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How are teams able to cope with environmental threats? Why are some teams better than others in facing this challenge? This paper
addresses these questions by investigating two drivers of team resilience: the team size and the density of social interactions among
team members. We adopt a complex system approach and employ a model of team decision-making where collective dynamics of
team members are governed by a continuous-time Markov process. The model simulates team performance in complex and
turbulent environments. It is used to measure the resilient ability of team to quickly adapt to disturbance and secure a new more
desirable condition. Scenarios characterized by increasing levels of complexity and turbulence are simulated, and the resilience
performance is calculated and compared. Results show that the team size negatively affects the team resilience, whilst the density
of social interactions plays a positive influence, especially at a high level of complexity. We also find that both the magnitude

and the frequency of disturbance moderate the relationship between team size/density and the team resilience.

1. Introduction

Nowadays, the complexity, the uncertainty, and the turbu-
lence of the competitive environment continuously threat
the survival of organizations. Unpredictable and large dis-
ruptive events undermining their performance are more
and more frequent, from natural disasters such as hurricanes,
earthquakes, seaquakes, and volcanic eruptions to terrorist
attacks, human errors, and market disruptions [1-4]. Orga-
nizations not only experience sudden and occasional envi-
ronmental jolts but also continuously undergo periodic
shifts in demand, competitors, and regulations, which make
their competitive position uncertain [5]. This situation is
further complicated by the growing global interconnected-
ness of the environment where organizations live. Never
more than now, organizations are embedded in multiple
web of interactions with suppliers, customers, competitors,
and institutions [6], which affect their performance in a com-
plex, unpredictable, and nonlinear manner.

To survive and succeed in this scenario, organizations
should be resilient [7]. Organizational resilience is the ability

of a system to cope with perturbations, failures, and threats,
by absorbing the disturbance [8-10], and/or to quickly
recover, so as to restore its functions [2, 11, 12].

The theory of organizational resilience explains how
individuals, groups of individuals, and organizations as a
whole are able to provide positive outcome and desirable
performance under challenging and critical conditions. It
includes the ability to rebounce from stressing situations,
thus reducing the impact of the disruptions, but it also looks
beyond entailing the ability of managing disruptions and
unexpected events and maximizing the speed of recovery to
the original or to a new more desirable condition [2, 13].
Accordingly, organizational resilience involves two main
dimensions: (i) resistance to change and (ii) adaptive capacity
[14, 15]. The theory of organizational resilience explains why
some organizations can exist and thrive in complex environ-
ments with unpredictable, nonlinear, and nonincremental
change, while others do not.

Despite the great amount of research on the topic, the
theory of team resilience is still underdeveloped [16].
Team-based structures show higher resilience than hierarchy
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and bureaucratic mechanisms [4]. For example, in [17], the
authors find that teams are a fundamental source of resilience
in health and social care sectors.

At the team level, the theory of resilience investigates how
individuals, acting collectively, enable the organization to be
resilient. The majority of studies have investigated the behav-
ioral and psychological characteristics of team members
associated with high ability of the team to provide positive
outcome and desirable performance, under challenging and
critical conditions [18-21]. More recently, however, scholars
have highlighted that grouping together resilient individuals
is not a sufficient condition to make the team, as a whole,
resilient. Resilience is, in fact, socially enabled and developed
via the interactions and relations between the elements of the
system [7, 11].

Thus, in order to properly investigate team resilience, it is
important to focus on the interactions among individuals
rather than on the individual’s level of knowledge, skills,
and abilities. This complex network of interactions influences
both the development and the realization of resilience [15].
Team resilience spontaneously emerges from the actions of
team members and their interactions. In this paper, we study
the determinants of team resilience coherently with this
approach, that is, focusing on the network of social interac-
tions among the individuals in the team.

In particular, while previous studies have characterized
interactions from social and psychological points of view,
focusing, for example, on social capital [22] and emotional
expression [23], we study the structural features of the social
network resulting from the interactions among team mem-
bers. We analyze the effect of size and density on team resil-
ience, two aspects not yet investigated in the literature. Both
variables influence the performance of collective decision-
making, thereby affecting the ability of the system to adapt
to disturbances. Resilience is measured in terms of efficacy
of the team in performing a task when the environment is
turbulent. Two dimensions are used to characterize the
turbulence of the environment: (1) the magnitude of distur-
bance and (2) the frequency of the disturbance. The magni-
tude corresponds to the extent to which the event is critical
for the team performance. The frequency corresponds to
the dynamicity of the change. In particular, we investigate
how and whether size and density influence team resilience
and study the moderating role played by the magnitude and
the frequency of disturbance on this relationship.

To accomplish our research aim, we use simulation as
research methodology and adopt the model developed first
by Carbone and Giannoccaro [24] and then by De Vincenzo
et al. [25], which reproduces how individuals collectively
make decisions in complex but static environments. Several
agent models can be found in the literature aimed at repro-
ducing the decision-making process in groups [19-21, 26,
27]. In our model, the team is framed as a complex system
made up of agents (individuals) making decisions and their
social interactions. Individuals make decisions pushed by
two drivers: (1) the improvement of a fitness level by mea-
suring, on the basis of members’ knowledge, how good the
decisions are for the organization and (2) the seeking of
consensus with the other interacting members.

Complexity

The fitness levels associated with the decisions are gener-
ated following the classical NK fitness landscape procedure
[28-31], where N corresponds to number of decisions and
K to the interdependence among the decisions. N and K con-
trol the complexity of the environment. Consensus seeking is
modelled by using the Ising-Glauber dynamics [32].

This research methodology is chosen for several reasons.
It is consistent with a long tradition of creating simple yet
insightful models of the organizations as complex adaptive
systems, by means of NK fitness landscape in both single-
firm [31, 33-36] and multifirm [37-42] contexts. In these
stream of studies, the organization is supposed to search for
high-performing combinations of N interdependent deci-
sions (choice configurations) [43]. Therefore, the organiza-
tion is solving a decision-making problem interpreted as a
performance landscape. In particular, the NK fitness land-
scape consists in the map of all the choice configurations
onto the attendant performance. The organization under-
takes an adaptive walk on the fitness landscape to discover
the highest peak. The merit of NK fitness landscape is allow-
ing the modeler to control and fine-tune the environmental
complexity and turbulence in an easy manner [33].

According with this approach, in our model, we study
the team as a complex adaptive system made up of individ-
uals collectively searching on the performance landscape.
Since the environment is turbulent and disturbances occur,
the team, as a whole, adapts to change and reacts to the dis-
turbance by choosing new combinations of decisions in
order to reach the same or a better performance than those
before the disruption. For this reason, our model belongs
to the class of models studying resilience according to a
dynamics perspective.

A further merit of our approach is that team resilience
emerges from the bottom as the spontaneous result of indi-
viduals’ actions and their interactions. It is a collective prop-
erty and not simply the result of the existence of resilient
individuals forming the team. This permits to shed light on
the relationship between individual actions and organiza-
tional resilience, being this a crucial point to be further inves-
tigated and clarified [15]. To model the influence of social
relationships, we employ the Ising-Glauber dynamics [32].
The Ising methodology has been successfully employed in
social science, economics, and management science, to
model the complex dynamics of opinion formation inside
groups, by also considering that each individual opinion is
affected by the opinion of his/her neighbors [24, 44-48].
The reason for employing the Ising-Glauber dynamics in a
team context is justified by social influence theory. This the-
ory argues that individuals make changes to their feelings,
behaviors, and decisions, as a result of the interaction with
the others [44]. Therefore, this model applies very well to
teams, where individual’s decision is affected by the opinion
of neighbors or interacting members [24, 25, 44-46, 49-51].

In this paper, we simulate the team dynamics in environ-
ments characterized by increasing complexity and increasing
levels of disturbance both in magnitude and frequency. We
then compute resilience performance. Finally, a simulation
analysis is carried out to investigate the influence of team
size and density of interactions on team resilience. Multiple
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scenarios are considered, consisting of teams with different
sizes and densities of social interactions.

Our study shows that the team size negatively affects the
team resilience. Furthermore, both the magnitude and the
frequency of disturbance negatively moderate the relation-
ship between the team size and the team resilience. As to
the density, we find that the density of social interactions pos-
itively influences the team resilience, while the magnitude of
disturbance (frequency) negatively (positively) moderates
the relationship between the density and the team resilience.

The paper is organized as follows. We first provide the
theoretical background of the study, by underlying the defini-
tions of organizational resilience and carrying out a brief
review of its main drivers. Then, we describe the model of
team collective decision-making in terms of dynamics, model
of environment, and performance. Successively, we discuss
the simulation analysis carried out using the model, and the
results are achieved. We end with conclusions concerning
limitations and further research.

2. Organizational Resilience

2.1. Definitions. Resilience is both a multifaceted and multidi-
mensional concept [52]. The term originated in ecology and
environment field of studies and was introduced by Holling
[8], who defined the resilience of an ecosystem as its ability
to absorb change and still exists. Resilience is related to stabil-
ity and the ability of the system to return to the original equi-
librium after perturbation.

Since Holling’s seminal contribution, the concept has
attracted the attention of scholars in multiple and even dis-
tant fields such as physics, engineering, psychology, com-
puter science, economics, and management. It has been
applied to multidisciplinary contexts, such as energy supply
networks, supply chains, organizational teams, computer
networks, transportation, and financial systems.

Despite this multidisciplinary nature, scholars agree with
the definition of resilience recognizing two main perspec-
tives, that is, the static and dynamic ones [13, 14, 53]. The
resilience is static when it focuses on the ability of the system
to absorb disturbance and bounce back to the original equi-
librium state, maintaining its core functions when shocked
[6, 9]. In such a case, the resilience is tied to the property of
hardiness and robustness of materials, as the ability to
recover the original shape and features once stretched. The
dynamic perspective focuses on the ability of the system to
evolve over time moving towards the original but even new,
more favorable equilibrium state [2, 54, 55]. Rather than
focusing on the ability of the system to resist to change,
this perspective puts the attention on the adaptive capacity
of the system, which is able to react to disturbance by
changing its structure, processes, and functions in order
to increase its ability to persist [56]. In this case, the sys-
tem is resilient not because it is able to absorb disturbance,
preserve organizational functioning, and recover but because
it adapts to change.

These two opposite perspectives of resilience are impor-
tant especially for organizational systems, because different
organizational features are required to provide them. The

ability to resist to change needs to develop a “defence”
approach to the threat [16]. In such a case, organizations
should provide themselves of monitoring capability to detect
and anticipate the critical event and should consider to
increase diversity and redundancy of resources [57].

The adaptive capacity needs an “offence” proactive
approach. In such a case, the disturbance is seen as an oppor-
tunity not a threat and resilience requires the ability to acti-
vate, combine, and extend the resources as the adverse
conditions arise [2]. Resilient organizations activate positive
feedback loops that refine and strengthen their capabilities
in order to avoid rigidity and create opportunities from the
adverse situations [15].

Finally, even though in the majority of studies the
organizational resilience is viewed as a positive characteris-
tic, a recent contribution [16] recognizes that it can be
desirable or undesirable, depending on the system state.
When the system operates at not desirable conditions for
key stakeholders, resilience is a negative property because
it pushes the system to resist change and restore a nega-
tive state.

2.2. Drivers of Organizational Resilience. There is a limited
literature that explores the drivers of organizational resilience
[4]. The psychological school notes that the resilience of
organization “builds on the foundation of the resilience of
members of that organization” [12]. Individual resilience is
defined as “the capacity to rebound or bounce back from
adversity, conflict, failure, or even positive events, progress,
and increased responsibility” [58]. It depends on behavioral
and psychological traits of individual. Werner and Smith
[59] find that resilient individuals are characterized by prob-
lem solving abilities, favorable perceptions, positive rein-
forcement, and strong faith. Masten [60] identifies cognitive
abilities, temperament, positive self-perceptions, faith, a
positive outlook on life, emotional stability, self-regulation,
a sense of humor, and general appeal or attractiveness as
potential assets that can contribute to higher resiliency. Fisk
and Dionisi [61] investigate self-monitoring, self-efficacy,
self-evaluation, the five personality traits, and emotional
intelligence. Coutu [62] finds that common features of resil-
ient individuals are the acceptance of reality, the belief that
life is beautiful, and ability to improvise.

At the organizational level, resilience should be seen as
much as an individual trait [63]. Organizational resilience is
rooted in the complexity “logic.” It is more than the addi-
tive combination of individual capabilities [64]. It is a col-
lective and emerging capacity of the system resulting from
both the actions of individuals and their interactions [15].
For example, assembling a group of resilient individuals
does not assure to obtain a resilient team. The lack of com-
munications, the existence of conflicts concerning leader-
ships and decisions, and the lack of a social identity can
undermine the ability to react and quickly adapt to a chang-
ing environment [65].

In this respect, the network of complex interactions
among individuals is critical to enhance resilience. Good
relations and constructive interactions are recognized as
key features to enhance team resilience [58]. Stephens



et al. [23] find that the quality of emotional expression
characterizing interactions is a source of team resilience.
Morgan et al. [18] show four main resilient characteristics
of elite sport teams: group structure, mastery approaches,
social capital, and collective efficacy.

Organizational resilience is also related to the organiza-
tional structure. Decentralized decision-making structures,
network approaches, and team-based organizations show
higher adaptive capacity than hierarchy and centralized
authority [4, 66, 67].

3. The Model

We consider a team of M individuals collectively perform-
ing a task in a complex and turbulent environment. The
team decision-making process is modelled referring to
the model first developed by Carbone and Giannoccaro
[24] and then by De Vincenzo et al. [25]. Here, the team
is engaged in solving a combinatorial decision-making
problem, consisting in identifying the combination of mul-
tiple and interdependent decisions, yielding to the highest
payoff for the organization. For example, consider a sourc-
ing team which is assigned with the task to procure raw
materials for a company. This task can be conceptualized
in terms of interdependent decisions, such as looking for
potential suppliers, choosing the supplier, and preparing
the contract. The team should make the decisions so as
assuring a high performance to the company. Each specific
combination of choices is assigned with a fitness value,
measuring how good is that combination for the company,
using the NK fitness landscape, where N stands for
multiple decisions (assumed to be binary) and K for
the interdependence among them. This problem space
(referred as fitness landscape) consists therefore of 2N
possible combinations of choices on activities. Specifically,
the NK fitness landscape is generated by following a stochas-
tic procedure, which permits to assign the payoff, P(d), to
each combination of choices on decisions d=(d,,d,, ...,
dy). The payoft value, P(d), is computed by the following
formula [25]:

where

2 Cild)

v(d)= =

, (2)

and V is the statistical average of V(d). C; is the contribu-
tion that the decision j leads to the total system payoff.
The latter is drawn at random for a uniform distribution
[0, 1]. Notice that, as effect of the interdependencies
among decisions, C; depends not only on how the deci-

sion j is resolved but also on the interdependent decisions.
K controls the complexity of the landscape. The higher K,
the more complex the landscape is. Solving a NK Kauf-
mann combinatorial problem, that is, finding the optimum
of the NK landscape, is classified for K >2 as a NP-
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complete problem [68] (for details about the landscape
generation see [25, 28, 29, 37-41, 69]).

3.1. Team Collective Decision-Making Process. We consider
that any individual k formulates his/her own opinion o = (
0},0%,...,04) concerning the preferred combination of
choices on decisions, so as to optimize a personal payoft
function (perceived payoff), which depends on the level of
knowledge of the individual about the problem. The latter
is coded by means of the probability p that each single agent
knows the contribution C;(o) to the total fitness. Being D the
matrix whose element Dy; takes the value of 1 with probabil-

ity p and 0 with probability (1 — p). The perceived fitness of
the agent k is so defined:

N

_ Zj:lejCj(Gk)

- N
Zj:lej

However, we also consider that the natural tendency of
individuals to avoid conflicts and be in agreement with the
people they interact with pushes them to modify their own
opinions, taking into account the opinions of the other team
members [70].

The dynamic process is modelled by means of a
continuous-time Markov process, whose transition rates are
defined to capture these two drivers of individual behavior
in teams [24, 25].

We consider that each agent k is characterized by the
state vector o =(0},0%,...,0F) with k=1,2,...,M-0}
with j=1,2, ..., N is a binary variable modeling the opinion
of the individual k on the decision d;. It is a binary variable
(-1, +1).

Each individual interacts with the other team members
expressing its own opinion on each decision and listening
to the opinion of the other team members.

We describe the social interactions occurring among
the individuals by means of a multiplex network, where
each layer corresponds to the specific decision d;. On each
layer, the nodes are the individuals and the links are the
social interactions occurring among the team members
and concerning that specific decision. The multiplex net-
work is described by a N-block adjacency matrix A (see
Figure 1).

The state of the whole system is then defined by the vec-
tOr = (51,85 «eesSp eees Syieny) = (01, 0%, ... 0,0}, 0%, ... o)
seesOhp 0% ... 0hy). The dynamics of the system opinions
(spins) is governed by means of a continuous-time Markov
chain where the probability P(s, t), which at time ¢, the state
vector takes the value s out of 2N possible states, satisfies
the following master equation:

dP((;t’ 2 = —;w(sl — s’l) P(s;, t) + ;w(S’l—’ Sz)P(SII’ t)’
(4)

=S

V(o) : (3)

!
where 8= (5,8 ...>Sp o> Syy) and §;=(sy, 55, ..

c Sypa)-
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FIGURrk 1: The multiplex network describing team social structure.

The transition rate of the Markov chain (i.e., the proba-
bility per unit time that the opinion s; flips to —s; while the
others remain temporarily fixed) is so defined:

N1
w(s—s) ==
(l l) 2

The transition rate is the product of two terms: (1) an
Ising-like term based on the Glauber dynamics [32] that
models the process of consensus seeking aimed at minimizing
the level of social conflict and (2) the Weidlich exponential
rate [71], which models the optimizing behavior of the agents
[25]. In particular, the Ising-like term pushes the individual to
flip the opinion s; depending on the level of disagreement
with the other team members [32]. The higher the level of
disagreement, the higher the probability to change the opin-
ion. Similarly, the Weidlich rate pushes the individual to flip
the opinion s; depending on the improvement in the individ-
ual perceived fitness that the flip would determine.

Note that Ay is the element of the N-block adjacency
matrix A. ] models the social interaction strength measured
in units of temperature 8. (k) is the mean degree of the net-
work of interactions among the agents on each decision layer.
B corresponds to the level of trust the members have in the
judgement or opinion of others. Similarly, the B is related
to the level of confidence the members have about their per-
ceived fitness.

1 -5, tanh %;Alksk exp {[3' [AV(S’P s,)} } (5)

We employ the Gillespie algorithm [72, 73], a well-
established simulation algorithm able to exactly solve a
Markov time-continuous chain as the one reported in (4).
Thus, at each iteration, the time step of the next opinion
change and the opinion change itself are computed. Since
the time steps follow an exponential distribution, whose
parameters depend on the transition rate and the size of the
team, the simulation time length is, in average, shorter or
longer depending on the speed of diffusion of opinions
within the network. This is taken into account when team
performance are computed (see Section 3.2).

3.2. Group Performance. At each time step, the team should
select a combination of choices on decisions d(t), given the
state vector s(t). To do this, we adopt the majority rule, that
is, the team choice on each decision is the one chosen by the
majority of the team members. We select the majority rule
because it is consistent with our theory concerning consensus
reaching inside the group. The individuals tend to make deci-
sions to reduce the disagreement, but this does not



necessarily imply that they will make the same decisions and
at the end, they will totally agree on a given configuration.
Therefore, since individuals in the team make their personal
combination of decisions, we use a realistic rule, that is, the
majority rule, on each single decision, to identify the team
configuration at each iteration step. Moreover, the majority
rule is proven to perform better than best and random mem-
ber rules in different situations [74, 75].

Given the set of opinions (a{, aé, v 0{\4) that the agents
have about the decision j at time step ¢, we set the team’s
choice on the decision j as follows:

dj(t) =sgn lMIZoi(t)l , j=1,2,...,N. (6)
k

If M is even and in the case of a parity condition, d; is

uniformly chosen at random between the two possible
values +1, —1.

At each time step, the team fitness performance is then
calculated as V(t) = V[d(¢)]. This quantity measures the
efficacy of the solution found by the team at the time step t.
For additional details about the model, the reader is referred
to [24, 25].

3.3. Turbulent Environment. Recalling that the time interval
between two consecutive steps of the Gillespie algorithm
(see the Appendix) is large or short depending on whether
the speed of opinion diffusion within the network is corre-
spondingly slow or fast, we use the simulation step, instead
of time, to represent the results of our simulations. This is
equivalent to scaled time accordingly to the speed of diffu-
sion. This specific choice comes from the fact that the depen-
dence of resilience on the speed of diffusion is too evident; a
low speed of diffusion hampers the ability of the system to
change its configuration and adapt to a new environment.
Therefore, considering that larger teams are necessarily char-
acterized by a lower speed of opinion diffusion, we preferred
to represent the results in terms of number of steps with the
aim of isolating the effect of structural properties on resil-
ience, besides their influence on the diffusion time. If no dis-
turbance or event occurs during the simulation period, the
environment is static. To model turbulence in the environ-
ment, we introduce disturbance during the simulation
period. In particular, the disturbance corresponds to a critical
event that modifies the NK fitness landscape [33].

Two dimensions are used to characterize the turbulence
of the environment: (1) the magnitude and (2) the frequency
of the disturbance. The magnitude corresponds to the extent
to which the critical event modifies the payoffs associated
with actions. We model this by means of the level of correla-
tion between the landscapes. A high correlation means that
the configurations will tend to maintain the same payoffs
before and after the disturbance and vice versa. To this end,
at each critical event, we define the new quantities C jas

€=V + ———[(Cy~ V) +¢. 7)

! 1+¢

where C; is the undisturbed contribution to the fitness
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landscape and ¢ is a normal distributed random noise, with
zero average. The quantity { = 0/oc,, is the ratio between

the standard deviations of & and C, respectively. This choice
guarantees that the standard deviation o of the new sto-
]
chastic quantity C; satisfles the relation o =0, . Moreover,
J 0j

the correlation coefficient 7 between the newly generated
landscape V and the old one V|, is given by

(VVe) 1
S Viee

The frequency of disturbance considers how fast the
environment is changing. A high frequency corresponds to
environments fast moving, irrespective of the magnitude of
change. We model this by means of the parameter (A), that
is, the number of times the critical event (i.e., the change of
the landscape) occurs over the given simulation period. Note
that the frequency of disturbance is defined with respect to
the total number of iteration steps, that is, referring to the
scaled time. Therefore, each disturbance, that is, each change
of the landscape, occurs after a given number of iteration
steps, depending on the frequency chosen.

(8)

T=

3.4. Team Resilience Measurements. We measure team resil-
ience by capturing the ability of the team to adapt to distur-
bance and identify a new desirable condition characterized
by high fitness. This is consistent with the definition of resil-
ience as the ability of the team to provide positive outcome
and desirable performance, under challenging and critical
conditions [18].

In particular, we compute the resilience performance of
the team by averaging the team fitness performance V(d)
at each simulation step (in percentage of the maximum pay-
oft achievable on the landscape) across all the simulation
steps. The higher this value, the higher team resilience is.
This measure of resilience is consistent with other works
on the topic [33, 38].

4. Simulation Analysis

We consider a team of size M engaged in solving a combina-
torial decision-making problem characterized by N = 12. We
set B’ =10, BJ=0.5, and p = 1. Following the analysis pre-
sented in [25], the values of the strength of social interaction
BJ and the self-confidence B’ have been chosen such that, in
the case of no disturbances (baseline model), the size of the
team does not affect its performance. Twelve environmental
scenarios are simulated resulting from the combination of
three values of complexity (K=1, 3, 11), two values of mag-
nitude of disturbance ({ =0.75, 4.89) corresponding to cor-
relation coefficient values 7=0.2, 0.8, respectively, and two
values of frequency of disturbance (A =10, 20). To analyze
the effect of team size and density, we perform simulations
changing the value of M (5 and 11) and the density (~0.33,
~0.67, 1). In the case of density < 1, a random pattern is set
for the social network of the interactions. Each scenario is
replicated 300 times for a simulation period of 100.000
iteration steps.
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TaBLE 1: Results for M =5 and M =11 with density=1."

{=0.75 (=489
M=5 M=11 Difference % M=5 M=11 Difference %

A=10 0.98508 0.98980 0.48% 0.88537 0.79116 —10.64%
K=1 Std. dev. 0.02049 0.01271 0.11081 0.11164

A=20 0.98827 0.99306 0.48% 0.88319 0.79320 -10.19%

Std. dev. 0.01953 0.01103 0.09567 0.08294

A=10 0.97759 0.97829 0.07% 0.88434 0.80238 -9.27%
K=3 Std. dev. 0.03352 0.02772 0.11891 0.11421

A =20 0.97868 0.97616 -0.26% 0.86897 0.79684 -8.30%

Std. dev. 0.02900 0.03364 0.13352 0.12690

A =10 0.82976 0.76812 -7.43% 0.74432 0.59060 -20.65%
K=11 Std. dev. 0.23705 0.26384 0.27678 0.30948

A =20 0.75272 0.66394 -11.79% 0.65326 0.49117 —-24.81%

Std. dev. 0.26848 0.28888 0.29882 0.29246
Mean 0.91868 0.89489 -3.07% 0.81991 0.71089 —13.98%

*Differences in results are significant with p < 0.001 (¢-test), except for the cases with K =1 and { =0.75 and the case with K =3 and A =10 and 0.75.

The resilience performance is computed by averaging
the results in terms of efficacy V/V . across iteration
steps and replications.

5. Results

5.1. The Effect of Size. Table 1 summarizes the results
achieved by the teams characterized by M =5 and M =11
and density =1 for all the twelve environmental scenarios.

As complexity rises (K = 1, 3, 11), performance decreases,
regardless of the values of magnitude and frequency of dis-
turbance. For example, in the case of A =20 and M =5, the
performance is 0.98508, 0.97759, and 0.82976 for K =1, 3,
11, respectively. We also note that in all cases the team per-
formance diminishes as the magnitude of the disturbance
increases (moving from { =0.75 to { =4.89). For example,
for A=20 and M =5, the performance decreases from
0.98508 to 0.88537 as the magnitude rises. These trends run
as expected, confirming the validity of our simulation model.

We now analyze the direct effect of team size on the team
resilience. To do this, we compute the performance differ-
ence between the cases with M =5 and M =11 in percentage
to M =5 (see difference % in Table 1) for any K, fixed (.
Except for few cases where differences are not significant
(for K=1,A=10,20 and { =0.75 and for K =3, A=10 and
{=0.75), in all the other cases, the performance difference
is significant and negative. This means that team size nega-
tively affects team resilience. Larger teams are less able to
adapt to disturbance and recover to configurations with high
performance. This follows from the fact that in large teams
the consensus seeking is slower than in small teams and
achieving a highly agreed solution is more difficult.

We also investigate the moderating effect of the mag-
nitude of disturbance on the relationship between team
size and the team resilience. We compare the performance
difference in the case of low versus high magnitude of dis-
turbance. We achieve that on average the performance

decrease is higher for { = 4.89. In particular, this difference
on average is equal to —3.07% and —-13.98% in the case of
{=0.75 and { = 4.89, respectively. This means that the mag-
nitude of disturbance plays a negative moderating effect on
the relationship between team size and team resilience. In
the case of disturbances with high impact on the environ-
ment, the negative effect of large-sized teams on resilience
is more pronounced.

In fact, when the level of disturbance is high (i.e., when
the landscape is changing quite a lot), team needs to make
new and strongly different decisions in order to reach an
optimal solution. However, large teams need more time to
agree on new decisions than small teams, thereby showing
worse performance compared to the latter.

We finally investigate the moderating effect of the fre-
quency of disturbance on the relationship between the team
size and resilience. First, we note that, except for the cases
with K =1 whose performance difference is not significant,
the frequency of disturbance negatively affects resilience.
For example, in the case of M =5 for K=3 and {=4.89,
the performance decreases from 0.88434 to 0.86897 moving
from A=10 to A=20. Moreover, it is noteworthy that, as
the team size rises from M =5 to M =11, the decrement in
the performance becomes more important as the frequency
of disturbance rises. In particular, on average such a perfor-
mance decrease due to size growth is =7.91% and —9.15%
for A=10 and A =20, respectively. This means that the fre-
quency of disturbance negatively moderates the relationship
between the team size and team resilience. In environments
characterized by high dynamicity, the negative effect of team
size is more pronounced. Since, as said above, a large number
of individuals reach consensus on a good solution in longer
time, compared to a small number of individuals, fast chang-
ing environments strongly prevent large teams from finding
good solutions, making them exhibit low performance.

5.2. The Effect of Density. In Table 2, the results con-
cerning teams with M =11 and three increasing values
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TaBLE 2: Results for M = 11 with density = 1.*
(=075 (=489
d=0.33 d=0.67 d=1.0 Dift. % d=0.33 d=0.67 d=1.0 Dift. %
A=10 0.989 0.990 0.990 0.001 0.789 0.792 0.791 0.002
K=1 Std. dev. 0.014 0.013 0.013 0.125 0.113 0.112
A=20 0.992 0.993 0.993 0.001 0.765 0.775 0.789 0.031
Std. dev. 0.012 0.011 0.011 0.093 0.083 0.083
A=10 0.969 0.977 0.978 0.009 0.772 0.804 0.802 0.039
K=3 Std. dev. 0.042 0.030 0.028 0.143 0.117 0.114
A=20 0.969 0.976 0.976 0.007 0.759 0.794 0.797 0.050
Std. dev. 0.035 0.024 0.023 0.157 0.126 0.127
A=10 0.713 0.753 0.768 0.077 0.563 0.581 0.591 0.049
K=11 Std. dev. 0.297 0.275 0.264 0.307 0.308 0.309
A=20 0.653 0.665 0.664 0.017 0.498 0.489 0.491 -0.014
Std. dev. 0.303 0.290 0.289 0.295 0.294 0.292
Mean 0.881 0.892 0.895 0.019 0.691 0.706 0.710 0.026

*Standard deviation is reported below. Differences in results are significant with p < 0.001 (¢-test), except between the cases for K =1 and { =0.75.

of density are shown for all the twelve environmental
scenarios considered.

We compare the performance as the density increases,
fixed K, {, and A. In particular, we computed performance
difference between the cases with d = 0.33 and d = 1.0 in per-
centage to d = 0.33 (see diff. % in Table 2). Results show that
the density does not affect performance when the level of
complexity is low (K =1), regardless of the frequency and
the magnitude of disturbance. For higher levels of complexity
(K=3, 11), the density positively influences team perfor-
mance, even though the performance increase is quite small.
Higher densities in fact tend to increase the exchange of
information among the members, thus making the explora-
tion of the new environment more effective.

By comparing the performance increase in the case of low
versus high magnitude of disturbance, we note that on aver-
age it is higher when the magnitude is high. In particular, the
performance increase is on average 0.019 and 0.026 for { =
0.75 and { =4.89, respectively. This shows that the magni-
tude of disturbance plays a positive moderating effect on
the relationship between density and team resilience. In
environments characterized by disturbance with high
impact, the positive effect of density of social interactions
on resilience is more pronounced. In fact, a larger number
of connection improves the information flow and sharing
among the individuals, thus making the team more rapid in
reaching consensus on good solution and able to tolerate
high disturbances and to reach higher performance in
strongly noisy (disturbed) environments.

We finally analyze the moderating effect of frequency
on disturbance on the relationship between density and
team resilience. To do this, we compare the performance
difference between d=0.33 and d=0.1 achieved in the
cases of A=10 and A=20. On average, this performance
difference tends to decrease with the frequency of distur-
bance. In particular, it is equal on average to 1.54% and
2.96% for A=10 and A =20, respectively. This means that
the frequency of disturbance negatively moderates the

relationship between density and the team resilience. In
environments characterized by high dynamicity, the posi-
tive effect of density on resilience is less pronounced. In
fact, if the frequency of the disturbance is too high, there
is no enough time for the individuals to find an agreement
and make good decision. Thus, the beneficial effect coming
from more connections which permit the system to share
information is reduced.

6. Discussion and Conclusions

This paper investigated team resilience in complex and tur-
bulent environments. In particular, we employed a simula-
tion model reproducing team collective behavior in solving
combinatorial task, to measure the ability of the team to
adapt to the change and secure desirable performance. Our
model is consistent with the complex system approach to
study resilience, being the team framed as a network of agents
(individuals) making decisions, connected by means of social
interactions. In doing so, resilience is an emergent property
of the team.

Our analysis focused on two drivers of team resilience,
which have not yet been investigated in the literature: the
team size and the density of the network of social interac-
tions. Both aspects refer to network properties of the team
and not on individual features. This responds to the call
for considering resilience as a socially enabled property
and for studying those determinants concerning the coor-
dination of the social interactions among team members
rather than the behavioral and psychological characteristics
of team members.

We found that both team size and density of social inter-
actions, which influence the collective performance of the
individuals to solve complex problems, affect team resilience.
In particular, we achieved that the team size negatively affects
team resilience, while the effect of density is beneficial for
resilience, even though considerably lower and significant
only for high levels of complexity of the environment.
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We also found that both the magnitude and the fre-
quency of disturbance moderate the relationship between
the team size/density and team resilience. In particular, we
showed that the magnitude and frequency of the disturbance
negatively moderate the relationship between team size and
team resilience, while the magnitude (frequency) positively
(negatively) moderates the relationship between density and
team resilience.

These findings contribute to the literature suggesting how
to design teams more resilient to environmental turbulence.
In particular, based on them, we suggest preferring teams
with small size especially when the environment is character-
ized by high-impact critical events occurring with high fre-
quency. Even though the influence of density is less
significant, we suggest to favor the social interactions among
team members to improve team resilience, especially when
the environment is characterized by high complexity and
the critical event has high impact on performance.

Our study suffers some limitations. These findings are
achieved under specific values of B, 8, level of self-confi-
dence, and the strength of social relationships, respectively.
As shown in [25], different values of these parameters can
modify the ability of teams to perform well and consequently
its resilience.

Further research will be devoted to analyze further
determinants influencing the coordination of social inter-
actions. In particular, it could be interesting to analyze
the effect of different network structures (e.g., small-
world and scale-free), the presence of distrust relationships
among some of the individuals, the influence of the differ-
ences among the individuals in terms of propensity to the
opinion change, or rather to investigate the effect of team
leaders on resilience.

Appendix
The Gillespie Algorithm

The stochastic simulation algorithm we used to solve the
Markov process (5) is derived from the one proposed by
Gillespie [72, 73]. We just summarize the main steps of
the algorithm:

(1) Choose at random the initial state ¢ of the system.

(2) Calculate all the transition rates w(s;—s;),/=1,
..,n=N % M.

(3) Calculate the total rate wy = Y ,w(s, — s)).

(4) Normalize all the transition rates as v, = w(s, — s,)/
wy.

(5) Build the cumulative distribution F(v;) from the
probability mass function v,.

(6) Calculate the time At to the next opinion flip by
drawing from an exponential distribution with mean
1/wy, that is, chooses a real number 0 <+ <1 from a
uniform distribution and sets At = —w; ! log (7).

(7) Identify the Ith opinion that flips from s; to —s;, by
drawing from a discrete distribution with probability
v; =w(s;)/wy, that is, draws a real random number
0<s<1 from a uniform distribution and chooses
I so that F(v,_;) <s< F(v)).

(8) Update the state vector and return to step 2 or quit.

We stress note that the time step At is not fixed and is
roughly inversely proportional to the total rate w; =Y w
(s, —s)), and therefore, it depends on the number of indi-
viduals in the group, on the network structure, and its
endogenous properties.
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