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Memory representation for time was studied in two settings. First, an analysis
of timing in a laboratory analog of a foraging situation revealed that departure
times from a paichy resource followed a Weber Iaw-like property implied by
scalar timing. A trial-by-trial analysis was then pursued in a similar but more
structured experimental paradigm, the Peak procedure. Study of covariance
Structures in the data implicated scalar variance in the memory for time as well
as in the decision process, but the correlation pattern ruled out multiple access
to memory within a irigl.

Time present and time past

Are both perhaps present in time future,
And time future contained in time past.
T.5. Eliot, Burnt Norton.

Introduction

Eliot’s words remind us that our current position on the arrow of time, fixed
on the present instant, has been prefigured in the past, and in turn
foreshadows what is to come. There is a sense in which the life of any living
thing is continuously timed, from its genetically prescribed beginning into its
programmed senescence.

On a smaller, one might say fractal, scale all movement is timed, some-

*Reprint requests should be sent to John Gibbon. Department of Biopsychology. New Yark State Psychiaz-
ric Institute. 722 West 168th Street. New York., NY 10032, U.5.A.
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times with exquisite precision, as when the batter starts his swing, the musi-
cian his downstroke, or the peregrine folds its wings and dives. These are but
some more dramatic examples of prefiguring a future event with precisions
that are extraordinary. In a broader sense, however, we continuously prefig-
ure future events. Any movement entails a representation of a future event,
its anticipated outcome, and of course no system of the body is ever entirely
at rest.

Much temporal anticipation is rhythmic: activity/rest cycles, respiration
cycles, heartbeats, even our speech patterns, reflect rhythms that may repeat
endlessly, or sometimes at will. Once initiated, cach shows a characteristic
period and variability. Periodicity of this sort may be represented in our
nervous system in the time constants of a collection of oscillating neurons.
Most such rhythmic timing systems exhibit remarkable precision, but little
flexibility in the range of times represented. Evolution has built them for
essentially one time value, and they often execute this value with precisions
of 1-2% or less. Several circadian rhythms, for example, are in this class,
with low variability and an entrainment range of a few hours around 24 (cft.
Aschoff, 1984).

Some rhythmic timing systems, however, can synchronize with a variety of
temporal values in the environment, for example when a musician changes
tempo, or when a horse adjusts its gait. Timing functions of this sort usually
are in the seconds, or possibly minutes, range, and they may be begun at any
arbitrary point in time, and reset arbitrarily. Such rhythms have received
some study in humans (e.g., Wing, 1980; Wing & Kristofferson, 1973), and
almost none in animals. These timing systems share features with the more
rigid and precise biological oscillators mentioned above, as well as with the
more arbitrary interval timers, described below.

This, most flexible, kind of timing allows arbitrary onsets for beginning of
a timed interval, arbitrary records for the time of important events in the
interval, and discriminations among past and present time intervals. Such a
system is exemplified by the one that allows foragers, including human
hunter-gatherers, to adjust their food-search strategies to changing, usually
depleting, resources. The representation of times like these — intervals that
may take on a variety of values requiring different sorts of behavioral adjust-
ments, are the topic of this paper. These timing functions are wonderfully
flexible: they may begin virtually at will, reset virtually at will, and time a
broad range of target values, from seconds to minutes or perhaps even hours,
Interval timing functions pay for their flexibility with imprecision. Evolution
cannot tune them for a given target value, but must build in record-keeping
systems and temporal readout systems, which can assume a range of values
and forms.
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Representation is gcing to mean for us here a rather abstract conception
of some semi-permanent feature of these timing functions. We will not be so
concrete as to specify neural mechanisms, nor so abstract as to specify com-
plete and rigorous mathematical development. Rather, our representations
will be memories lying somewhere between the cell and the theorem. We will
ask what kind of mnemonic variability and subjective scale are implied by
memory for arbitrary time intervals.

Perhaps unfortunately, we must approach these questions through still
another construct, harboring its own vagaries, namely the performance, in-
cluding especially a decision structure, that reveals properties of temporal
memory. It will be a major aim, then, to partition variance we see in perfor-
mance into components reflecting differing features of temporal processing.
In particular, our interest centers on three sets of processes: (1) the
mechanism whereby animals perceive the passage of time — the clock system;
(2) processes whereby a given time value is marked, distinguished and re-
corded in memory; and finally (3) the way in which decisions based on these
temporal memories are made. We will identify features of temporally or-
ganized performances which differentially reflect imprecision in these three
basic components of timing - clock, memory, and decision.

An example: Foragers’ giving-up times

Let us be concrete. A starling in the springtime forages for food in fields
round about its nest (“central place” foraging). The pressure to forage effi-
ciently, and thereby collect the greatest yield per unit time, is extreme when
birds are feeding their young. Evolution has tuned their timing system so that
they can recognize productive as opposed to unproductive fields (“patches™),
and also to recognize when such patches arc depleted — when to search for
richer pickings. The optimal time for such a new search may be shown to
depend critically on how long it took to travel to the patch in the first place,
as well as on the initial prey density, and the depletion rate (e.g., Krebs &

. Kacelntk, 1984).

A performance like this requires at least two different kinds of time rec-
ords, that is, two representations. First, birds must know how long it takes
to get to a given area from the nest site. To forage optimally, they should
stop foraging in a given patch at different overall residence times, depending
on how far away the path is from the nest. When the patch is distant, persis-
tence in the patch pays better than when the patch is close. Intuitively, the
investment in a longer travel must be made up by a greater yield. Second,
they must have an appreciation of when a patch is no longer productive. The
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decision to leave may depend on variability in the perception of prey density.
If the patch is initially rich, and depletes fast, detection of depletion may be
easier. Subjects may stay a shorter time after finding the last prey item in a
rapidly depleting patch, than if the initial prey density was lean, and capture
rates low. -

Our example will examine an extreme case, the appreciation of a given
prey density which has abruptly soured. We ask when birds “think™ an ex-
pected prey item is no longer forthcoming. If rate of food capture is rep-
resented as a typical interval between feedings, at what point after that inter-
val has been exceeded do subjects no longer expect food? We will attempt
first to understand the mechanism for the simplest of these cases, strict
periodicity, in which there is no variability in interfood delivery times.

The data we present are from the dissertation research of Danielle Brunner
in collaboration with Alex Kacelnik and John Gibbon (Brunner, Kacelnik.,
& Gibbon, 1989; Kacelnik, Brunner, & Gibbon, 1988).

Brunner simplified the foraging problem to study it in the laboratory in
the following manner: Starlings were required to fly a certain distance {com-
prising the “travel” or “search™ time) by completing a number of flights
between two perches in a large chamber. When the ratio was completed, a
“patch key™ was illuminated above a third perch, at which they could earn
food on a given schedule. The schedule is the analog of the “patch™. Itis a
repeating, periodic fixed-interval schedule, which at some point “dies™. After
arrival at the perch, the next feeding was scheduled a standard time (FI =
S's), with probability p. After food occurred, the next feeding was scheduled
at the same standard, S s later, again with probability p. If a feeding was
missed, with probability g = 1 — p, then all subsequent feedings for that visit
to the patch were cancelled. Thus a string of 0, 1, 2, 3, ..., n feedings occurred
with a geometrically declining probability in any one patch visit.

‘The patch could be reset only by leaving and again flying between the two
travel perches. As soon as subjects left the patch perch, its key darkened.
Interest centered on the properties of the giving-up time, defined as the time
between the last feeding (or arrival at the patch) and departure to resume
travel. Brunner studied these giving-up times for several weeks at six different
fixed-interval values, ranging in log steps from § = 0.86 s to § = 256 s
between feedings.

If subjects appreciated the size of the fixed-interval with perfect accuracy,
then an optimal forager would leave the patch the moment it is clear that no
more food is coming. And this should happen just after § s from the last
feeding. Of course, a little variability in the representation of the time inter-
val, and a tight criterion for leaving would result in occasional missed feedings
when subjects in fact left before the next delivery time. Hence a conservative
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strategy would be to wait somewhat longer than the expected feeding time
to avoid missing a programmed feeding. And when the fixed-interval
schedule is long, and memory for it is correspondingly more variable, one

might expect the margin of safety, the duration of the overshoot experienced
before leaving, also to be long.

Figure 1. Relative frequency distributions of giving-up times at six different standard
values. Inset shows mean and standard deviation of giving-up times as a

function of the standard. The straight lines are regression fits to each data
sel.
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This is indeed what occurred. Figure 1 presents distributions of giving-up
times pooled over 6 subjects at each of the 6 fixed-interval values. The
scheduled feedings occur at the beginning of the third time bin, so that times
to the left of this value (two left-most bars) are departures before subjects
could “know™ whether the next feeding was scheduled or not. The distribu-
tions have some skew, and are rather peaked with a modal giving-up time
which moves further to the right of S as S grows. The distributions also flatten
somewhat at the longer fixed-interval values. In the inset we plot the mean
and standard deviation of these distributions as a function of the standard FI
value. Both are relatively linear, especially at the longer time values. The
very small intercept in the mean function makes it nearly proportional to real
time. This means, most importantly, that birds are, on average, leaving the
patch when a given proportion of time beyond the standard has been passed:
they leave at about twice the standard time after the last feeding. The stan-
dard deviation function appears to level off as the FI value becomes smaller
and smaller, perhaps approaching some minimum variance level for this tim-
ing system.

Scalar timing: Giving-up times

The distributions for the longer FI values, like many others in the literature,
exhibit a property we have called the scalar property: they are approximately
scale transforms, one of another. This property may be revealed by replotting
these distributions as a function of the giving-up time divided by the fixed-in-
terval standard. This is done in Figure 2. The three longest S values are
shown with histogram bars, while the three shorter § values are indicated
with connected points. Notice first that the proportion of “missed” opportu-
nities, represented by the leftmost two categories, are low and roughly con-
stant for the three long standards. The modal category for these distributions
is the third, in which reinforcement is obtained. The decline on the right
shows some skew, and is roughly comparable for these three standards. In
contrast, the connected point distributions show a mode in the category to
the right of reinforcement, and an increased spread with decreasing FI value.
This 1s the reflection, noted above, of some minimal variance in temporal
processing shown in the flat portion of the standard deviation curve in Figure
L. This irreducible component of variance has greater relative impact as scalar
variance grows small.
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Figure 2. Distributions of giving-up times (Figure 1) plotted in time relative to the
standard.
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We have argued that these data reflect the scalar property, but it is not
obvious just how giving-up times are tied to a scalar representation of the
reinforcement interval. The simplest proposal for variance in subjective rep-
resentation is shown in Figure 3. In the top panel, two distributions associated
with two different standards are shown, with mean and standard deviation
function below. The distributions may be thought of as errors in the represen-
tation that possess the scalar property in its simplest form: the proportion of
errors below a given proportion of the interval is constant for any size interval
— the result of scalar multiplication of the entire distribution. The standard
deviation is proportional to the mean, so the coefficient of variation, the
sensitivity of the system (usually represented by vy = o/u) is constant. These
assumptions are discussed in considerable quantitative detail elsewhere
(Church & Gibbon, 1982; Gibbon, 1981; Gibbon & Church, 1981).

- Brunner has adapted this memory representation to a threshold model for
giving-up times. In Figure 4 the left-hand ordinate shows subjective time
increasing as a linear function of real time, and a memory distribution around
the subjective representation of the standard is indicated there. The decision
to give up is based on the relative discrepancy between the perceived subjec-
tive duration of the currently elapsing interval, and the memory for the rein-
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Figure 3.

Figure 4.

Hypothetical distributions of subjective time associated with one and two
units of real time. The distributions possess the scalar property with mean
and standard deviation proportional 1o real tirne.
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forced standard duration. This is the difference between the current and
remembered times, divided by the remembered time. Subjects leave the patch
when the elapsed time since the last feeding exceeds some fraction beyond
the expected time to the next feeding. Formally, the giving up time rule is:

(t — s)is = b, (1

where ¢ is the current time since the last feeding, s is the remembered time
to the next feeding, the subjective value corresponding to S in real time, and
b is the threshold. (We adopt the convention that lower-case letters represent
random variables and upper-case letters fixed values. For example, in the
figure the threshold is represented at the fixed value, B.)

The relative discrepancy between the expected delivery time and the per-
ceived current time is shown on the right-hand ordinate of the figure. This
measure begins at —1, when the time since the last feeding is zero, and
increases through zero when the time since the last feeding equals the remem-
bered time to the next feeding. A departure decision occurs when the relative
discrepancy crosses some positive threshold level beyond the expected time
of food.

It is readily shown that a giving-up rule based on relative discrepancy will
generate superposition of the giving-up time distributions as long as memory
variance for the standard is scalar. It is also true, however, that a scalar
‘memory representation alone is not sufficient to produce superposition. The
rule for generating giving-up times must be based on relative rather than
absolute discrepancy. If the proximity between current and remembered time
is not normed by remembered time, the scalar property is violated. For a
larger standard, an absolute discrepancy rule would result in a mean giving-up
time relatively closer to §, but with a concomitant increase in variance so that
a larger proportion of giving-up times would occur before § had elapsed.
That is, such a system would produce a great many underestimates or “too
short™ errors as § is increased. In fact, subjects keep the proportion of these
errors about the same, and lengthen the mean giving-up time linearly with
the size of the standard. '

An absolute discrepancy rule would be unlikely in any case, since it would
have to entail an extremely small margin of error above § to accommodate
the range of standards used here, and not involve missing more than one
reinforcer. An alternative way to say this is that if subjects are guided by the
amount of potential reinforcement missed, then the way to keep this at a
minimum is to use a relative rule. Such a rule ensures that missing only one
feeding when the standard is large does not result in missing many when the
standard is small.
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Comparator variance

We argue, then, here as previously, that a relative comparator rule (equation
(1)) is required for performance of this sort. Subjects must remember what
the appropriate food delivery time is, and compare that memory with the
current elapsed time in a manner that permits a given proportional, rather
than absolute, discrepancy to be detected. Equivalently,

r= (14 bs. (2)

In this form it is clear that when there is no variance in the appreciation
of the current time (= T), scalar variance in memory for § would directly
translate (via the proportional constant, 1 + b) into scalar variance in the
giving-up time distribution. This is illustrated in Figure 4. Varying the mem-
ory shifts the relative discrepancy (right ordinate) zero point, and thus also
the time at which the threshold is met.

In the above form (2), however, it is clear that variable giving-up times
might be produced by another source as well. Variance in the threshold, &,
since it multiplies S, also would generate scalar giving-up time variance. This
is illustrated in Figure 5, which depicts no variance in the memory for the
target time, but variance in the threshold, b, around a mean, B.

Figure 5. Distribution of giving-up times associated with threshold variance, but no
memory variance.
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It is equally clear from equation (2) that one might ascribe all variability in
giving-up time to the percept of the current time, z, rather than memory or
threshold. For such a mechanism to be realistic, one would require that the
translation of a reinforced current time into memory for the standard include
an averaging mechanism, so that the noisy percept would vary from trial to
trial, while the remembered (mean) value would not.

Figure 6 shows a system in which the accumulation of subjective time as a
function of real time drifts from trial to trial. The representation of the re-
membered reinforced time, §, is now fixed on the subjective scale [u(S)] and
the threshold is fixed on the discrepancy scale (B). Variability in the giving-up
time distribution on the abscissa is induced solely by changes in the rate of
accumulation of subjective time. Examples in which the current time ap-
preciates faster than usual (higher slope line), or slower than usual (lower
slope line), are indicated in the figure, and would correspond to early or late
giving-up times in the abscissa distribution.

- Skew

This process translates symmetry in variability in the appreciation of cur-
rent time (in this example normality in the rate of the clock) into asymmetry
in the giving-up time distributions represented on the abscissa (an inverse
Gaussian form). It is imported to recognize that the scalar property is pre-

Figure 6. Distribution of giving-up times associated with accumulator rate variance.
Note the induced skew.
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served in a system like this, even though skew is introduced into the perfor-
mance measure. When rate varies as shown in Figure 6, more variation occurs
for long times than for short times, but the scalar property evident in Figure
2 is still satisfied.

Since the data show some skew, there is a question whether they are better
described by clock rate variance than memory or threshold variance. In gen-
eral, we will argue that discriminations based on distribution shape alone are
not strong inferences. There are at least three ways in which skew may be
induced. First, rate may indeed vary symmetrically, inducing skew as in Fig-
ure 6. Second, as is evident from Figures 4 and 5, the shape of a memory-vari-
ance-only or threshold-variance-only distribution is translated directly into
giving-up times, hence skew in the memory or in the threshold distributions
also would translate into skew in the giving-up time distribution.

While it is often attractive to assume the action of many factors contribut-
ing to variability in laying down memories or in establishing a threshold, and
hence normality at some level in these processes, it is equally likely that
sub-components of these systems multiply rather than add, which brings us
to a third reason for the weakness of inferences based on skew.

The third reason is that it is also readily demonstrated that symmetric
normals acting multiplicatively generate a skewed product random variable
(ct. Gibbon, Church, & Meck, 1984). Therefore, were both memory and
decision variance operating in the giving-up time performance, the right side
of equation (2) requires that these act multiplicatively, thus inducing some
skew in the resultant giving-up time distribution. To compound this problem,
note that multiplicative variance with right skew in either or both of the
variates alone is enhanced in the product. For all of these reasons skew in a
performance variable such as that seen in Figure 2, and indeed in many
latency phenomena from a variety of literatures, is not yet diagnostic of an
identifiable source.

Psychophysical problem

We arrive then at a classical psychophysical conundrum: which of several
sources of influence contribute to performance, and to what extent? We have
identified three such sources. We have noted that they produce somewhat
differently shaped performance distributions, but we are unable to discrimi-
nate on that basis alone how each contributes.

We develop below a technique which discriminates much more powerfully
the components of variance in performance based on remembered time. The
technique follows in spirit the advance in classical psychophysics provided by
obtaining latency as well as probability correct measures. In our context we
will provide two measures quite different from latency and probability, but
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which share the feature that different patterns of these measures implicate
different sources of control. The technique requires a trial-by-trial analysis
of an alternative timing procedure, the peak procedure. This procedure has
‘received considerable attention in other contexts, and models for peak perfor-
mance provided the basis of Brunner’s adaptation to giving-up times.

We will see that, just as in the analog of foraging, we can identify a giving-
up time. We can also identify a “start” time based on expectation of food in
the same trial. We will develop tests of trial-by-trial patterns expected when
the primary components of variance are either response (comparator) based,
or clock or memory based.

The peak procedure: Individual trial analysis

The peak procedure is an extension of an operant fixed-interval schedule to
discrete trial, partial reinforcement. It was devised by Catama (1970), and
has since been used by Roberts (1981) and others to identify temporal expec-
tation on both sides of a remembered time for food. The technique is simple
and elegant. Discrete trials begin with the onset of a cue and terminate
sometimes with response-produced food at a given criterion, standard time,
S. On other trials, no food is given (peak trials), and the trial signal simply
remains present for a long time beyond the food time. This is our reference
procedure, and some typical data pooled over four pigeons is shown in Figure
7. The trial signal was the onset of a white key light, food was the delivery
of a few seconds of grain, and the peak trials, when no food was given, lasted
a minimum of 38, plus a random time averaging an additional S s. The data
shown here were collected from peak trials from the last 4 days of two 3-week
determinations at different standards, § = 30 and § = 50. Responding rises
to a peak near the criterion time for both functions, and declines in a roughly
symmetric manner beyond this time. There is a small rise in both peak func-
tions toward the end of the trial which probably reflects anticipation of its
termination and the onset of the next trial (Church, Miller, Meck, & Gibbon,
submitted). In the bottom panel the scalar property is shown for these data,
with superposition of the peak functions when plotted as proportions of the
mean. Again, the scalar property (a form of Weber’s law in this setting) will
be seen to force strong constraints on the kind of variance in percept and
memory, and the kind of response rule used to generate performances of this
sort.
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Figure 7. Pooled peak funciions for four subjects studied ar 30 s and 50 s peak re-
inforcement times. The upper panel shows absolute rate functions, the lower
panel shows the same functions as proportions of the reinforcement time,
T1S. The lower ordinate has been scaled min. to max.
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Two states: Break—run—break

The smooth, bell-shaped peak functions we see in this procedure might be
achieved in at least two different ways: either with a smooth acceleration and
deceleration on every trial, or with a discrete, two-state process, in which
responding abruptly changes from a low rate to a high constant rate for a
period of time around the time of reinforcement, and then abruptly falls to
a low rate again. With variable locations for the high rate on different trials,
averaging these discrete, two-state, individual trial functions would produce
a smooth curve. This idea is an extension of Schneider’s early seminal “break—
run” analysis of fixed-interval performance (Schreider, 1969) to a break-run—
break pattern appropriate to the peak procedure.

The two possibilities are sketched in Figure 8. Scalar timing theory, from

Figure 8. Diagram of two possible alternatives generating smooth peak functions. In
the left column the peak function is an average of smooth functions on
individual trials. In the right-hand column it is an average of step functions
on individual trials that vary in location and spread.
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its carliest analysis of this situation (Gibbon, 1977), assumed that the system
worked in the two-state manner, but unti! now we had not tested the implica-
tions of this idea.

The smooth curves at the top of the figure might result from smaller,
variably located, smooth rate functions as shown on the left, or from varia-
tions in start and stop times for a middle portion of the trial, representing a
high, constant rate, as shown on the right. The two-state assumption is pre-
cisely the kind of assumption embodied in the giving-up time models (Figures
4-6) in that a discrete threshold crossing is associated with a “stop,” or giving-
up time in the patch, when food is no longer expected. What is added for the
peak procedure is that prior to each stop time there is a “start” time as well,
when proximity is close enough to the expected time of food to warrant
increased responding. '

We present below a break-run-break analysis which distinguishes between
these two kinds of mechanisms.! The analysis is applied to our illustrative
data set from the four birds shown in Figure 7.

A least-squares regression program was developed to fit three horizontal
line segments to the data from each trial, an extension of Schneider’s (1969)
“break—run™ analysis. It permits us to average rate functions from individual
trials when they are lined up so that either the start or stop break points
coincide. Rates averaged forward and backward from the break point, both
for the transition from low to high (start) and again from high to low (stop).
are shown in the top panels of Figure 9. In the upper left panel the start times
were lined up before taking the average; in the upper right, the stop times
were lined up. The overall peak function is shown for reference in both
panels.

The position of the break points were set at their average position across
trials. They may be seen to lie near the middle of the rising and falling wings
of the average peak function. (The program tends to identify a large differ-
ence between adjacent time bins as a break point, and this accounts for the
especially low and especially high values just before and just after the high
state is entered, and vice versa when it is left.) Once responding has begun
at a good clip, however, it remains roughly constant for a period of time.*
The stop break function in the right-hand panel shows the reverse pattern.

These data in the upper two panels of Figure 9 are to be contrasted with

A more complete analysis. including idiosyncratic subject differences and more quantitative detail, is in
preparation.

The start break function on the left becomes ragged at the right edge since very few high states last this
long. and so the number of observations entering into the average i low for long times. The teverse is true
for the stop break function on the right.




Representation of time 39

Figure 9 Mean break funcrions for the start of a two-state process {(upper left), and
the end, or stop, of the two-state process (upper right). They are positioned
at the mean break position for these data. The lower two panels show con-
finuous function simulations of these break patterns using Gaussian curve
fits for individual trials. See rext for details.
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an extreme control analysis shown below. The control simulates smooth trial-
by-trial curves like those on the left of Figure 8. The break functions in the
lower paneis were obtained using the fitting program on artificial “data”
curves, which themselves were smooth, bell-shaped functions {it to the real
trial-by-trial data. For each real data trial, we first fit a three-parameter
bell-shaped curve to the data: a Gaussian error curve with mean, variance,
and level as free parameters. We then subjected the Gaussian, not the data,
to our break-run-break regression program. Thus this analysis asks whether
the break point fitting program, when operating upon smooth continuous
functions, produces a different form from that seen in the data.
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The results are shown below the real data. The forward and backward
average break functions are those with the rising right and left tails. The
smooth bell-shaped functions are the overall averages of the Gaussian curves,
comparable to the peak functions that would have been obtained if the data
themselves were smooth Gaussian curves.

The simulation break functions share some features with the real data, but
are clearly different in shape. The start break function shows a smooth rise
with no abrupt break, to a peaked middle portion of the curve, unlike the
real data. On the other hand, like the real data, beyond the peak the break
function falls less steeply than the underlying average peak function. The late
r1s¢ in the tail is due to the fact that the real data, upon which the Gaussian
curves were based, showed considerable variability in location and spread of
the high rate portion of each trial. Gaussians with very broad spread contri-
bute predominantly in the right tail of the start break functions. The stop
break functions show these same features in mirror image.

To a first approximation, we argue that the break-run-break pattern in
the real data shows a two-state character not matched by our continuous
simulation. A question currently under study is the degree to which the con-
tinuous alternative might approach the flat character of the data as noise is
added to the instantaneous levels around a smooth, bell-shaped function.?

For our present purposes we will regard Figure 9 as justifying the following
examination of patterns in start and stop times obtained through this analysis.
We will see that the constraints these patterns place on several different
models permit strong inferences about sources of variability contributing to
the data.

Scalar timing: Break—run—break

As with giving-up, or stop times, we may define a start time for the peak
procedure as that time in the trial at which the (positive) discrepancy crosses
threshold before the target time is reached. The stop time is the analogous
value, defined just as for giving-up times on the far side of the standard. This
defines an absolute value discrepancy rule,

It — sYs| = b (3)

as a generalization of equation (1). The absolute value of the relative discrep- -
ancy function has the value 1.0 at the beginning of the trial, decreases linearly

*In an extreme case. in which the added noise swamps any underlying form in the bell-shaped curves. the
break-run-break regression should fit horizontal line segments which do not differ in height, since the break
peints should then be a random sample from the time continuum,
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to zero as time in the trial approaches the reinforced time, and increases
linearly beyond this time. The subject starts responding at a high rate when
the discrepancy function falls below the threshold, and stops when it rises
above the threshold on the far side of the reinforced time. That is, the high
rate continues as long as the proximity of the current percept, ¢, to the target,
remembered time, 5, is less than the threshold fraction, &, of the target time.

No variance

The absolute value rule is illustrated in Figure 10, which shows the start
and stop times associated with fixed values of memory and threshold, and no
variance in the accumulation of clock time. The threshold crossing for the
start time i1s shown both for the positive discrepancy, B, on the positive
relative discrepancy function at the top, and for a negative threshold, —B,
on the linear accumulator function for current time. No variance in the timing
process results in a step function for response rate beginning at the same start
time and ending at the same stop time on every trial (shown on the abscissa).

The smooth, bell-shaped peak functions we observe, of course, require
variance in start and stop times, resulting in a variety of step functions which,

Figure 10. Threshold model for peak functions indicating start and stop times as-
sociated with the same threshold, B, and no variance.
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when averaged, produce a smooth curve. However, we have seen that almost
any source of variance is compatible with the average data. We will show
below that this is not true for covariance patterns of trial-by-trial start and
stop times,

The variance sources to be analyzed are just those already considered:
memory or clock, and threshold. However, we now analyze cases in which
different sources contribute variability simultaneously, and also successively,
for the start and stop decision separately. For example, variability might be
present in the representation of the target time over successive trials, but
remain constant, though in error, within a trial (one sample case). Alterna-
tively, memory might be accessed separately for the start and again for the
stop decision within a trial (two-sample case). But the same is true for var-

Table 1.  Nine models

Threshold
No
variance Variance
Number | i i
of 0 | 1 i 2
samples :
§ i
(@]
-5 0 1 3 7
= (0,0) (0,1) (0.2)
e :
g :
-
5 1 2 4 8 ‘
5 3 (1.0) (1.1) (1,2)
= E
g
2 5 ; 6 9
(2.0}, 2.1 (2,2)
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iance in threshold, so that combined with the fixed, no variance (zero sample)
case, there are nine combinations, shown in Table 1. While the evaluation
of nine different models may seem at first blush a formidable task, we will
see that the strength of the correlational analysis is such as to render most of
the inferences transparent.

The nine cells are numbered in the order in which the models will be
considered. The first, with no variance from either source, 1{0,0), is the
trivial case just considered (Figure 10), disqualified on the basis of the bell-
shaped peak function. The other cases all involve one or more samples of
random variables and hence all pass the simple test of the form of the peak
function. We begin with memory or clock variance.

2(1,0). Memory or clock variance, no threshold variance

In Figure 11, we reproduce the schematic of Figure 10, but now indicate
the kind of peak function produced by introduction of variability in either
the memory (left ordinate), or the rate of accumulation of current time
(slope). Trials in which memory overestimates the target time result in
broader step functions than for underestimates, with the result that peak
- functions for memory variance show some right skew, But skew is induced
by current time (slope) variance also, just as with giving-up times in our
earlier analysis. In the figure the two functions lying nearly on top of each
other on the lower ordinate represent the predicted shape of the peak func-

Figure 11. Hypothetical peak functions. The two functions indicated on the abscissa
reflect the predictions associated with normal variance in either the memory
system {ordinate) or the rate of accumulation (diagonal function). Note the
similariry between the functions.
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tion implied by variance of equal magnitude operating in either memory or
current clock time alone. They have roughly the character of the data (Figure
7), with some skew, and again we will not attempt a discrimination based on
shape.

It will be convenient in what follows to assume that the perceived accumu-
lation of subjective time is veridical, proportional to real time, and examine
the consequences of memory variance in the trial-by-trial pattern. It should
be remembered that while we will speak of memory variance, we mean mem-
ory or clock variance, since these have the same trial-by-trial pattern. How-

- ever, we will be able to draw a strong distinction between variance of any

stripe in the memory (or clock) versus variance in threshold or decision pro-
cesses. The distinctions will be forged by examining the trial-by-trial
covariance pattern implicated by these two sources of variability. These pat-
terns are independent of distribution shape.

Over a set of trials,. then, start and stop times distribute, with means,

variances, and covariances. It is useful to look at the variance/covariance

patterns between start and stop, and also two derived measures, the “spread”,
the duration of the high state between start and stop, and the “middle”, the
arithmetic center of the high state. Covariance patterns amongst these four
descriptors are quantitatively, and, we hope to illustrate intuitively, diagnos-
tic for relative contribution to performance.

ff noise in memory for the target reinforced time were the only contributor
to variability, a pair of trials might look like those shown in the discrepancy
diagram in Figure 12. (Recall that we are assuming proportionality in the
clock, and hence variability in remembered time results in variance in the
target value at which the discrepancy on the ordinate in Figure 12 is zero.)
In this example, trial 1 has a somewhat shorter target time than trial two.
Notice that this results in an earlier start time, and earlier stop time, and
hence a shorter duration of responding on this trial as well.

This is shown graphically by the vertical and horizontal hatching for these
two trials below the discrepancy diagram. The correlation pattern is im-
mediately obvious. Start and stop times should be positively correlated, as
should start time and spread. Since the relative discrepancy crosses threshold
later for long target times than for short times, the system acts just as though
there were in fact two different target times, and scalar timing theory requires
that spread be proportional to target time. This is the scalar property that we
see so dramatically when studying different target times experimentally across
different conditions (e.g., Figure 7). Now we are in a position to ask whether
this property holds wirhin trials. When subjects overestimate the reinforced
time, do they show a broader duration of the high state than when they
underestimate? Below the diagram a qualitative schematic of correlations
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between the start, stop, spread, and middle are shown. If memory is the only
source of variance, all of these correlations should be positive. In particular,
the start and the spread should be positively correlated as described above.

Correlations computed from the bird data (Figures 7 and 9) are presented
next to this pattern, and we see that the correlations between all measures
except start and spread are positive, as memory variance would imply. How-
ever, the start and spread measures are negatively correlated. (The box for

Figure 12. Example of two trials associated with two different samples from a variable
memory. The spread is greaterin wial two with a larger memory sample.
The lower left panel shows linear diagrams for the predicted correlations
between start, stop, spread, and middle. The corresponding real correlations
from the data set of Figure 9 are shown on the right. Note the discrepancy
between the start, spread prediction (positive) and the data (—0.337).
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this prediction is shaded, to indicate the discrepancy with the data pattern.)
This means, intuitively, that subjects compensate for a late start by an early
stop. It is as if they “knew” that they were closer than usual to the target
time when they started their high state and used a strict criterion to stop.
This is in fact the correlation expected for these two measures from threshold
variance, studied next.

Figure 13. Example of two trials associated with twe different samples from a variable
threshold. The lower left panel shows linear diagrams for the predicted
correlations. The data pattern is schematized on the right with three levels
of slope, indicating high, moderate, or zero correlations. Note thar without
memory variance there-is no correlation predicted between the middle and
the other variables, and that the start and spread correlation is negative, as
required by the data. However, the starf and stop correlation is also negative,
contrary to the data. '
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3(0,1). No memaory variance, threshold variance
The pattern for threshold variance is shown in Figure 13. Again, two trials
are indicated, produced by two different threshold levels on the relative dis-
crepancy axis. Here the discrepancy function does not change location from
trial to trial, and is shown decreasing toward zero at the mean remembered
time, §, and increasing proportionally on the other side. Variance in
threshold produces a pattern in which the center on all trials is located at the
mean, but start and stop times are perfectly negatively correlated, with a late
start inducing an early stop, and vice versa. Thus on trial 1, a tight threshold
1s adopted, and the response state is correspondingly short, while on trial 2,
_ the threshold is more conservative, and responding begins earlier and ends
later. The correlation pattern shown in diagram form below has zero correla-
tion between the middle (constant) and the other measures, while start and
stop, and start and spread, are negatively correlated. Spread and stop are the
only positively correlated measures.

The data pattern is shown schematically next to the predicted pattern dia-
gram. It reveals discrepancies in most of the measures (shaded boxes in the
predicted pattern), with the important exception of the key negative correla-
tion found in the data between start and spread. This correlation is an impor-
tant, and new, index of timing patterns in the peak procedure, and we see

- that it implies some contribution from variation in the decision process to
respond. The negative correlation at some level has been found for nearly
every subject analyzed with our break-run-break program (more than 40) to
date. The ubiquity of this negative correlation is important not only for its
contribution to our thinking about threshold variance, but also because it
helps to rule out some alternative timing processes considered later.

On the other hand, while a negative correlation between start and spread
is tmplied by threshold variance — a late start predicts a short period of
responding ~ one should also expect a negative correlation between start and
stop - a late start predicts an early stop. The data we have analyzed are
equally clear in showing a positive correlation between start and stop — a late
start predicts a Jate stop — which is the pattern expected from memory vari-
ance.

We are then faced with the question of the relative control of the correla-
tion pattern by two sources of variation, memory or clock on the one hand,
and decision strategy on the other. The relative contribution of both variance
sources dictates the degree to which the quantitative features of the actual
data pattern may be accommodated. In fact, for some subjects there may be
some strain between the data pattern and the theoretical account, even when
both sources of variation are aflowed, but with one sample per trial for each.
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4(1,1). Memory and threshold variance

The data requires borh the strong negative correlation between start and
spread, and the positive correlation between start and stop. It may be shown
that if subjects make but one decision (sample) about the proximity required
for responding, and another decision about what the target time is on each
trial, then the positive correlation between start and stop and negative corre-
lation between start and spread directly trade. That is, if there is large varia-
tion in memory the correlation between start and stop is high positive and
that between start and spread is at best low positive. Whereas if there is a
large contribution of variance from threshold, the correlation between start
and spread is high negative, and that between start and stop is at best low
negative. Thus while group correlation patterns may be consonant with the
pattern expected from one-sample variance from memory and threshold, in-

-dividual subject’s patterns may occasionally show some strain for this model,

with unusually high positive correlations between start and stop, and start
and middle - the pattern expected from memory variance — and unusually
high negative correlations between start and spread — the pattern expected
from threshold variance. :

The models considered thus far assume but one random sample per trial,
from memory or threshold or both, so that variation is at the level of succes-
sive trials. We consider now models assuming different samples associated
with each response decision, to start and to stop responding fast.

53(2,0). Two memory samples, threshold constant

Consider first the pattern generated by two independent samples from
memory, one for starting and another for stopping. The situation is shown
schematically in Figure 14. The start decision is based on sample one, and
the stop decision on sample two. With independent samples, any correlation
between the two decisions is abolished. However, a negative correlation be-
- tween start and spread is induced. In the figure, the target time associated
with starting is shorter than usual, and it is clear that sample two, via regres-
sion to the mean, induces a longer spread than would be produced by sample
one (and vice versa for a late start) so that this model fits the moderate
negative correlation seen in the data between these two measures. The pre-
dicted correlation patterns are contrasted with the data pattern below, and it
is clear that they are similar, except for the disqualifying exception of the
zero correlation between start and stop.
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Figure 14. Correlation pattern expected with two memory samples, one for start, and
one for stop. The data pattern is reproduced on the lower right, and the
predicted correlation patterns are shown in diagram form on the left. Note
the zero correlation between start and stop in the predicted pattern, contrary
to the data. '
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6(2,1}). Two memory samples, one threshold sample

Adding variation in threshold level from trial to trial does not make the
start, stop correlation positive. In fact, adding threshold variance turns that
correlation somewhat negative. The threshold pattern in Figure 13, when
added to two memory samples, exacerbates rather than alleviates the discre-
pancy with the positive start, stop correlation. Thus this modification does
not accommodate the data pattern, and must be rejected.
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7(0,2). Memory constant, two threshold samples

The alternative multiple sampling possibility, multiple thresholds, is
schematized in Figure 15. Independence between a start and stop threshold
results, as in the memory case, in a zero correlation between start and stop.
However, the correlation between start and spread remains negative for the
two-threshold model, for much the same reason that it is negative in the
two-memory sample model. Regression toward the mean for the second sam-
ple ensures that unusually early (or late) starts are associated with stops
closer to the average, hence with long (or short) spreads.

Figure 15. Correlation pattern associated with two threshold samples, one for start,
and one for stop. The data pattern, as in previous figures, is on the right,
and the predicted, two-sample pattern on the left. Note that, again, start and
stop become uncorrelated with two samples.
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This model must be rejected for the same reason as the two-memory sam-
ple model. It renders the start, stop correlation zero, while in the data this
correlation is consistently positive. Another less critical feature perhaps of
this correlation pattern is that the middle and spread become uncorrelated
as well, and in the data these measures also remain somewhat positively
correlated.

8(1,2). One memory sample, two threshold samples

A modification that is not disqualified, and indeed fits all of the data we
have collected, is one in which two thresholds are assumed, one for starting
and one for stopping, but only one memory sample is used per trial. Variation
in this memory induces a positive coupling between start and stop, as ex-
pected from the memory pattern in Figure 12, and yet the negative correlation
between start and spread is maintained, although, under some parameter
choices, attenuated. This model suggests that the level of proximity which is
good enough to start responding may not be the same level as that associated
with stopping, and this accords with other qualitative features of the data.
For example, it is usually the case that a sharp start onset time for the high
state is learned earlier than a sharp stop time. The result is that early in
training subjects show considerably more skew in their peak functions than
late in training.

A second feature that this model accommodates is the fact that the start
time is often closer to the target-reinforced time than is the stop. While two
thresholds are not required to accommodate this kind of a finding, they do
so quite naturally, and they may accord with differential costs for late starts
versus late stops. Starting late simply means that reinforcement sometimes
does not occur quite as soon as it might otherwise have done. Stopping early,
however, might be more costly in that reinforcement could be missed al-
together if no more responding occurs on a to-be-reinforced trial.

9(2,2). Two memory samples, two threshold samples

For completeness, we note that a model in which there are start and stop
memory samples, and start and stop threshold samples, is also ruled out by
our data. It is clear from the above analysis that a system in which the task
is completely redefined for starting and again for stopping eliminates the
correlation between start and stop, as do the two memory (5) or two-
threshold (7) sample models.

O
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Conclusion

This completes our conceptual analysis of covariance patterns associated with
memory and decision variables underlying timing performarnce. We have
shown that strong inferences eliminating several kinds of models may be
made by examining the correlation pattern between start and stop in a two-
state analysis of performance in the peak procedure. The key features of the
data pattern that discriminate amongst several models are:

(1) a positive correlation between start and stop times;

(2) a negative correlation between start and spread times, that is, between
the time that the high state begins and its duration; and

(3) a positive correlation between the middle of the high state and its dura-
tion.

Of the nine possible scalar timing models, this data pattern disqualifies all
but two: those with one memory sample and either one- or two-threshold
samples.

Our analysis is summarized in Table 2. Successive rows correspond to the
numbering in the cells of Table 1, in order of increasing number of random
variables per trial. Models 4 and 8, with one memory sample, are the only
survivors of the stringent test imposed by the three key data correlations
listed above. The positive correlation between start and stop requires some

Table 2.
Models Data
No, of independent Modeino, Memory/ Disqualified Start, stop, spread
random samples (Table 1}  clock Threshold (X),ornot (V) disqualification
0. no variance 1(0.0) Fixed: u($) Fixed: B X o (start) > 0
o {stop) > 0
1 sample 2(1.0) Variable: s Fixed: B X p(start, spread) < 0
3(0.1) Fixed: p(S) Variable: b X p{start, stop) > 0
2 samples 4(1,1) Variable: s Variable: & VAT) p{start, stop) — +1,
pistart, spread) — —1
5(2,0) Variable: s;,s, Fixed: 8 X p{start, stop) >0
6(0.2) Fixed: p(§) Variable: b, b, X p{start, stop) >0
3 samples 7(2.1) Variable: 5, 5, Variable: b X p(start, stop) =0
8(1,2) Variable: s Variable: b, 5, 1/ NONE
9(2,2) Variable: 5,5, Variable:b,.b; X p(start, stop) >0

4 samples
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variance in memory for the target time, but this memory cannot be assessed
independently for the start and stop decision.

Threshold variance is required as well, to accommodate the negative cor-
relation between start and spread. This finding is new, and especially
noteworthy as it is in direct opposition to the scalar property seen across
different reinforcement time conditions. When reinforcement time is
changed, the scalar increase in memory variance dominates the spread of the
average peak function. But within a single reinforcement time condition,
memory and threshold variance act in opposition: sufficient threshold vari-
ability induces a negative correlation between start and spread, while still
permitting a positive correlation between start and stop.

The flexibility of the surviving models is of course bought at some cost,
since additional assumptions ineluctably lead to additional parameters. In the
three-sample case {model 8), we require different mean start thresholds and
stop thresholds, although not different variances necessarily. On the other
hand, such flexibility we believe is cheap enough considering the power with
which the account excludes some otherwise reasonable alternatives, such as
the two memory sample models. Indeed, it suggests to us that a considerable
advance in our thinking about temporal memory will be effected by proce-
dures which experimentally explore changing correlation patterns associated
with changing task demands that differentially manipulate memory and deci-
sion variables.
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