊃ B ∧ C. Together with (i) and (ii) we can thus conclude that
w �� A�B ∧ C.

4.2. Completeness

Lemma 14. (Backsimulation) For all χ ∈ L�, if �S2 χ then �ST2 χ•.
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Proof. By induction on the length of the derivation. Derivations of length
1. Then χ is an axiom of S2. Three cases are possible: either χ is an instance
of PT or an instance of K or an instance of T.
PT. Similar argument as for PT in Lemma 12.
K. The backtranslate of K is of the form (��(A ⊃ B)) ⊃ ((��A) ⊃
(��B)). Assume ��(A ⊃ B) and ��A. By AND we obtain ��(A ⊃
B) ∧ A. Hence ��B by rRW.
T. The backtranslate of T is T*.
Derivations of length n + 1. Suppose the derivation of χ is of length n +
1, and the property holds for all shorter derivations. Then there are two
possibilities. Either χ is an axiom of S2, or χ is obtained by one of the rules
of S2 (MP, rN or BR). In the first case, we reason as above. Thus let us
consider the second case.
MP. Same reasoning as for MP in Lemma 12.
rN. Suppose χ is obtained by rN. Then there is a formula A such that
χ = �A and A is PT in L� or it is one of the axioms K or T:
Assume that A is PT. By the same argument as for PT, we have that A•

is PT in L�. Thus � ⊃ A• is PT. Hence �ST2 (���) ⊃ (��A•) by rRW.
Yet �� � by TID. Therefore ��A•. This is χ•. Therefore �ST2 (�A)•.
Assume that A is an instance of T. Thus it is of the form �B ⊃ B. But
�B• ⊃ B holds by T*. Applying rN* to T*, we get �(�B• ⊃ B). This is
χ•.
Assume that A is an instance of K. Thus it is of the form �(B ⊃ C) ⊃
(�B ⊃ �C). Applying rN* to the following instance of K* �(B• ⊃ C•) ⊃
(�• B ⊃ �C•) gives us �(�(B• ⊃ C•) ⊃ (�• B ⊃ �C•)). This is χ•.
BR. Suppose χ is obtained by BR. Then χ = �(�A ⊃ �B) and there is a
previous formula �(A ⊃ B) in the derivation. By IH there is a derivation of
��(A• ⊃ B•). Thus by BR* we obtain ��((��A•) ⊃ (��B•)). This is
χ•.

We call χ◦• the twin of χ. To prove completeness, we ultimately need
to establish that any formula of L� is provably equivalent to its twin. We
procede by an intermediary step, proving first that the strict equivalence
between χ and its twin is derivable.

Lemma 15. (Strict Twin Equivalence) For all χ ∈ L�, we have
�ST2 �(χ≡χ◦•).

Proof. By induction on the complexity of the formula.
Let χ = p. Then p◦• = p. Thus � ⊃ (p ≡ p◦•) is PT, and hence �(p ≡ p◦•)
by rRW and TID.
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Let χ = ¬A, and suppose as IH that �ST2 �(A≡A◦•). (A≡A◦•) ⊃ (¬A≡¬
A◦•) is PT. But (¬A)◦• = ¬A◦•. Thus (A≡A◦•) ⊃ (¬A≡(¬A)◦•) is PT.
Since by IH �(A≡A◦•), we obtain �(¬A≡(¬A)◦•) by rRW.
Let χ = (A ∧ B) and suppose as IH that �ST2 �(A≡A◦•) and �ST2

�(B ≡B◦•). Thus we obtain �((A≡A◦•) ∧ (B ≡B◦•)) by AND. Hence
�((A ∧ B) ≡(A◦• ∧ B◦•)) by rRW. But (A◦• ∧ B◦•) = (A ∧ B)◦•. Thus
�((A ∧ B) ≡ (A ∧ B)◦•).
The cases for χ = (A ∨ B) and χ = (A ⊃ B) work similarly.
Let χ = (A�B) and suppose as IH that �ST2 �(A≡A◦•) and
�ST2 �(B ≡B◦•). We obtain �ST2 �((A ⊃ B)◦• ≡(A ⊃ B)) by a similar rea-
soning as for ∧. Thus by BR*, we obtain �(�(A ⊃ B)◦• ≡�(A ⊃ B)). We
also get �(¬A≡¬A◦•), as above. Thus by BR* �(�¬A≡�¬A◦•). Hence
by rRW �(¬ �¬A≡ ¬�¬A◦•). That is �( �A≡ �A◦•). Thus by AND
and rRW again, we get �(�(A ⊃ B)∧ � A≡�(A ⊃ B)◦• ∧ �A◦•). But by
applying rN* to PA, INC, and SPRES, we respectively obtain �((A�B) ⊃
� A), �((A�B) ⊃ �(A ⊃ B)), and �((�(A ⊃ B) ∧ � A) ⊃ (A�B)). By

AND and rRW, we conclude �(A�B ≡ �(A ⊃ B) ∧ � A). By using our
previous result, AND and rRW deliver �(A �B ≡ �(A ⊃ B)◦• ∧ � A◦•).
Yet, �(A ⊃ B)◦• ∧ �A◦• = (A�B)◦•. Thus we have arrived at �(A�B ≡
(A�B)◦•).

By T*, we can now conclude that χ is provably equivalent to it’s twin:

Lemma 16. (Twin Equivalence) For all χ ∈ L�, we have �ST2 χ ≡χ◦•.

Proof. By Lemma 15, T* and MP.

This Lemma was also used in [23–25] and can be obtained directly when
LLE and RW are unrestricted in the logic. It is because these principles
are restricted here, that we needed to pass through first proving that any
formula is strictly equivalent to its twin.

From what we have shown, we obtain our desired completeness result:

Theorem 17. ST2 is complete for reflexive non-normal relational models
in L�.

Proof. Suppose �� A. Thus � A◦ by Lemma 6. Hence �S2 A◦ by the known
completeness of S2 for relational models in L� [8]. Therefore �ST2 A◦• by
Lemma 14. Hence �ST2 A by Lemma 16.

The curious reader might wonder about the following: (1) Is a direct com-
pleteness proof possible? (2) Given the known decidability of S2 [18], is ST2
also decidable?16 The answer to both questions is yes.

16We thank an anonymous referee for raising both questions.
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For (1) we should note that a direct completeness proof would roughly
amount to using similar translation mechanisms but now on the semantic
side. Overall, the canonical model construction would be messier,17 and it
would only be instructive, if we had no completeness proof for S2.

For (2) one can simply use the translation and simulation results. If there
is a procedure that decides whether or not �S2 A in finitely many steps, then
there is such a procedure that decides whether or not �S2 B◦ and hence
whether or not �ST2 B, since we have established that �ST2 B iff �S2 B◦.

5. Stronger Systems

As one can extend the system S2, we can similarly extend the system ST2 all
by keeping the tight relation between the two logics in the sense that they
are logics for the same semantics but once interpreted in terms of the strict
implication and once interpreted in terms of the super-strict implication.

5.1. Extensions of S2

Consider the following rule and axioms

If � A then � �A N

�(A ⊃ B) ⊃ �(�A ⊃ �B) BRA

�A ⊃ � �A 4

� A ⊃ � �A 5

S3 is obtained from S2 by removing K and replacing the rule BR by the
corresponding axiom BRA (so that rN now applies to the axioms PT, T
and BRA). KT is obtained from S2 by removing the rule BR and replacing
the rule rN by the unrestricted version N. S4 is obtained from KT by adding

17For example, for the normal case, instead of constructing an accessibility rela-
tion out of formulas in maximal consistent theories (aka canonical worlds) by wRv
iff {A : �A ∈ w} ⊆ v, one would need to construct the relation through wRv iff
{B : ¬(¬B � ¬B) ∈ w} ⊆ v, see footnote 6, and then prove analogues to the truth lemma,
and the determination lemma, which involves proving several analogue preparatory results
as for the canonical Kripke model construction.
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the axiom 4, and S5 is obtained from S4 by replacing 4 by the axiom 5.18

Note that S5 extends S4 which extends S3 which extends S2. (see Figure
1)19

5.2. Extensions of ST2

Consider the following rules and axioms:

If � A≡B then � (A�C) ⊃ (B �C) LLE

If � A ⊃ B then � (C �A) ⊃ (C �B) RW

�(A ⊃ B) ⊃ �(�A ⊃ �B) BRA*

�A ⊃ � �A 4*

� A ⊃ � �A 5*

The system ST3 is obtained from ST2 by removing AND, and replacing the
rule BR* by the axiom BRA*, and now rN* applies to BRA* instead of
applying to K*. STT is obtained from ST2 by removing the rules BR* and
rN*, and replacing the restricted rules rLLE and rRW by the unrestricted
versions LLE and RW. ST4 is obtained from STT by adding 4*, and ST5 is
obtained from ST4 by replacing 4* by 5*. Note that ST5 extends ST4 which
extends ST3 which extends ST2.20

Theorem 18. STT is sound and complete for reflexive normal Kripke mod-
els in L�.

For another equivalent axiomatization of STT, see [26, theorem 3].

Proof. Simulation: Given Lemma 12, we only need to simulate the unre-
stricted rules LLE, RW. We use the fact that in KT we have the deduction
theorem for ⊃ and substitution of provable equivalents.
LLE. Suppose χ is obtained by LLE. Then there are formulas A, B, C, such
that χ = (A�C) ⊃ (B �C) and �STT A≡B. Thus by IH, �KT (A≡B)◦.

18Lemmon’s axiomatisation of S4 (replacing rN by N in S3) is equivalent to our S4:
From BRA and T we obtain K, from BRA, K and N we also obtain 4; conversely, K and
4 imply BRA.

19 In S3, BR can be simulated (by BRA, MP), K is derivable (by BRA, T, PT, K),
and rN applied to K can also be simulated. In KT, BR can be simulated by K, N, MP.

20 In ST3, BR* can be simulated (by BRA*, MP) and K* is derivable (by BRA*,
T*). Thus AND is also derivable (using K*, INC, PA, SPRES), and rN* applied to K*
can also be simulated. In STT as in the stronger systems ST4 and ST5, BR* and rN*
can be simulated. In ST5, 4* is derivable. Note that ST4 could equivalently have been
obtained from ST3 by extending rN* to N. Furthermore, in ST2 and all stronger systems,
the deduction theorem for ⊃ holds (the proof is similar as for ST2—see appendix A).
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Hence �KT A◦ ≡B◦. We can thus prove �(A◦ ⊃ C◦) ⊃ �(B◦ ⊃ C◦) by
substitution of provable equivalents, as well as �A◦ ⊃ � B◦. Hence �(A◦ ⊃
C◦) ∧ � A◦ ⊃ �(B◦ ⊃ C◦) ∧ � B◦. But this is the translate of χ.
RW: Similar reasoning.
Backsimulation: From Lemma 14, we know how to backsimulate PT, T, K,
MP. It remains to backsimulate N.
N: Suppose χ is obtained by N. Then there is a formula A such that χ = �A
and �KT A. By IH, �STT A•. Thus �STT � ⊃ A•. Therefore (���) ⊃
(��A•) by RW. Since ��� by TID, we obtain ��A•. Thus (�A)•.
The proofs for transferring soundness and completeness are then the same
as in Theorem 13-17. (By RW, we could now prove Lemma 16 directly.)

Let S be a modal logic sound and complete for the class of models M in L�.
We call ST its super-strict companion, when the following hold: ST is sound
and complete for M in L�, the Twin Equivalence Lemma holds in ST, the
Translation and Backtranslation Lemma hold for M . Then, we obtain the
following extension strategy21

Theorem 19. Let S be sound and complete for M , ST be the super-strict
companion to S, and S+X be sound and complete for N ⊂ M . Then ST+X•

is a super-strict companion to S + X.

Proof. Simulation: it suffices to simulate the new axiom X•, and for this,
we establish �S A≡A•◦: We have �ST A• ≡A•◦• by twin equivalence. Thus
M ��(A≡A•◦)• by soundness of ST and •. Hence M � A≡A•◦ by the Back-
translation Lemma. Hence �S A≡A•◦ by completeness of S for M . Thus X•

can be simulated by X. Backsimulation: it suffices to backsimulate X, which
follows since the backtranslate of X is X•.
The proofs for transferring soundness and completeness are then the same
as in Theorem 13-17, using the soundness and completeness of S + X (see
[8] or [2]), the Translation Lemma in M , and the twin equivalence in ST.

Corollary 20. 1. ST3 is sound and complete w.r.t. (reflexive and) tran-
sitive models.

2. ST4 is sound and complete w.r.t. (reflexive and) transitive normal mod-
els.

3. ST5 is sound and complete w.r.t. normal models where R is an equiva-
lence relation.

21A similar result was proven in [23, Theorem 5]: for the definable companions to
variably strict conditional logics.
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Proof. For ST3: ST2 is the super-strict companion to S2 (Theorem 13, 17,
and the soundness and completeness of S2 for reflexive non-normal relational
models). The result then follows by Theorem 19, since BRA* = BRA•, and
because S3 is sound and complete for transitive reflexive non-normal relation
models in L�.
Same reasoning for ST4 and ST5, starting from the previous fact that STT
is the super-strict companion to KT, and noting that 4* = 4• and 5*=5•.

5.3. What About Strong Boethius Thesis?

We already proved that strong Boethius Thesis (BT) is invalid (Lemma 10).
One might thus ask, whether the addition of BT to a system of super-strict
implication is at all possible.

The question may at first seem parallel to the one raised by Pizzi and
Williamson [20] for their consequential implication →. These authors show
that in normal systems of consequential implication with Strong Boethius
Thesis (BT), the addition of MP for → makes the following derivable (see
their Proposition 3.18):

1. (A→ B) ≡ (B → A) (S)

2. (A→ B) ≡ ¬(A→¬B) (wBT & CwBT)

And, if in normal systems with BT, we add the principle MI for → ((A→B)
⊃ (A ⊃ B)), then the following is also derivable (their Proposition 3.19):

3. (A→ B) ≡ (A ≡ B) (Collapse to ≡)

Based on these results, Pizzi and Williamson argue that it is difficult to
interpret BT in normal systems of consequential implication.

The situation is different for super-strict implication. First, note that
in normal systems of super-strict implication, the addition of MP for �
(MP(�)) causes no problem. MP(�) is already derivable in ST2 (Lemma
11) and thus remains derivable in normal systems. Second, (1) for �, which
is just Symmetry (S), is invalid in non-normal semantics of �, and remains
invalid in normal semantics.22 Third, (2) for � is invalid in non-normal
semantics of �, since although wBT is valid (Lemma 11), the converse
¬(A �¬B) ⊃ (A�B) (CwBT) is invalid, since the equivalent CEM is in-
valid (Lemma 10). Again CEM, and thus (2), remains invalid in normal
semantics.23 Fourth, (3) for � is invalid in non-normal semantics, since � is

22 The proof of the invalidity of S (Lemma 10) carries over to normal semantics.
23Again, the proof of invalidity of CEM (Lemma 10) carries over to normal semantics.
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clearly distinct from classical equivalence ≡, due to the modal assumption,
and this remains so in normal semantics. So no problems such as (1), (2) or
(3) appear in normal systems of �, as long as we do not add BT.

The reason to reject BT for � is not that much that it creates a collapse
similar to (1)–(3) above, but that the acceptance of BT would amount to
accepting that any super-strict implication A�B is possible, simply because
C �D implies � C (due to PA), so that (A�B) �¬(A�¬B) would imply
�(A � B). This creates a contradiction, not a collapse.

Lemma 21. Adding BT to STT is inconsistent.

Proof. Adding BT to a system of strict implication means to add the
validity �(A�B) for any A,B (by PA). In particular �(⊥�⊥). This cre-
ates a contradiction. Indeed, ¬(⊥�⊥) by NAA. Thus in normal systems
�¬(⊥�⊥) due to N (or RW), so that ¬ �(⊥�⊥) by duality.

This is the real reason why adding BT makes no sense.
However, we may consider the following sensible weakening of BT which

we call possibilistic Boethius Thesis:

�(A�B) ⊃ ((A�B) �¬(A�¬B)) pBT

This is valid in our normal semantics:

Lemma 22. pBT is valid in reflexive normal relational models.

Proof. wBT is valid in non-normal semantics, according to �� (Lemma
11 and Theorem 17). Hence wBT is valid in normal semantics. Hence the
translate wBT◦ of wBT—�(A◦ ⊃ B◦)∧ � A◦ ⊃ ¬(�(A◦ ⊃ ¬B◦)∧ �A◦)—
is valid in normal semantics, according to � (Lemma 6). Thus in normal
semantics (by N), � wBT◦— �(�(A◦ ⊃ B◦) ∧ � A◦ ⊃ ¬(�(A◦ ⊃ ¬B◦) ∧
� A◦)) – is valid, according to �.

Now consider a world w in a reflexive normal model where �(A�B),
according to ��. Thus �(A�B)◦ in w, according to � (Lemma 6). But
( �(A�B)◦ ∧ � wBT◦) = pBT◦. Hence, overall, w � pBT◦. Therefore
w �� pBT (Lemma 6). Since w was an arbitrary world in a reflexive nor-
mal model, we can conclude that pBT is valid in reflexive normal relational
models.

We conclude: although it makes no sense to add BT to a normal system
of super-strict implication, due to inconsistency, we can add the sensible
weakening pBT. Especially to reflexive normal systems, where that addition
is in fact redundant, since pBT is already ensured there.
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6. Labelled Sequent Calculi

Starting from the labelled calculi for normal logics of SSI introduced in [4]
and from the calculi for Lewis’ systems introduced in [19] we are now going
to introduce labelled sequent calculi for the logics ST2−ST5. First of all we
extend the language with a denumerable set W of so-called world-labels, to
be denoted by w, v, u, . . . , and with the two predicates N and R of arity 1
and 2, respectively. The labelled language LW

� is the smallest set such that:

1. If w ∈ W and A ∈ L� then the labelled formula w : A is in LW
� ;

2. If w ∈ W then the normality atom Nw is in LW
� ;

3. If w, v ∈ W then the relational atom wRv is in LW
� .

The LW
� -formula E[v/u] is obtained by replacing in E each occurrence of

the label u with an occurrence of the label v. The weight of an LW
� -formula

E, w(E), is given by positing that, if E is w : A for some A ∈ L�, then it is
equal to that of A; else it is 0.

A sequent is an expression of the shape

Γ ⇒ Δ

where Γ is a finite multiset composed of labelled formulas, normality atoms,
and relational atoms; Δ, instead, is a finite multiset composed only of la-
belled formulas. Substitution is extended to multisets and sequents by ap-
plying it componentwise.

The rules for � in labelled calculi can be obtained as meaning explana-
tions from the truth conditions for �, cf. [14]. In particular, the right-to left
clause

if w ∈ N and ∃v ∈ W (wRv and v |=� A) and ∀u ∈ W (wRu implies
u |=� A ⊃ B), then w |=� A � B

is expressed by the following right rule:
wRu, u : A,Nw,wRv,Γ ⇒ Δ, u : B Nw,wRv,Γ ⇒ Δ, w : A�B, v : A

Nw,wRv,Γ ⇒ Δ, w : A�B
R �, u fresh

where the variable condition on u encodes the existential quantification of
the semantic clause. Analogously, the left-to-right truth clause is expressed
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by the following left rule24:
Nw,wRu, u : A,wRv, w : A�B,Γ ⇒ Δ, v : A Nw,wRu, u : A, v : B,wRv, w : A�B,Γ ⇒ Δ

wRv, w : A�B,Γ ⇒ Δ
L�, u fresh

The rules of the labelled calculi G3.ST2−G3.ST5 are presented in Table 1.
In particular G3.ST2 contains the initial sequents, all logical rules, and Ref
as its only non-logical rule. G3.ST3 is obtained by adding the non-logical
rule Trans to G3.ST2. G3.ST4 is obtained by adding the non-logical rule
Norm to G3.ST3. Finally, G3.ST5 is obtained by adding the non-logical rule
Sym to G3.ST4. We use G3.STn to denote an arbitrary calculus among them.
The calculi G3.ST4 (G3.ST5) can be obtained by simply dropping normality
atoms from rules L/R �, thus obtaining the calculus G3SS.S4 (G3SS.S5)
from [4].

A G3.STn-derivation of Γ ⇒ Δ is a finite tree of sequents whose root
is Γ ⇒ Δ, whose leaves are initial sequents, and which grows according to
the rules of G3.STn. The height of a derivation is the number of nodes of
one of its longest branches. The expression G3.STn �(n) Γ ⇒ Δ means that
there is a G3.STn-derivation of Γ ⇒ Δ (of height n). A rule is G3.STn-
admissible if its conclusion is G3.STn-derivable whenever its premisses are
G3.STn-derivable, and it is hp-G3.STn-admissible if it is admissible and its
conclusion has a derivation bounded by the height of the derivations of its
premisses. In the rules in Table 1 Γ and Δ are called contexts; the formulas
displayed in the conclusion (premisses only) are called principal (active).

7. Structural Properties of G3.STn

Lemma 23. G3.STn � w : A, Γ ⇒ Δ, w : A for all formulas A.

Proof. We just have to apply bottom-up the two rules for w : A and then
the lemma follows by the induction hypothesis (IH, for short).

Lemma 24. (Substitution) The following rule of substitution is hp-G3.STn-
admissible:

Γ ⇒ Δ
Γ[v/u] ⇒ Δ[v/u]

S

Proof. By induction on the height of the derivation D of Γ ⇒ Δ. We apply
IH to the premiss(es) of the last rule instance in D (twice if it has a variable

24This rule, like all left rules in sequent calculi, has to be read bottom-up since it
represents an elimination rule in natural deduction.
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condition) and then we conclude Γ[v/u] ⇒ Δ[v/u] by an instance of the
same rule.

Theorem 25. (Weakening) The rule of weakening is hp-G3.STn-admissible:

Γ ⇒ Δ
Π, Γ ⇒ Δ, Σ

W

Proof. By induction on the height of the derivation D of Γ ⇒ Δ. We start
by applying Lemma 24 to the premiss(es) of the last rule instance in D if it is
by a rule with a variable condition clashing with some label in Π, Σ; then we
apply IH to the (substituted) premiss(es). Finally, we obtain Π, Γ ⇒ Δ, Σ
by an instance of the last rule applied in D.

Corollary 26. The following rules are admissible in G3.STn:

v : A,Nw,wRv, w : �A,Γ ⇒ Δ

wRv, w : �A,Γ ⇒ Δ
L �

wRu,Nw,Γ ⇒ Δ, u : A

Nw,Γ ⇒ Δ, w : �A
R �, u fresh

u : A,wRu,Nw,Γ ⇒ Δ

Nw,w : �A,Γ ⇒ Δ
L �, u fresh

Nw,wRv,Γ ⇒ Δ, w : �A, v : A

wRv,Γ ⇒ Δ, w : �A
R �

Proof. The admissiblity of rules L/R � is shown by the following deriva-
tions, where �A is expressed by ��A, and where we used the known fact
that sequents of shape Γ ⇒ Δ, w′ : � are derivable (� was defined as p∨¬p)

wRu, Nw, u : �, Γ′ ⇒ Δ, v : �
v : A,Nw,wRv, w : ��A, Γ ⇒ Δ

Nw,wRu, u : �, v : A,wRv, w : ��A, Γ ⇒ Δ
W

wRv, w : ��A, Γ ⇒ Δ
L�

wRu, Nw,Γ ⇒ Δ, u : A

wRu, u : �, wRw,Nw,Γ ⇒ Δ, u : A
W

wRw,Nw,Γ ⇒ Δ, w : ��A,w : �
wRw,Nw,Γ ⇒ Δ, w : ��A

R �

Nw,Γ ⇒ Δ, w : ��A
Ref

The case of rules L/R � is similar and can thus be omitted.

Lemma 27. (Invertibility) Each rule of G3.STn is height-preserving invert-
ible: if

Γ′ ⇒ Δ′ (Γ′′ ⇒ Δ′′)
Γ ⇒ Δ

is an instance of a rule of G3.STn and Γ ⇒ Δ has a G3.STn-derivation of
height m then also Γ′ ⇒ Δ′ (and Γ′′ ⇒ Δ′′) has a G3.STn-derivation whose
height is bounded by m.
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Proof. The proof is by induction on the height of the derivation of Γ ⇒ Δ.
The propositional cases are standard and can thus be omitted. All non-
logical rules as well as rule L� w.r.t. both premisses and rule R � w.r.t. its
right premiss are height-preserving invertible because of the hp-admissibility
of weakening. Finally, the height-preserving invertibility of R � w.r.t. its left
premiss can be proved by the same strategy adopted for the propositional
rules, possibly applying an hp-admissible instance of the rule of substitu-
tion.

Theorem 28. (Contraction) The following rule of contraction is hp-G3.STn-
admissible:

Π, Π, Γ ⇒ Δ, Σ, Σ
Π, Γ ⇒ Δ, Σ

C

Proof. By induction on the height of the derivation D of Π, Π, Γ ⇒ Δ, Σ, Σ.
We assume that one of Π and Σ is a singleton and the other is empty. We
have three cases according to whether (i) none, or (ii) exactly one, or (iii)
both instances of the formula we are contracting are principal in the last
rule inference in D which will be denoted by Rule.

In case (i) we permute the instance of contraction with that of Rule thus
getting one (two) instance(s) of contraction that is (are) hp-admissible by
IH. In case (ii) we start by applying hp-invertibility w.r.t. the non-principal
instance of the contraction-formula to the premiss(es) of the last rule in-
stance Rule in D, then we apply an (hp-admissible) instance of substitution
and the inductive hypothesis to it (them). We conclude by an instance of
Rule. Case (iii) arises only when two instances of wRw are principal in an
instance of Trans. In this case we apply the inductive hypothesis twice to
the premiss of Trans and we are done.

Theorem 29. (Cut) The following rule of Cut is G3.STn-admissible:

Γ ⇒ Δ, w : A w : A, Π ⇒ Σ
Π, Γ ⇒ Δ, Σ

Cut

Proof. We use the standard Dragalin-style proof: we consider an upper-
most instance of Cut and we have a principal induction on the weight of
the cut-formula w : A and a sub-induction on the sum of the heights of the
derivations of the premisses of the instance of Cut under consideration (cut-
height, for short). It is convenient to divide the proof into three exhaustive
cases according to whether (i) some premiss of Cut is an initial sequent;
(ii) the cut-formula is not principal in the last step of the derivation of
some premiss of Cut; (iii) the cut-formula is principal in the last step of the
derivations of both premisses.
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In case (i) it is easy to show that also Π, Γ ⇒ Δ, Σ has a cut-free deriva-
tion. In case (ii) we can permute the instance of Cut upward in the deriva-
tion of the premiss where the cut-formula is not principal, thus obtaining a
derivation with an instance of Cut that is admissible by the sub-induction
hypothesis. If we are in case (iii) and the principal operator of the cut-
formula is a propositional one, then the proof is standard and can thus be
omitted.

The transformation showing the admissibility of Cut for the final case
of a cut-formula of shape w : B �C principal in both premisses is given
in Figure 2. For reasons of space, we consider instances of rules L� and
R � without contexts (if we have contexts, their duplications are handled
in the final step by contraction). In the transformed derivations we have
some instances of Cut that are admissible by IH (those marked with (†) have
lesser cut-height, and those marked with (‡) have a cut formula of lower wei-
ght).

8. Completeness and Decidability of G3.STn

8.1. Soundness

The soundness of G3.STn will be proved by introducing a notion of validity
for sequents that simulates the semantic notion of consequence and then by
showing that each rule of G3.STn preserves validity w.r.t. models for STn.

Definition 30.1. Given a model M = 〈W,R,N, V 〉 a M-realisation is a
function σ : W −→ W mapping each world-label to a world of the model
M.

2. The truth of a LW
� -formula E under a M-realisation σ, σ |= E, is thus

defined:

• σ |= wRv iff σ(w)Rσ(v)
• σ |= Nw iff N(σ(w))
• σ |= w : A iff |=M

σ(w) A

3. A sequent Γ ⇒ Δ is realised by σ if the fact that all formulas in Γ are
true under σ implies that some formula in Δ is true under σ.

4. A sequent Γ ⇒ Δ is STn-valid if it is realised by each M-realisation with
M a model for STn.

Theorem 31. (Soundness) If a sequent is G3.STn-derivable then it is STn-
valid.
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Proof. By induction on the height of the derivation D of Γ ⇒ Δ. The
proof for the base case, the propositional ones, and those for the non-logical
rules are like those in [13] and can thus be omitted.

Suppose the last rule instance applied in D is the following instance of
L�:
Nw,wRu, u : A,wRv, w :A�B,Γ ⇒ Δ, v : A Nw,wRu, u : A, v : B,wRv, w : A�B,Γ ⇒ Δ

wRv, w :A�B,Γ ⇒ Δ
L�, u fresh

and that σ realises all formulas in wRv, w : A�B,Γ. From the fact that
|=σ(w) A� B we obtain that (i) Nw; (ii) some t ∈ W is such that σ(w)Rt
and |=t A; and (iii) for all v ∈ W , wRv implies |=v A ⊃ B. Let τ be
defined like σ except for the world-label u that is mapped to the world t.
Fact (i) implies that τ realises Nw. By fact (ii) we obtain that τ(w)Rτ(u)
and |=τ(u) A—i.e., τ realises wRu and u : A. Given that τ realises also all
formulas in wRv, w : A�B,Γ, by induction on the left premiss we know
that τ realises some formula in Δ, v : A. In the former case we are done
since, by the freshness of u, we can conclude that σ realises some formula
in Δ. If τ realises v : A then we have that |=τ(v) A and this, together with
fact (iii), implies that |=τ(v) B—i.e., τ realises v : B. By induction on the
right premiss we conclude that τ , and hence σ, realises some formula in Δ.

Suppose the last rule instance applied in D is the following instance of
R �:
wRu, u : A,Nw, wRv,Γ ⇒ Δ, u : B Nw,wRv,Γ ⇒ Δ, w : A�B, v : A

Nw,wRv,Γ ⇒ Δ, w : A� B
R �, u fresh

and that σ realises all formulas in Nw, wRv, Γ. By induction on the right
premiss σ realises some formula in Δ, w : A �B, v : A. In the two former
cases we are done. Suppose that σ realises v : A. We consider a τ that is
like σ but it maps the world-label u on the world σ(v). By induction on the
left premiss we obtain that τ |= u : B. By the freshness of the world-label u
we have that for all v ∈ W , τ(w)Rv implies |=v A ⊃ B. We conclude that
both τ and σ realise w : A�B.

8.2. Completeness

We are now going to show that the calculus G3ST.n is complete for validity
by embedding the axiomatic calculus STn into G3.STn: we show that �STn A
implies G3.STn � Nw ⇒ w : A.

Lemma 32. If A is an axiom of STn that is not the axiom TID or if A
is an instance of K*, then the sequents ⇒ w : A and Nw ⇒ w : A are
G3.STn−derivable. The sequent Nw ⇒ w : ��� is G3STn-derivable.
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Proof. The sequent ⇒ w : A, for A an instance of K* or of an axiom that
is not TID, can be shown to be derivable by applying root-first the rules of
G3.STn as well as rules L/R � and L/R �. The derivability of Nw ⇒ w : A
follows by an instance of weakening. Nw ⇒ w : ��� is easily shown to be
G3.STn-derivable.

Lemma 33. The restricted rule of necessitation is admissible in G3.STn:
⇒ w : A

Nw ⇒ w : �A
rN∗

Proof. We have the following derivation:
⇒ w : A
⇒ u : A

S

Nw,wRu ⇒ u : A
W

Nw ⇒ w : �A
R �

Observe that Lemma 33 does not work when A is � � � since ⇒ w : � � �
is not a derivable sequent.

Lemma 34. The axiomatic rule rN* of restricted necessitation is G3.STn-
admissible.

Proof. By Lemma 32 we have that if A is an axiom of STn that differs
from TID or if it is an instance of K*, then the sequent ⇒ w : A is G3.STn-
derivable. By Lemma 33 we conclude that the sequent Nw ⇒ w : �A is
also G3.STn-derivable.

Lemma 35. The rule rLLE is G3.STn-admissible and LLE is G3.ST4(5)-
admissible.
Proof. We have the following derivation:

⇒ w : B ⊃ A
⇒ v : B ⊃ A

S

v : B ⇒ v : A
Le.27

v : B,wRv,Nw, ... ⇒ v : C, v : A,w : A
W

v : C,Nw, ... ⇒ ..., v : C
Le.23

wRv, v : B,Nw,w : A�C, ... ⇒ w : A, v : C
L �

⇒ w : A ⊃ B
⇒ u : A ⊃ B

S

u : A ⇒ u : B
Le.27

u : A, ... ⇒ ..., u : B
W

wRu, u : A,Nw,wRw,w : A�C ⇒ w : B �C,w : A
R � S

wRw,w : A�C ⇒ w : B �C
L �

w : A�C ⇒ w : B �C
Ref

⇒ w : (A�C) ⊃ (B �C)
R⊃

where S is like the sequent on its left (with w : C in the antecedent in place
of w : A in the succedent) and it has an analogous derivation.

Lemma 36. The rule rRW is G3.STn-admissible and RW is G3.ST4(5)-
admissible.
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Proof. We have the following derivation:

v : C, ... ⇒ ..., v : C
Le.23

⇒ w : A ⊃ B
⇒ v : A ⊃ B

S

v : A ⇒ v : B
Le.27

v : A,Nw, ... ⇒ w : C, v : B
W

wRv, v : C,wRu, u : A,Nw,wRw,w : C �A ⇒ w : C, v : B
L�

u : C, ... ⇒ ..., u : C
Le.23

wRu, u : C,Nw,wRw,w : C �A ⇒ w : C �B,w : C
R � S

wRw,w : C �A ⇒ w : C �B
L�

w : C �A ⇒ w : C �B
Ref

⇒ w : (C �A) ⊃ (C �B)
R⊃

where S is like the sequent of its left (with w : A in the antecedent in place
of w : C in the succedent) and it has a similar derivation.

Lemma 37. The rule of Modus Ponens MP is admissible in G3.STn.

Proof. An immediate consequence of the admissiblity of Cut.

Lemma 38. Becker’s rule BR* is admissible in G3.STn.

Proof. We have the following derivation:

Nw ⇒ w : �(A ⊃ B) w : �(A ⊃ B), w : �A ⇒ w : �B

Nw,w : �A ⇒ w : �B
Cut

Nu, u : �A ⇒ u : �B
S

u : A,Nu, uRu, Nw,wRu, u : �A ⇒ u : �B
W

uRu, Nw,wRu, u : �A ⇒ u : �B
L�

Nw,wRu, u : �A ⇒ u : �B
Ref

Nw,wRu ⇒ u : �A ⊃ �B
R⊃

Nw ⇒ w : �(�A ⊃ �B)
R �

where the rightmost leaf is G3.STn-derivable.

Theorem 39. (Completeness) If A is valid w.r.t. models for the logic STn
then the sequent Nw ⇒ w : A is G3.STn-derivable.

Proof. The axiomatic calculus STn is complete for validity, see Section 4.2
Theorem 17 and Section 5 Corollary 20. By Lemmas 32–38 we know that
�STn A implies G3.STn � Nw ⇒ w : A and we conclude that G3.STn is
complete for validity.

Corollary 40. The axiomatic calculi ST2 − ST5 are sound.

Proof. To prove Theorem 39 we have shown that (the sequent expressing)
each axiom of STn is derivable in G3.STn and that each rules of STn is
admissible in G3.STn. Thus the soundness of STn is implied by that of
G3.STn (Theorem 31).
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8.3. Decidability

We are now going to show that the calculus G3.ST2 is decidable by presenting
a terminating proof-search procedure that outputs a finite countermodel
for each underivable sequent. It would be possible to extend this result to
the calculi G3.ST3–G3.ST5, but the presence of rule Trans complicates the
proof. It forces indeed the use of a loop-checker since the interaction of Trans
with the rules for � might generate infinite branches where some formulas
are introduced multiples times, cf. [13]. Note that the terminating sequent
calculus for S2 presented in [17] can be seen as a terminating sequent calculus
for ST2. Nevertheless, the procedure presented below is better behaved in
that it also allows the direct construction of a finite countermodel for each
underivable sequent.

We begin by sketching the direct Tait-Schütte-Takeuti-style direct proof
of completeness for G3.ST2−G3.ST5. Notice that as a corollary we also have
a semantical proof of the admissibility of Cut.

Definition 41. A branch in a proof search in the system G3.STn from
(the root-sequent) Γ ⇒ Δ is saturated if, for every rule R of G3.STn, if
the principal formulas of R occur in the branch, the formulas introduced
by one of the premises of R also occur in the branch. In detail, a saturated
branch from Γ ⇒ Δ has to satisfy the following conditions (we omit some of
them and we use ↑ Γ (↑ Δ) to denote the multiset union of all antecedents
(succedents) occurring in that branch):

(Ax) There is no sentential variable p such that w : p ∈↑ Γ∩ ↑ Δ.

(L�) If wRv and w : A � B are in ↑ Γ, then Nw and, for some u, wRu
and u : A are in ↑ Γ; moreover v : A is in ↑ Δ or v : B is in ↑ Γ.

(R�) If Nw and wRv are in ↑ Γ and w : A � B is in ↑ Δ, then if v : A is
not in ↑ Δ, there is some u such that wRu and u : A are in ↑ Γ and
u : B is in ↑ Δ.
(Ref) for each w occurring in ↑ Γ∪ ↑ Δ the relational atom wRw
occurs in ↑ Γ.

Definition 42. Given a sequent Γ ⇒ Δ we build a G3.STn proof search
tree by applying all possible rules of the calculus G3.STn. To run through
each rule stepwise, we fix a counter. At step 1 we apply all possible instances
of the rule L¬, at step 2 all instances of the rule R¬ and so forth. Without
loss of generality, we assume that an instance of rule Ref or Norm can be
applied only w.r.t. labels occurring in the branch under consideration. There
are 11, 12, or 13 different steps, depending on the number of rules of calculus
under consideration, and at step 11, 12, or 13 + 1 we repeat step 1.
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If the construction ends we obtain a derivation otherwise we obtain an in-
finite tree. In the latter case, by König’s Lemma, the tree has an infinite
branch. It is easy to see that this branch is saturated and, therefore, it
allows to extract a countermodel.

Theorem 43. Given a saturated branch B in a proof search tree for Γ ⇒ Δ
built according to the rules of system G3.STn, we can extract a countermodel
M for the endsequent that is based on a model for STn.

Proof. Given a saturated branch B from Γ ⇒ Δ, we define the following
countermodel: M = 〈W,R,N ,V〉 such that:

• W is the set of all world labels occurring in ↑ Γ∪ ↑ Δ.

• N is the set of all labels w such that Nw ∈↑ Γ.

• wRu if and only if wRu occurs in ↑ Γ.

• V(p) is the set of all worlds w such that w : p occurs in ↑ Γ.

Notice that V is well defined by the saturation condition Ax and by the
saturation condition Ref we know that the accessibility relation is reflexive.
We define the realisation ρ such that ρ(w) ≡ w. We claim that:

1. If w : A is in ↑ Γ, then ρ |= w : A.

2. If w : A is in ↑ Δ, then ρ �|= w : A.

The proof, which is by simultaneous induction on the weight of A, is omitted
for the sake of brevity.

To conclude, we have to argue that the model defined above is a model for
STn. This is an immediate consequence of saturation under the non-logical
rules of G3.STn.

Theorem 44. (Completeness) For every formula A (and � w.r.t. relational
models in the appropriate class):

� A if and only if G3.STn � Nw ⇒ w : A

Corollary 45. The rule of Cut is semantically admissible.

We have thus shown that the procedure given in Def. 42 outputs a coun-
termodel for each underivable sequent and a derivation for each derivable
one). We are now ready to prove that G3.ST2 is decidable by showing how
to modify the procedure given in Def. 42 in order to avoid the construction
of infinite branches in a proof search tree for an underivable sequent. Given
that a branch of a G3.ST2 proof search tree can be infinite because of an
unbounded number of application of the rules Ref, L �, and R �, we have
to show how to bound the number of applications of these rules.



Proof Systems for Super-Strict Implication

Lemma 46. The rule Ref needs not be instantiated more than once on the
same label in every branch in a proof search.

Proof. By height-preserving admissibility of contraction.

In order to obtain a termination result we need to show that the number of
labels introduced in a proof search is finite. This will be done by bounding
the number of instances of rules L � and R �, which are the only rules
introducing new labels.

We say that v is an (non-trivial) immediate successor of w in the branch
B of a proof search tree if wRv occurs in B (and w �= v). Moreover, let R∗

B
denote the transitive closure relation of immediate successor. As it is easy to
check, R∗

B defines a tree which does not contain cycles except the reflexive
ones.

Theorem 47. Each label in a branch B of a proof search tree of an endse-
quent Γ ⇒ Δ has only a finite number of immediate successors.

Proof. The non-trivial immediate successors of a label can be introduced
only by applications of the rules L � and R �. The subformulas of the
formula A (which occur in a proof search) are finite, therefore if there were
infinite immediate successors there would be more than one application of
one of the above mentioned rules to the same principal labelled formulas.
We show that every derivation can be transformed into a derivation of the
same height in which every branch contains at most one application of such
rules to the same principal formulas. We detail one case of rule L � as an
example.
Nw, wRu2, u2 : A,Nw,wRu1, u1 : A,wRv, w : A � B,Γ′ ⇒ Δ′, v : A, v : A S2

Nw, wRu1, u1 : A,wRv, w : A � B,Γ′ ⇒ Δ′, v : A
L�

... DNw, wRu1, u1 : A,wRv, w : A � B,Γ ⇒ Δ, v : A S
wRv, w : A � B,Γ ⇒ Δ

L�

We transform the derivation as follows:

Nw, wRu2, u2 : A,Nw,wRu1, u1 : A,wRv, w : A � B,Γ′ ⇒ Δ′, v : A, v : A

Nw, wRu1, u1 : A,Nw,wRu1, u1 : A,wRv, w : A � B,Γ′ ⇒ Δ′, v : A, v : A
S

Nw, wRu1, u1 : A,wRv, w : A � B,Γ′ ⇒ Δ′, v : A
C

... DNw, wRu1, u1 : A,wRv, w : A � B,Γ ⇒ Δ, v : A S
wRv, w : A � B,Γ ⇒ Δ

L�

The application of the hp-admissible rules of substitution and contraction
does not introduce new applications of L� (this is easily checked).
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As a consequence, the tree of immediate successors is finitely branching. It
remains to show that in every branch the length of a chain of labels is finite.
This depends on the fact that the relation defined by the tree of immediate
successors in a proof search is intransitive. In particular, a label sees only
its immediate successors and itself (by reflexivity). Therefore the length of
a branch is determined by the number of modal operators occurring in a
formula.

Theorem 48. Every chain of labels in a branch in a proof search for the
sequent Γ ⇒ Δ is finite.

Proof. Given a chain of labels in a branch in a proof search for the sequent
Γ ⇒ Δ and a label u in the chain, every non-trivial immediate successor
of u is introduced (bottom-up) by the application of one of either L � or
R � to a formula B labelled by u. However, since every label sees only its
immediate successors, every label introduced by the analysis of u : B will
label only formulas of lesser weight. Since by definition the weight of each
formula is finite, the chain is finite.

Theorem 49. The proof search for a sequent Γ ⇒ Δ in the system G3.ST2
terminates.

Proof. The proof is immediate because in every branch the number of
labels generated is finite.

Corollary 50. The relation G3.ST2 � Γ ⇒ Δ is decidable.

Proof. By Theorem 43 we can extract a countermodel out of a saturated
branch and by Theorem 49 we know that every saturated branch can be
made finite, so we get the finite model property and the decidability of the
system.

9. Conclusion

In this article, we considered a strengthening of strict implication by im-
posing that the antecedent is possible: A�B iff �(A ⊃ B) and � A. The
connective � is known as ‘super-strict implication’. Logics of super-strict
implication are Boethian and paradox-free versions of Lewis’ logics of strict
implication that have been introduced semantically in [4,5]. In this paper
we provided two proof-theoretic characterisations of normal and non-normal
logics of super-strict implication—in a Hilbert-style proof system and in
a labelled sequent calculus. The logics ST2–ST5 investigated here can be
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thought of as super-strict companions to C. I. Lewis’ logics S2–S5 of strict
implication. First, we showed that our Hilbert-style axiomatisations of ST2–
ST5 are sound and complete for the respective semantics by simulating and
backsimulating complete axiomatic calculi for the strict implication com-
panions S2–S5. Next, we showed that our labelled sequent calculi have good
structural properties: all rules are height-preserving admissible, the struc-
tural rules of weakening and contraction are height-preserving admissible,
and the rule of cut is syntactically admissible. We also showed that each of
these calculi is sound and complete and that the calculus expressing ST2 ad-
mits for terminating proof-search and is hence decidable. We further proved
that strong Boethius thesis (BT), the headache of consequential implication
[20], cannot be added to a normal system of super-strict implication without
creating inconsistency. However, a sensible weakening of BT—by the pos-
sibility assumption of the antecedent conditional—termed ‘possibilistic BT
(pBT)’ here, is valid in normal reflexive semantics.

There is an obvious way to strengthen super-strict implication �. Namely
by imposing that the negation of the consequent is also possible: A � B iff
A�B and � ¬B. This connective has been investigated semantically [4]
(termed strong super-strict implication) and axiomatically [27] (termed im-
plicative conditional).25 There are some interesting similarities, as well as
differences. Both connectives invalidate the paradoxes of strict implication—
Antilogical Antecedent (AA) and Tautological Consequent (TC). But they
do so in different ways. Whereas � validates the negation of the first paradox
of strict implication NAA (¬(⊥�B)), � also validates the negation of the
second paradox NTC (¬(A � �)). Both connectives are weakly transitive
(wTR), validated weak Boethius Thesis (wBT) and Aristotle’s thesis (AT),
but invalidate the principles of Right Weakening (RW), Identity (ID), Sim-
plification (SI), and Strengthening the Antecedent (SA), as well as strong
Boethius Thesis (BT). But, contrary to �, � also validates Contraposition
(C) and Aristotle’s Second Thesis. Whereas � is expressible in the language
L� of super-strict implication, it is not always expressible in the language
L� of strong super-strict implication. In [27] a Hilbert-style axiomatisation
of � was given and shown to be sound and complete for reflexive normal
Kripke models. Yet non-normal versions of � are also available [5]. There
remain thus at least three open questions for �, inspired by the present
work: (1) Is it possible to provide an axiomatisation of � without using �?
(2) What about axiomatisations of � for non-normal semantics? (3) How
do systems for � behave when we add BT or sensible weakenings?

25Also suggested by Priest [21], Gomes [6], and Lenzen [10].
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In the future, we plan to extend the results presented here to the super-
strict companion of Lewis’ system S1 and to give a proof-theoretic character-
isation of logics of super-strict implication by means of an internal sequent
calculus such as hypersequents or nested sequents.
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A Deduction Theorem for ⊃ in S2 and ST2

Lemma 51. (Deduction Theorem) If A �S2 B then �S2 A ⊃ B.

Proof. Suppose A �S2 B, where without loss of generality we can as-
sume that A is not an axiom of S2. Then there is a sequence of formulas
A1, . . . , An, such that An = B and for each i ∈ {1, . . . , n} Ai is either (1) A
and thus not an axiom, or (2) an axiom, or (3) obtained by one of the three
rules from previous formulas Aj [and Ak] for j, k < i. We show by induction

http://creativecommons.org/licenses/by/4.0/


Proof Systems for Super-Strict Implication

on the length of the proof that then there is a proof of A ⊃ Ai, without the
assumption A, i.e. �S2 A ⊃ Ai.
1. Suppose Ai is A and thus not an axiom. But A ⊃ A is PT. Since Ai = A
by assumption, we have a proof of A ⊃ Ai without assuming A.
2. Suppose Ai is an axiom. But Ai ⊃ (A ⊃ Ai) is PT. Hence by MP and
the axiom Ai, we obtain A ⊃ Ai. Thus we have a proof of A ⊃ Ai without
assuming A.
3. Suppose Ai is obtained by one of the rules from previous formulas, and
assume as induction hypothesis (IH) that the property holds for these.
MP: If Ai is obtained by MP, then there are previous formulas Ak, Aj =
(Ak ⊃ Ai) such that k, j < i. By IH there is a proof of A ⊃ Ak and of A ⊃
(Ak ⊃ Ai) without assuming A. We can then construct a proof of A ⊃ Ai

without assuming A as follows. (A ⊃ Ak) ⊃ ((A ⊃ (Ak ⊃ Ai)) ⊃ (A ⊃ Ai))
is PT. But we have a proof of A ⊃ Ak and a proof of A ⊃ (Ak ⊃ Ai), both
without assuming A. Thus by two applications of MP, we obtain a proof of
A ⊃ Ai without assuming A.
rN. If Ai is obtained by rN, then there is a previous formula Aj in the proof
which is derivable without assumption and, such that Ai = �Aj , j < i and
Aj is PT, T or K. We thus have a proof of Ai without assuming A. But
Ai ⊃ (A ⊃ Ai) is PT. Hence by MP we have a proof of A ⊃ Ai without
assuming A.
BR. If Ai is obtained by BR, then there is a previous formula Aj = �(C ⊃
D) in the proof which is derivable without assumption and such that Ai =
�(�C ⊃ �D) and j < i. Then we have a proof of Ai without assuming
A. By the same reasoning as for rN, we obtain a proof of A ⊃ Ai without
assuming A.

Lemma 52. (Deduction Theorem) The deduction theorem (for ⊃) holds in
ST2.

Proof. Similar proof as in Lemma 51. Suppose A �ST2 B (assuming that
A is not an axiom of ST2). Then there is a sequence of formulas A1, . . . , An,
such that An = B and for each i ∈ {1, . . . , n} Ai is either (1) A, or (2) an
axiom, or (3) obtained by one of the four rules from previous formulas Aj

[and Ak] for j, k < i. We show by induction on the length of the proof that
then �ST2 A ⊃ Ai. Case 1 and 2 are treated by the same reasoning as in
Lemma 51.
3. Suppose Ai is obtained by one of the rules from previous formulas, and
assume as induction hypothesis (IH) that the property holds for these.
MP: Same reasoning as in Lemma 51.
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rLLE. If Ai is obtained by LLE, then there is a previous formula Aj =
(B ≡C) in the proof which is derivable without assumption and, such that
Ai = (B �D) ⊃ (C �D), j < i and Aj is PT. Then we have a proof of Ai

without assuming A. Since Ai ⊃ (A ⊃ Ai) is PT, applying MP we obtain a
proof of A ⊃ Ai without assuming A.
rRW. Same reasoning as for rLLE.
rN*. Same reasoning as for rN (noting that we can prove K* without as-
sumption).
BR*. Same reasoning as for rLLE (or for BR in Lemma 51).
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flict and Reasoning. Logic in Asia: Studia Logica Library Springer, Singapore, https://

doi.org/10.1007/978-981-15-7134-3 11, 2020, pp. 139–155.

[24] Raidl, E., Definable conditionals, Topoi 40(1):87–105, https://doi.org/10.1007/

s11245-020-09704-3, 2021.

[25] Raidl, E., Three conditionals: contraposition, difference-making and dependency, in:

M. Blicha, and I. Sedlar, (eds.) The Logica Yearbook 2020, College Publications, Lon-

don, 2021, pp. 201–217.

[26] Raidl, E., Neutralization, Lewis’ doctored conditional, or another note on “A con-

nexive conditional”, Logos & Episteme 14(1) 2023. 2023, pp. 101–118, https://doi.

org/10.5840/logosepisteme20231415

[27] Raidl, E., and G. Gomes, The implicative conditional, Journal of Philosophical Logic,

1–36 2022, forthcoming.

[28] Raidl, E., A. Iacona, and V. Crupi, The logic of the evidential conditional, The

Review of Symbolic Logic, 1–13, https://doi.org/10.1017/S1755020321000071, 2021.

[29] Routley, R., V. Plumwood, R.K. Meyer, and R.T. Brady, Relevant Logics and

Their Rivals, Ridgeview, Atascardero, CA, 1982.

[30] Stalnaker, R.C., A theory of conditionals, in N. Rescher, (ed.), Studies in Logical

Theory, Basil Blackwell, Hoboken, 1968, pp. 98–112.

[31] Tesi, M., Labelled sequent calculi for Lewis’ non-normal propositional modal logics.

Studia Logica 109(4):725–757, https://doi.org/10.1007/s11225-020-09924-z, 2021.

[32] von Fintel, K., The presupposition of subjunctive conditionals, in U. Sauerland,

and O. Percus, (eds.), The Interpretive Tract : MIT Working Papers in Linguistics

25:29–44, 1998.

https://doi.org/10.1007/978-3-030-71258-7_13
https://doi.org/10.18910/9565
https://doi.org/10.1023/A:1004230028063
https://doi.org/10.1023/A:1006294205280
https://doi.org/10.1023/A:1006294205280
https://doi.org/10.1017/S1755020318000199
https://doi.org/10.1007/978-981-15-7134-3_11
https://doi.org/10.1007/978-981-15-7134-3_11
https://doi.org/10.1007/s11245-020-09704-3
https://doi.org/10.1007/s11245-020-09704-3
https://doi.org/10.5840/logosepisteme20231415
https://doi.org/10.5840/logosepisteme20231415
https://doi.org/10.1017/S1755020321000071
https://doi.org/10.1007/s11225-020-09924-z


G. Gherardi et al.

[33] von Fintel, K., Counterfactuals in a Dynamic Context, in Kenstowicz, M., (ed.),

Ken Hale: A Life in Language, MIT Press, Cambridge, MA, 2001, pp. 123–152.

[34] Wansing, H., and H. Omori, A note on “a connexive conditional”, Logos & Episteme

XIII(3):325–328, 2022.

G. Gherardi, E. Orlandelli

Department of the Arts
University of Bologna
Via Azzo Gardino 23
40122 Bologna
Italy
guido.gherardi@unibo.it

E. Orlandelli

eugenio.orlandelli@unibo.it

E. Raidl

Cluster of Excellence “Machine-Learning for Science”
University of Tübingen
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