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Biomarkers are widely used not only as prognostic or diagnostic
indicators, or as surrogate markers of disease in clinical trials, but
also to formulate theories of pathogenesis. We identify two
problems in the use of biomarkers in mechanistic studies. The first
problem arises in the case of multifactorial diseases, where
different combinations of multiple causes result in patient hetero-
geneity. The second problem arises when a pathogenic mediator is
difficult to measure. This is the case of the oxidative stress (OS)
theory of disease, where the causal components are reactive
oxygen species (ROS) that have very short half-lives. In this case,
it is usual to measure the traces left by the reaction of ROS with
biological molecules, rather than the ROS themselves. Borrowing
from the philosophical theories of signs, we look at the different
facets of biomarkers and discuss their different value and meaning
in multifactorial diseases and system medicine to inform their use
in patient stratification in personalized medicine.
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Molecular biomarkers can be defined as substances whose
levels correlate with some pathological process. They are

used as diagnostic or prognostic indicators and to monitor the
progression of disease in clinical trials (surrogate biomarkers)
but also to formulate theories of disease. We recently discussed
the problems related to the use of molecular biomarkers of ox-
idative stress (OS) (1, 2) in the context of the clinical translation
of the OS theory of disease (3). The present paper attempts to
develop a theoretical framework for defining the different types
of biomarkers using those of OS or inflammation as examples.

Inflammation and the Cytokine Theory of Disease
Inflammation is largely mediated by activation of a gene ex-
pression profile, largely mapping to the transcription factor NF-
κB, including inflammatory cytokines, adhesion molecules, and
enzymes involved in the synthesis of prostaglandins and nitric
oxide. The most recent breakthrough in this field was the iden-
tification of inflammatory cytokines that led to the approval of
specific inhibitors of IL-1, IL-6, IL-17, and TNF for the ther-
apy of several inflammatory diseases, particularly rheumatoid
arthritis (RA).
Following identification of TNF as an inflammatory mediator

(4), the availability of specific assays for its measurement in bi-
ological fluids of patients with RA were instrumental in the
translation of that hypothesis into the clinical arena (5) and the
formulation of a “cytokine theory of disease” (6). Just 14 y after
the original finding, anti-TNF antibodies were a top selling
biological drug.

The OS Theory of Disease and the Use of Indirect Biomarkers
OS is due to elevated levels of reactive oxygen species (ROS) (7).
Since the 1956 paper postulating a “free radical theory of aging”
(8), OS has been implicated as a causal factor in many diseases

(3), but unlike the cytokine theory of disease, this has not led to
any significant therapeutic breakthroughs.
A major problem with the OS theory is that it is practically

impossible to measure ROS in biological fluids because of their
very short half-life, ranging from microseconds for superoxide
and nanoseconds for hydroxyl radicals (9). This difficulty applies
of course to the measurement of ROS in patients and their bi-
ological fluids or biopsies, while generation of ROS by cells
cultured in vitro can be measured more accurately.
This is reminiscent of high-energy physics, where the short life

of subatomic particles is such that these are detected only though
the traces they leave during their decay. Likewise, OS bio-
markers include oxidation products of biological molecules (2).
Unlike cytokines, we cannot measure ROS, but we measure
“signs” that stand for them instead, and in this paper, we try to
look at biomarkers from the perspective of different philosoph-
ical theories of signs.
To do so, we will first recapitulate some key aspects of the main

theories on signs that might be relevant to our problem and attempt
to draw links and similarities with biomarkers of inflammation and
OS and their use in formulating theories of disease.

Concepts Arising from Various Theories of Signs
In the theory of signs of Charles Pierce (https://plato.stanford.
edu/entries/peirce/), a sign is “something which stands to some-
body for something in some respect or capacity” (10). For Pierce,
a sign is a component of a triad along with the interpretant and
the object, or the “thing” the sign stands for. For instance, smoke
is a sign for fire. If we (the interpretant) see smoke coming from
behind a mountain, we assume that there is a wildfire somewhere
(Fig. 1).
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Pierce distinguishes different types of signs. While the smoke
in Fig. 1 is called an index, a street sign depicting a fire is also a
sign that resembles, but is not physically related to, the object,
which is an icon. A sign can stand for an event or an object, and
one can distinguish different types of signs based on the re-
lationship he or she has with the object.
The linguist Ferdinand de Saussure saw the language as a

system of signs, where signs are related to other signs within the
system, which led him to develop the concept that signs have a
meaning (signification) but also a value. For instance, the knight
in the game of chess is a sign and has a meaning, the gentleman/
soldier. However, it also has a value, but to appreciate that we
need to see the knight in relation to the network of the other
pieces in the game, its position on the chessboard, and the rules
of the game. Although the difference between value and meaning
in de Saussure is not completely clear, we suggest that, for the
use we will make of this concept, we consider value as something
related to quantity (justified in this by the fact that de Saussure
also used the example of the face value of a coin). We will de-
velop later this concept that signs have a value that depends on
the interactions among them.
Floridi (11) recently analyzed the differences between signs

and proxies. Floridi’s concept of proxy is different from that of
Wittgenstein, where “being proxy for” means “denoting,” fo-
cusing instead on signs that exert an action and on the direction
of this action. Let us take the example of when, in Italian and
French law, it is the major who can perform a wedding, but a city
councillor can act on behalf of the mayor. This has been defined
as a vicarious relation, where P is acting for R (the mayor).
However, the direction of the action is one way, from R to P; a
wedding conducted by a councillor is perfectly valid, but if we
shoot the councilor, the mayor will not die. If this was the case,
then the councillor would be a proxy for the mayor.
This difference is outlined in Fig. 2.
What we want to retain here is that signs can be classified

based on their functional relationship with the object and that a
proxy relationship goes both ways and you can interact on the
proxy to affect the object to which it refers.
In this analysis, Floridi distinguishes further between two types

of signs with a vicarious relation: those that are also signs that
refer to R, in the sense they have a semiotic relationship with R,
and signs that can act on behalf of/replace R but do not refer to
it. The latter are defined as surrogates (e.g., a PIN pad is a sur-
rogate for a traditional key as it can perform the same function
to open a door but has no resemblance to a physical key).
Another concept that we would like to develop is that of the

degrees of separation between the sign and the object for which it
stands, using again the example of smoke as a sign for fire. If there
is a fire behind a mountain, the park ranger will see the smoke
from an observation tower and call the fire department. Let us
assume we are sitting in a café from a point from which we cannot

see either the fire or the smoke. If we see several fire trucks with
lights and sirens, we assume there is a fire, even if we cannot see
smoke. Now, let us say we are at home and we do not live by the
main road. We do not see the fire, we do not see the smoke, and
we cannot see the fire trucks, but we hear several sirens going by;
we can still assume that there is a fire somewhere.
We could say that, in this system, while smoke is directly re-

lated to fire (in the previous scheme), the passage of the fire
trucks is a sign that is one degree of separation from the object of
fire. Likewise, the sound of the sirens will be two degrees of
separation from the fire.

Fire→ smoke− ðranger  on  observation  towerÞ
→ fire  trucks→ siren.

Importantly, the more degrees of separation there are from the
object, the more the sign is ambiguous (less specific). The sign
that is closest to the object, smoke, normally really means a fire.
Four or five speeding fire trucks (one degree of separation) are a
good indicator that there is a fire, but they may be there for an
accident. Hearing several sirens (two degrees of separation) is
not a very specific sign of a fire, as the sirens may be police cars
or ambulances called for an accident. Thus, the degrees of sep-
aration between the object and the sign are important in the
specificity of the signification.

The Examples of Diabetes, Inflammation, and OS
We will try to analyze two examples of molecular biomarkers
used to define disease mechanisms, bearing in mind the points
retained from the discussion above, particularly the concept of
proxy and that of degrees of separation.
Let us start with a simple example. At the origin of diabetes,

there is a lack of production of, or response to, insulin. As a result,
blood glucose increases, leading to a number of pathological
consequences. The blood level of glucose is a diagnostic biomarker
for diabetes. In 1976, Cerami and colleagues (12) discovered that
exposure to high blood glucose resulted in the formation of gly-
cated hemoglobin (HbA1c; Fig. 3). Both high levels of glucose and
HbA1c are signs of diabetes. However, HbA1c is, for kinetic rea-
sons, a better diagnostic biomarker (13), even if it is more distant
(two degrees of separation) from the mechanism of disease.
Let’s look at the same scheme from the perspective of the

identification of the mechanism of disease, or its therapy. High
glucose has pathological consequences, and lowering its levels
is good for the patient. However, drugs specifically targeting
HbA1c would not modify the disease. While it may be a good
surrogate biomarker in developing antidiabetic drugs, HbA1c is
not a proxy and acting on it will not act on the disease. In fact,
some drugs, such as dapsone, reduce the levels of HbA1c, but
this does not make diabetic patients better (14).
A more complicated picture can be drawn for inflammatory

diseases, such as RA. To make our point, we have drawn an
oversimplified scheme of the inflammatory network in RA, in-
volving only a few mediators (Fig. 4). In this scheme, autoim-
munity induces Th17 cells that, through the cytokine IL-17,

Fig. 1. The semiotic triad.

Fig. 2. Direction of activity in proxies.
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activate macrophages to produce inflammatory cytokines (IL-1,
IL-6, and TNF). The IL-1 produced by macrophages activated
earlier is also a major inducer of IL-17. These will cause swelling
or tissue damage, either directly or via prostaglandins such as
PGE2. IL-6 also acts on the liver to induce acute-phase proteins
such as C-reactive protein (CRP) and fibrinogen, and to de-
crease the synthesis of albumin.
IL-17 is directly related to autoimmunity, one degree of sep-

aration, while IL-1 and TNF are two degrees of separation away,
IL-6 both two and three, and PGE2 and CRP four. Although the
cytokines listed (IL-1, IL-6, IL-17, and TNF) are elevated in RA
patients (15), only CRP is an established biomarker of disease
(16) and is used both for diagnosis and as a surrogate marker in
clinical trials.
In terms of disease mechanism, however, IL-17, IL-1, IL-6, and

TNF are proxies. Acting on them, we act on the disease, and
antibodies that neutralize these cytokines are approved therapies
for RA. On the other hand, CRP is normally viewed as a pro-
tective molecule, and its absence, in animal models, is not pro-
tective against arthritis (17, 18); therefore, CRP can be considered
a sign, possibly a surrogate, but not a proxy.
Let us now consider OS. According to its definition (7), OS

occurs when the concentrations of ROS increase. One of the
most reactive ROS is the hydroxyl radical (OH·), which reacts
with lipids to initiate a chain reaction called lipid peroxidation
and nucleic acids. Its short half-life forces us to use biomarkers
that are the result of its interaction with those biological mole-
cules, and we will consider two of them.
Fig. 5A shows how OH·, by initiating lipid peroxidation, results

in the generation of malondialdehyde (MDA; probably the most
used OS biomarker). Another biomarker used as an indirect
indication of OH· formation is 8-OH-guanosine (8-OH-G; Fig.
5B). From the point of view of the distance, MDA is at >6 de-
grees of separation from OH (several chemical reactions are
required), while 8-OH-G has only two degrees of separation.
This distance raises the problem of the specificity of these bio-
markers. In fact, MDA is produced not only by OH· but also
during arachidonic acid metabolism and is used as a marker of
cyclooxygenase (19).
Another question is whether OS biomarkers can be proxies.

The main problem with the OS theory of disease is the difficulty
of measuring the causative agents, ROS, unlike the cytokine
theory of disease or the germ theory of disease, where cytokines
and microbes can be measured in biological fluids. This means
that none of the biomarkers of OS used in most of the studies
are proxies.

Mathematical and Statistical Method for the Validation of
Mechanistic Biomarkers and the Problem of Multicausality
When novel biomarkers are proposed, they are usually measured
in a cohort of patients compared with healthy people or patients
with unrelated disease. Then, a statistical comparison of the
levels among two or more groups is done using the classical
frequentist statistics, which calculates the probability that there is
no difference between the two groups (the theoretical null hy-
pothesis) (20). Another approach is to assess the probability that
the biomarker levels correlate with the severity of a disease, a
clinical score, or an outcome. The limitations of approaches
based on the null hypothesis significance testing, with its di-
chotomization of evidence, have been discussed recently (21).

The size of the patient population investigated is also decided on
the basis of conventional “power analysis,” usually designed to
meet the goals of the classical significance testing (22).
The problem of validating biomarkers that we can use to build

theories of disease, be they proxies (such as TNF or IL-6) or just
signs (such as CRP or 8-OH-G), is that while the usual statistical
approach may be useful for surrogate biomarkers, we can apply it
to mechanism biomarkers only for diseases that have a single
cause, while many diseases are multifactorial, a result of multiple
causes. This is typically represented by the so-called Rothman’s
causal pies (23). We could assume, for instance, that RA de-
velops when a number of component causes add up to form a
sufficient cause (the pie). However, the same disease could de-
velop by a different combination of component causes to make a
different sufficient cause.
OS has been implicated as a causal component in many dis-

eases, including RA (3). Clearly, it must be a component cause
because not all people with evidence of high OS develop RA.
The question then arises, If OS is a slice in the causal pie for RA,
is it a necessary component cause? That would mean that OS is
always needed for the disease to develop, and therefore, all
patients with RA will have OS (in red, Fig. 6A).
However, it is also possible that OS is a component cause only

in one of the many possible sufficient causes, as in this case OS
will be present in some patients but not in others. In this case,
not all of the patients with RA will have OS; only those with one
specific sufficient cause (Fig. 6B). These two possibilities are
represented along with the third possibility (Fig. 6C), whereby
OS is, alone, a sufficient cause of RA and is present in all
patients.
If we measure biomarkers of OS in these patients, the classical

statistical approach using the null hypothesis significance testing
would only give a positive result in the case of mechanisms A and
C. In the case depicted in Fig. 6B, if OS was implicated only in
some patients, we would not find a significant difference in the
level of biomarkers in a cohort of patients compared with healthy
controls or a correlation with disease severity/outcome. Classical
statistics has ways to analyze subpopulations of patients by
stratification for covariates (e.g., gender, ethnicity, age etc.), but
this would not help.
What is needed here is to first validate that higher levels of a

biomarker signify that OS is present in a specific patient and then
use that biomarker to identify those RA patients that have OS.
It is difficult to name a clinically validated biomarker of OS

Fig. 4. Simplified pathogenesis of RA (pictures: Wikimedia commons).

Fig. 3. Simplified scheme of the pathogenesis of diabetes.
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because there are no clinical conditions where OS is present in
all patients (although radiation toxicity and ozone toxicity would
get close) (24). Considering the additional problem of lack of
specificity, it would be appropriate to use a different approach.
We need to confirm that, in each patient, higher ROS levels are
produced by measuring several OS biomarkers: We need to
disambiguate the meaning of a sign. Exactly as it happens when
we disambiguate the meaning of words, we need to look at the
context. If we read a paper where MDA is measured in a study
on diet and OS, we know its meaning is as a biomarker of OS,
while if the context is that of a drug acting on platelet activation,
we can extrapolate that MDA is intended as a biomarker of
arachidonate metabolism.
In patients, to find the value of a biomarker and to validate it

as an indicator of OS, one approach to disambiguate its meaning
could be to look at another OS biomarker—another sign in the
same system. Thus, in biomarkers, we need to see them in the
context of other biomarkers in the same system also to disam-
biguate their meaning, not just to appreciate their value.
Along the line of “systems of signs,” another possibility is that,

before any statistical analysis, we visualize the data in a network,
both to identify potential patient subpopulations and to disam-
biguate the meaning of the biomarkers measured.
We performed a proof-of-principle analysis of the levels of

various OS biomarkers in different diseases (2). The data, obtained
from published literature, consisted of a spreadsheet with different
diseases and, for each of them, the OS biomarker that was re-
ported elevated in that disease. These data were analyzed using
hierarchical cluster analysis to visualize the similarities between
different diseases in terms of pattern of OS biomarkers (2).
A second type of visualization is based on a network analysis,

originally used to identify the “diseasome,” by which different
diseases are connected based on genetic risk factors, subsequently
extended to protein–protein interactions (25–27).
Using published data (2), we have created a disease network

based on the common OS biomarkers, as described in Methods.
The result is shown in Fig. 7, which depicts the vicinity of dis-
eases based on commonly elevated biomarkers.
This type of analysis, applied to biomarkers related to differ-

ent disease mechanisms (inflammation, OS, autoimmunity, viral
antibodies, etc.), could be used to identify diseases with common
pathogenic mechanisms. It could also be applied to patients with
a single disease to identify patients with different causal com-
ponents to assign each patient to a hypothetical Rothman’s
causal pie. This approach might then be followed by correlation
analysis and classical significance testing to assess whether dif-
ferences in the levels of biomarkers among different subgroups
are robust. Along this line, a Bayesian latent hierarchical model

has been proposed to identify metapatterns of biomarkers in a
different cohort to facilitate hypothesis generation (28).

Constraints in Biomarker Discovery
Several conventions limit the study of biomarkers that identify
causal components of disease. Statistical analysis based on the null
hypothesis significance testing is a prerequisite for publication
in what has been defined a “lexicographic decision rule” (21).
Funding agencies and ethical committees require a standard “re-
search methodology” involving the use of power analysis to
identify patients’ group size, tailored to satisfy classical significance
testing. For this reason, most of the studies on the diseasome
published so far have been done analyzing published literature or
databases rather than with laboratory or clinical studies.
Another constraint is the drive to develop diagnostic/prognostic

biomarkers to meet real clinical needs (such as diagnosis of cancer)
or drug development needs, where surrogate biomarkers are used
for the approval on new drugs instead of clinical outcomes (29).
These constraints favor the discovery and validation of biomarkers
that often do not provide an indication on the mechanism of disease.
Let us go back once more to the OS theory of disease and the

various possibilities outlined in Fig. 6. It is possible that OS is a
causal component in RA, but it is also possible that it is a con-
sequence of the disease—for instance, secondary to inflamma-
tion or joint damage. If OS is a causal component and the
disease has multiple causes as in Fig. 6B, we will not be able to

Fig. 6. Different causal models for the OS theory of disease. Oxidative stress
(in red) can be a component cause necessary but not sufficient (A) or not
necessary (B). It can also be a sufficient cause of disease (C).

Fig. 5. Reactions leading to the formation of (A) MDA and (B) 8-OH-G.

Fig. 7. Disease vicinity based on OS biomarkers, based on data from ref. 2.
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find a statistically significant difference between a healthy group
and a disease one. However, if OS was not a cause but a result of
the disease—that is, a “biochemical symptom” or a causally ir-
relevant by-product—then it would be present in all patients and,
possibly, correlate with disease severity. Paradoxically, in multi-
causal disease, the more distant the biomarker is from the
mechanism of disease, the more likely it is that it will be validated
(and published) using classical significance testing. For instance, in
Fig. 4, CRP is a better biomarker than IL-17 or TNF. Conven-
tional statistical analysis and study design will favor the identifi-
cation of a causally irrelevant prognostic biomarker even when the
study was aimed at investigating the mechanism of the disease.

Artificial Intelligence, Big Data, and the Problem of the
Interpretant
For Pierce, the interpretant in Fig. 1 is a human mind, and all of
the discussions in this paper implied a researcher/practitioner
interpreting the meaning. If a biomarker is the carrier of a mes-
sage, in medical semiotic, “an observation that does not convey a
message is not a sign” (30). However, -omics and big data may
generate messages not intelligible to a human. An example is the
use of gene expression profiling to identify arthritis patients that
would benefit from biologicals. These studies analyzed the ex-
pression of tens of thousands of genes in drug-responsive and
nonresponsive patients and identified algorithms, derived from the
expression of up to 200 genes and cluster analysis, that correlate
with drug responsiveness (31, 32). Only a few of these genes will
have a place in the theories about the mechanism of disease, be-
cause the function of many of them is not known, and the cluster
will have no meaning for the human interpretant.
This will require an entirely different approach and raises the

challenging question on whether the theories of signs and the
concept of “meaning,” and their application to biomarkers, need
to be modified when interpreting big data. This is similar to the
example cited by Evans on GPS navigation: “The physical world

is translated into a database of instructions and distances, and
interpreted by the application into a route to follow. . . . The
application then presents the world back to the user in a medi-
ated form . . . which is used to navigate the route” (33). Clearly
an algorithm, or cluster of genes and transcripts, can represent a
surrogate sign, as it can act on behalf of/replace the disease (and
be used, for instance, as secondary outcomes in a clinical trial)
without referring to it.
While the focus on biomarkers generated by high-throughput

techniques has been on their diagnostic and prognostic use, their
use in building mechanistic theories of disease will require a
different theoretical and statistical approach. This is important in
mechanism-based patient stratification and in the translation of
the concept of personalized medicine.

Methods
The data were processed in GNU R and visualized as a graph. Thereafter, the
graph was saved in a format that can be loaded into Gephi for exploratory
analysis. The source data are represented as a matrix where each row in the
matrix represents whether each of the 20 biomarkers indicates the presence
of a disease. In general, either a biomarker is elevated in a disease, according
to the small sample of the literature analyzed, or it does not. The binary
nature of these observations lends themselves to computing the similarity of
diseases using a Jaccard index (34). The Jaccard distance between diseases is
normalized between 0 and 1. The more similarity between diseases, the
closer their Jaccard distance is to 0. The computed matrix of Jaccard dis-
tances is then transformed into a matrix of edge weights and presented
using a force-directed graph layout algorithm (35). In our graph layout, the
diseases are visualized as graph vertices. The edges of the graph are
weighted with the inverse of their Jaccard distance. Graph edges with a
weight of 1 indicate a strong attraction between the vertices, whereas graph
edges with a weight of 0 indicate no attraction between the vertices. The
graph layout is computed using the DrL algorithm, and the results are saved
to a Gephi file. The visualization code is available at https://github.com/
AidanDelaney/DiseaseViz.
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