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Abstract This paper discusses the possibility of modelling inductive inference
(Gold 1967) in dynamic epistemic logic (see e.g. van Ditmarsch et al. 2007). The gen-
eral purpose is to propose a semantic basis for designing a modal logic for learning in
the limit. First, we analyze a variety of epistemological notions involved in identifica-
tion in the limit and match it with traditional epistemic and doxastic logic approaches.
Then, we provide a comparison of learning by erasing (Lange et al. 1996) and iterated
epistemic update (Baltag and Moss 2004) as analyzed in dynamic epistemic logic. We
show that finite identification can be modelled in dynamic epistemic logic, and that
the elimination process of learning by erasing can be seen as iterated belief-revision
modelled in dynamic doxastic logic. Finally, we propose viewing hypothesis spaces
as temporal frames and discuss possible advantages of that perspective.

Keywords Identification in the limit · Learning by erasing · Induction ·
Learning by elimination · Co-learning · Finite identifiability ·
Dynamic epistemic logic · Dynamic doxastic logic · Epistemic update · Belief revision

1 Introduction

In this paper we discuss two perspectives on the phenomenon of epistemic change:
formal learning theory (see e.g. Jain et al. 1999) and belief-revision theory in its interre-
lation with dynamic epistemic logic. Formal learning theory (LT) has grown out of the
classical framework of identification in the limit (Gold 1967). The latter was introduced
as a model of language acquisition, more specifically—grammar inference. Initially
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restricted to syntax and underappreciated in semantic considerations, eventually the
idea of identification has been applied also to the acquisition of natural language
semantics (Tiede 1999; Costa Florêntio 2002; Gierasimczuk 2007) and modelling the
process of scientific inquiry (Kelly 1996). Moreover, the design of model-theoretic
learning (Osherson et al. 1997) and its application to belief-revision theory (Martin
and Osherson 1998) can be viewed as an important step towards involving even more
semantics.

In parallel, a perspective that focuses more on the epistemological than operational
aspects of belief-change has been developed. After a precise language to discuss epi-
stemic states of agents has been established (Hintikka 1962), the need of formalizing
dynamics of knowledge emerged. The belief-revision AGM framework (Alchourrón
et al. 1985) constitutes an attempt to talk about the dynamics of epistemic states.
Belief-revision policies thus explained have been successfully modelled in dynamic
epistemic logic (see van Ditmarsch et al. 2007) and in the above-mentioned model-
theoretic learning (Martin and Osherson 1998).

In this paper we present a way to translate some notions of LT into the dynamic
epistemic logic (DEL) and dynamic doxastic logic (DDL) paradigm. First, we recall
the basics of formal learning theory in its set-theoretical version, concentrating on
a special case—learning by erasing. We extensively discuss epistemological notions
involved in learning in the limit, stressing the points that we view as important from
a modal logic perspective. Then, we lay out a way to model finite identification in
dynamic epistemic logic and learning by erasing in dynamic doxastic logic. In the
end, we briefly mention a way to treat hypotheses as temporal frames.

This paper is meant as an introduction of LT notions to DEL community. Therefore,
we assume that the reader is familiar with dynamic epistemic and dynamic doxastic
logic (see van Ditmarsch et al. 2007). We do not discuss them extensively, instead we
focus on formal learning theory.

2 Learning theory

2.1 Identification in the limit

The primary concern of learning theory is the process of identification in the limit
(Gold 1967). The idea was originally motivated by the need of formalizing the pro-
cess of inferring general conclusions from partial, inductively given information, like
in the case of language learning (inferring grammars from sentences) and scientific
inquiry (drawing general conclusions from partial experiments). We can think of these
processes as games between Scientist and Nature. At the start we have a class of pos-
sible worlds together with a class of hypotheses (possible descriptions of worlds).
Different hypotheses may describe the same world. We assume that both Scientist and
Nature know what all the possibilities are, i.e., they both have access to the initial
class. Nature chooses one of those possible worlds to be the actual one. Scientist has
to guess which one it is. Scientist receives information about the world in an inductive
manner. The stream of data is infinite and contains only and all the elements from the
chosen reality. Each time Scientist receives a piece of information he answers with
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one of the hypotheses from the initial class. We say that Scientist identifies Nature’s
choice in the limit if after some finite number of guesses his answers stabilize on a
correct hypothesis. Moreover, to discuss more general identifiability, we require that
the same is true for all the possible worlds from the initial class, i.e., regardless of
which element from the class is chosen by Nature to be true, Scientist can identify it
in the limit on the basis of data about the actual world.

To formalize this setting we need to make the notion of stream of data clear. In
learning theory such streams are often called ‘environments’.1

Let us consider E—the set of all computably enumerable sets. Let C ⊆ E be
some class of c.e. sets. For each S in C we consider Turing machines hn which gen-
erate S and in such a case we say that n is an index of S. The Turing machines will
function as the conjectures that Scientist makes. It is well-known that each S has
infinitely many indices. Let us take IS to be the set of all indices of the set S, i.e,
IS = {n|hn generates S}.
Definition 1 (Environment)
By environment of S, ε, we mean an infinite sequence of elements from S such that it
enumerates all and only the elements from S, allowing repetitions.

Definition 2 (Notation)
We will use the following notation:

• εn is the n-th element of ε;
• ε|n is a sequence (ε0, ε1, . . . , εn−1);
• SE Q denotes a set of all finite initial segments of all environments;
• set (ε) is a set of elements that occur in ε;
• hn will refer to a hypothesis, i.e., a finite description of a set, a Turing machine

generating S;
• L is a learning function—a map from finite data sequences to indexes of hypotheses,

L : SE Q → IHC .

The structure of the identifiability in the limit can be formulated by the following
chain of definitions:

Definition 3 (Identification in the limit, LIM)
We say that a learning function L:

1. identifies S ∈ C in the limit on ε iff there is a number k, such that for co-finitely
many m, L(ε|m) = k and k ∈ IS ;

2. identifies S ∈ C in the limit iff it identifies S in the limit on every ε for S;
3. identifies C in the limit iff it identifies in the limit every S ∈ C .

The notion of identifiability can be strengthened in various ways. One radical case
is to introduce a finiteness condition for identification.

1 We are concerned here only with sequences of positive information (texts).
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Definition 4 (Finite identification, FIN)
We say that a learning function L:

1. finitely identifies S ∈ C on ε iff, when inductively given ε, at some point L outputs
a single k, such that k ∈ IS , and stops;

2. finitely identifies S ∈ C iff it finitely identifies S on every ε for S;
3. finitely identifies C iff it finitely identifies every S ∈ C .

To clarify the notion of identification let us give some examples. First let us consider
finite identifiability of some infinite class of finite sets.

Example 1 Let C0 = {{0, 1}, {0, 2}, {0, 3}, . . .}. The corresponding class of hypoth-
eses2 is HC0 = {h1, h2, h3, . . .}. C0 is finitely identifiable by the following function
L : SE Q → HC0 :

L(ε|n) =
{

is undefined if set (ε|n) = {0},
max(set (ε|n)) otherwise.

In other words, L outputs the correct hypothesis as soon as it receives a number
different than 0, and the procedure ends.

There are simple classes of sets, even finite classes of finite sets, which are not
finitely identifiable.

Example 2 Let C1 = {{1}, {1, 2}, {1, 2, 3}}, with the corresponding class of hypothe-
ses being HC1 = {h1, h2, h3}. C1 is not finitely identifiable. To see that, assume that
{1, 2} is chosen to be the actual world. Then Scientist can never conclusively decide
that h2 is true. For all he knows, 3 might appear in the future, so he has to leave the
h3-possibility open.

C1 is, however, identifiable in the limit by the following function L : SE Q → HC1 :

L(ε|n) = hm, such that m = max(set (ε|n)).

Let us now extend the class C1 so that it becomes infinite. We will consider such
infinite cases in the following two examples.

Example 3 Let C2 = {{1}, {1, 2}, {1, 2, 3}, ...}. The corresponding class of hypothe-
ses is HC2 = {h1, h2, h3, ...}. This class is identifiable in the limit by the same function
that identifies the finite class from Example 2, namely L : SE Q → HC2 :

L(ε|n) = hm, such that m = max(set (ε|n)).

Now, let us see what happens when we add the set of all natural numbers to the
class C2.

2 Finite sets of numbers can be taken to be their own finite descriptions, i.e., the hypothesis which corre-
sponds to the finite set can simply enumerate all elements from the set.
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Example 4 Let C3 = {N} ∪ {{1}, {1, 2}, {1, 2, 3}, ...}. The corresponding class of
hypotheses is HC3 = {h0, h1, h2, h3, . . . , }, such that h0 = ‘there are all natural
numbers’. C3 is not identifiable in the limit.

A short argument in favor of the above claim is as follows. Let us assume that there
is a function L that identifies C3. Then, there is a k and n, such that for all m ≥
n, L(ε|m) = k. Now, if k ∈ {1, 2, 3, . . .}, then L cannot identify the set N. On the
other hand, if k = 0 then L cannot identify hmax(set (ε|n)). So, we get a contradiction,
L cannot identify C3.

We already know that there are infinite classes of finite sets such that they are iden-
tifiable in the limit. In the next example we will show an infinite class of infinite sets
that is identifiable in the limit.

Example 5 Let C4 = {Sn|Sn = N − {n}, n ∈ N}. The corresponding class of hypoth-
eses is HC4 = {hn = ‘all positive integers except n’|n ∈ N}. C4 is identifiable in the
limit by the learning function L : SE Q → HC4 :

L(ε|n) = hm such that m = min(N − set (ε|n)).

To complete the picture, we add the set of all natural numbers to C4. As a result we
get a class that is not identifiable in the limit.

Example 6 This time let C5 = C4 ∪ {N}. C5 is not identifiable in the limit. Here the
argument is very similar to the one in Example 4.

2.2 Learning by erasing

Learning by erasing (Lange et al. 1996) is an epistemologically intuitive modification
of the identification in the limit model. Very often the cognitive process of converging
to a correct conclusion consists of eliminating those possibilities that are falsified dur-
ing the inductive inquiry. Accordingly, in the formal model the outputs of the learning
function are negative, i.e., the function each time eliminates a hypothesis, instead of
explicitly guessing one that is supposed to be correct. A special case of learning by
erasing is co-learning (Freivalds and Zeugmann 1995). The set S ∈ C is co-learnable
iff there is a function which stabilizes by eliminating all indexes from IHC except just
one, from IS . The difference between this approach and the usual identification is in
the interpretation of the positive guess of the learning function. In learning by erasing
one adds an ordering of the initial hypothesis space. This allows one to interpret the
actual positive guess of the learning-by-erasing function to be the least hypothesis (in
the given ordering) not yet eliminated.

Let us give now the two definitions that explain the notion of learning by erasing.

Definition 5 (Function stabilization)
In learning by erasing we say that a function stabilizes to number k on environment ε

iff for co-finitely many n ∈ N:

k = min{N − {L(ε|0), . . . , L(ε|n)}}.
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Definition 6 (Learning by erasing, e-learning)
We say that a learning function L:

1. learns S ∈ C by erasing on ε iff L stabilizes to k on ε and k ∈ IS ;
2. learns S ∈ C by erasing iff it learns by erasing S from every ε for S;
3. learns C by erasing iff it learns by erasing every S ∈ C .

3 Properties of identification

In this section we discuss learning-theoretic properties of identification in the limit
that we view as relevant for modelling in dynamic epistemic logic.

3.1 Different nature of data and conclusions

The word “learning” is used to cover a variety of epistemic processes. One of them
is the epistemic update of the form of one-step learning that ϕ, followed by a mod-
ification of the set of beliefs—with an attempt to add ϕ as it is. This scenario is
usually modelled and analyzed in AGM framework and in dynamic epistemic logic.
In the present setting the incoming information is spread over more than one step.
Moreover, the incoming pieces of data are of a different nature than the actual thing
being learned. Typically, at each finite step environment gives only partial informa-
tion about a potentially infinite set. The relationship between data and hypothesis is
like between sentences and grammars, natural numbers as such and Turing machines.
Namely, if we know the hypothesis we can infer what kind of possible data are going
to appear, but in principle we will not be able to make a conclusive inference from
data to hypotheses.

3.2 Inductive, step-by-step process

The process of restricting the hypothesis space to only those hypotheses that are con-
sistent with the incoming data resembles the event of public announcement. As we
have seen above, this type of identification, learning by erasing, is in fact one of the
possible learning scenarios. The important difference is that in DEL a scheme of arbi-
trary sequences of public announcements can be shrunk to one. This feature is absent in
learning theory, since the point of convergence to a correct hypothesis is unknown and
in general uncomputable. Therefore, finite sequences of data cannot be seen as a sin-
gle announcement of a given hypothesis (the one that is guessed). Furthermore, which
hypothesis is announced by the data heavily depends on the shape of the initial set of
hypotheses. For instance, let us consider two simple classes of sets: C1 = {{1}, {2}}
and C2 = {{1}, {1, 2}}, and let h1 be a hypothesis corresponding to the set {1}. In this
case the single event of publicly announcing !1 is equivalent to announcing h1 in case
C1 has been the initial set of hypotheses, but it does not announce h1 when Scientist
has to pick from C2, since the other hypothesis is still possible.
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3.3 Class of hypotheses

The procedure of learning starts with a class of hypotheses which represents the back-
ground knowledge of the scientist. This fact has at least two important consequences
for our considerations. One is that the Scientist expects that one of them is true, and
in the framework it is guaranteed that he is right—Nature indeed chooses one from
the class fixed in the beginning. Second is that we cannot think of a learning scenario
as of the process of simply verifying or falsifying a single hypothesis, although those
two processes can be viewed as important components of identification (Gierasimczuk
2009). The fact of picking one element from a class is an important factor in learna-
bility analysis. It allows considering learnability on two levels: single hypotheses and
classes determined by some external properties.

3.4 Infinite procedures

The learning theory framework is defined for potentially infinite universes, but even
for finite worlds the sequences of data are infinite. The reason for this is that we want to
account for situations when Scientist does not know the finiteness or size of the entity
he investigates. If the initial class of hypotheses is not drastically restrictive, Scientist
can never know whether all the elements have already been enumerated. This leads
to infinite procedures and conditions defined in the limit. Our temporal and episte-
mic models should reflect these properties. They should allow talking about epistemic
states as invariant from some point onwards, without specifying when this happens.

3.5 Non-introspective knowledge

Learning in this framework leads to a form of knowledge—eventually Scientist
declares a hypothesis that is true, he believes that it is true, and moreover he has
a justification (though often very limited) to choose it. This “knowledge” is strictly
operational (work-in-progress) and does not entail introspection. It is preceded by a
sequence of belief changes. In general, Scientist’s perspective does not allow him to
point out the successful guess, he does not know whether he will not be forced to
change his guess again in the light of future data.

3.6 Single agent

Although science as well as learning seem to be at least a two-player game, we are
concerned here only with the role of Scientist/Learner. We assume Nature/Teacher to
be an objective, uninvolved machine that makes a choice and gives out data.

3.7 Positive, true and readable data

We assume the following features of the incoming data.

1. Truthfulness, i.e., Scientist receives only true data, no false information is included.
This assumption leads to the priority of incoming data over the background
preference of Scientist.
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2. Positiveness, i.e., Scientist receives only elements of a positive presentation (text)
of the object being learned. Alternatively, together with the positive also negative
information could be included (informant), e.g., for set learning the graph of the
characteristic function of the set could be enumerated.

3. Readability, i.e., there is complete clarity about what information Scientist
receives. A further step is to analyze the situation of uncertainty about the incoming
information.

3.8 Summary

Below we sum up the above-explained features of learning in the limit.

1. Data and conclusions are of a different nature.
2. Learning is an inductive, step-by-step process.
3. Learning starts with a class of hypotheses.
4. Learning is a potentially infinite procedure, defined in the limit.
5. Learning results in operational, non-introspective knowledge.
6. We analyze single-agent learning.
7. Environments include only true, positive and readable information.

4 Learning as epistemic update

The properties of learning in the limit discussed in Sect. 3 have many important conse-
quences for modelling learning in DEL. One of them is that we are forced to provide
models which can handle two sorts of objects: pieces of incoming information and
hypotheses. To establish a bridge between those two different ontologies we treat a
hypothesis as the set of histories of events that it predicts, e.g., if we take a hypothesis
h to be ‘There are all natural numbers except 3’ it predicts that the environment will
enumerate all the natural numbers except 3.

The possible worlds in our epistemic model are identified with hypotheses. Unlike
in the classical DEL approach, the event models are announcements of data corre-
sponding to elements of the sets being learned, and not hypotheses themselves.

A further difference is in the number of agents. In DEL and DDL the update is
defined for multi-agent epistemic cases. As we have already explained, in the present
paper we are concerned only with the role of Scientist (Learner). We recognize the pos-
sibility and potential of analyzing two or more agents in the contexts of inductive infer-
ence (an example is given by Dégremont and Gierasimczuk 2009). However, for the
sake of simplicity our DEL and DDL models are going to account for only one agent.

Let us again fix C to be a class of sets, and for each Sn ∈ C we consider hn to be a
hypothesis that describes Sn . In learning by erasing we can take the initial epistemic
model to represent the background knowledge of Scientist together with his uncer-
tainty about which world is the actual one. Let us take the initial epistemic frame to be

M = 〈HC ,∼〉,
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. . .

Fig. 1 Initial epistemic model

. . .

Fig. 2 Environment ε consistent with h3

Fig. 3 Event model E0 of the announcement of ε0

where HC is a possibly infinite3 set of worlds (hypotheses that are considered possible)
and ∼⊆ HC × HC is an uncertainty relation for Scientist. Since we assume that the
initial hypothesis space is arbitrary, we also do not require any particular preference
of the scientist over HC . Hence, we can for now assume that ∼ is a universal, binary
equivalence relation over HC . The initial epistemic state of the Scientist is depicted in
Fig. 1. This model corresponds to the starting point of the scientific discovery process.
Each world represents a hypothesis from the initial set determined by the background
knowledge. In the beginning Scientist considers all of them possible. The model also
reflects the fact that Scientist is given the class of hypotheses HC . In other words he
knows what the alternatives are.

Next, Nature decides on some state of the world by choosing one possibility from
C . Let us assume that as a result h3 correctly describes the chosen world. Then, she
decides on some particular environment ε, consistent with Nature’s choice. We picture
this enumeration in Fig. 2 below.

The sequence ε is successively given to Scientist. Let us focus now on the first step
of the procedure. We have the uncertainty range of the scientist, it runs through the
whole set of hypotheses HC . A piece of data ε0 is given to the scientist. This fact can be
represented by the event model E0 = 〈{e},→, pre〉, where e → e and pre(e) = ε0
(see Fig. 3).

Scientist, when confronted with the announcement of ε0 updates his epistemic state
accordingly. We will represent the process formally by the product update M ⊗ E0.
The result of the product update is again an epistemic model M ′ = 〈HC

′,∼′〉, where:

3 We can effectively deal with the epistemic update and identification in infinite domains by using special
enumeration strategies (for explanation and examples see Gierasimczuk 2009).
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. . .

Fig. 4 Confrontation with data

. . .

x . . .

Fig. 5 Epistemic update

1. HC
′ = {(hn, e)|hn ∈ HC &e ∈ |E0|&pre(e) ∈ Sn)};

2. ∼′=∼ |HC
′.

We use here event models similar in spirit to those of public announcements (Batlag
et al. 1998). They consist of only one state with a pre-condition determined by the
piece of data that is given. In Fig. 4 Scientist’s confrontation with ε0 is depicted.

Scientist tests each hypothesis with ε0. If a hypothesis is consistent with it, it remains
as a possibility, if it is not consistent, it is eliminated (see Fig. 5). Let us assume that
ε0 is not consistent with h2.

This epistemic update can be iterated infinitely many times along ε resulting in
an infinite sequence of models which according to the lines of DEL can be called
ε-Generated Epistemic Model (see e.g. van Benthem et al. 2007).

Definition 7 (Generated epistemic model)
The generated epistemic model (M)ε, with ε = ε0, ε1, ε2, . . ., is the result of episte-
mic update M ⊗ E0 ⊗ E1 ⊗ E2 ⊗ . . ., where for each n, the event En corresponds to
the announcement of εn .

Let us now see a simple example of finite identification of a single hypothesis in
the special case of set learning.

Example 7 Let us take HC = {h1, h2, h3}, such that hn corresponds to {1, ..., n}.
Nature makes her choice regarding what the world is like. We assume that as a result
h3 holds. Then, Nature chooses an enumeration ε = 1, 2, 1, 3, 2, . . .. After the first
piece of data, 1, the uncertainty range of the scientist includes the whole HC . After
the second, 2, scientist eliminates h1 since it does not contain the event 2 and now he
hesitates between h2 and h3. The third piece, 1, does not change anything, however the
next one, 3, eliminates h2. Uncertainty is eliminated as well. He knows that the only
hypothesis that can be true is h3. Therefore, we can say that he learned it conclusively,
with certainty.

The above discussion allows drawing the following conclusion.

Proposition 1 Finite identifiability can be modelled in DEL.

The argument for the above proposition is as follows. For the translation of the FIN
framework into DEL semantics we take:
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– epistemic states for hypotheses;
– infinite sequences of announcements for environments;
– epistemic update for the progress in eliminating uncertainty over the hypothesis

space.

Scientist succeeds in finite identification of S from ε iff there is a finite initial segment
of ε, ε|n, such that the domain of the ε|n-generated model contains only one hypothe-
sis, hk , and k ∈ IS . In other words, there is a finite step of the iterated epistemic update
along ε, that eliminates Scientist’s uncertainty.

4.1 Learning by erasing in DDL

From Scientist’s point of view the process of learning has a few components that are
very important in logical modelling. The first is of course the current conjecture—a
hypothesis that is considered appropriate in a given step of the procedure. The second
is the set of those hypotheses that were used in the past and have already been dis-
carded. The third part is the set of hypotheses that are still considered possible, but
are for some reason less probable than the chosen one.

Let us consider the following example of a learning scenario, in which the uncer-
tainty is never eliminated.

Example 8 As you probably observed, in Example 7 scientist was very lucky. Let
us assume for a moment that nature had chosen h2, and had fixed the enumeration
ε = 1, 2, 1, 2, 2, 2, 2, . . . In this case Scientist’s uncertainty can never be eliminated.4

This example indicates that the central element of the identification in the limit
model is the unavoidable presence of uncertainty. The limiting framework allows
however introducing some kind of operational knowledge, which is uncertainty-proof.

To model the algorithmic nature of the learning process that includes the actual
guess and other not-yet-eliminated possibilities, we enrich the epistemic model with
some preference relation ≤: HC × HC . The relation ≤ represents some preference
over the set of hypotheses, e.g., if Scientist is an occamist, the preference would be
defined according to the simplicity of hypotheses. In the initial epistemic state the
uncertainty of the scientist again ranges over all of HC . This time however the class is
ordered and Scientists current belief is the most preferred hypothesis. Therefore, we
consider the initial epistemic state of Scientist to be:

M = 〈HC ,∼,≤〉.

The procedure of erasing hypotheses that are inconsistent with successively incoming
data is the same as in the previous section. This time however let us introduce the
current-guess state which is interpreted as the actual conjecture of the Scientist. It is
always the one that is most preferred—the smallest one according to ≤. In doxastic

4 As we are interested here in learning by erasing, we assume a suitable underlying ordering of the hypothe-
sis space. In this case it is: h1, h2, h3. However, note that this type of identification is not order independent.
If the initial ordering was: h1, h3, h2, then Scientist would not stabilize on the correct hypothesis.
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logic a set of most preferred hypotheses is almost invariably interpreted as the one
that the agent believes in. Let us go back to Example 8, where Nature chose a world
consistent with h2. After seeing 1 and eliminating h1, Scientist’s attention focuses on
h2, then h2 is his current belief. It is the most preferred hypothesis, and as such can be
reiterated as long as it is consistent with ε. In this particular case, since Nature chose
a world consistent with h2, it will never be contradicted, so Scientist will always be
uncertain between h2 and h3. However, his preference directs him to believe in the
correct hypothesis, without him being aware of the correctness. Therefore, we claim
the following.

Proposition 2 Learning by erasing can be modelled in DDL.

The argument for the above proposition is as follows. For the translation we take:

– epistemic states for hypotheses;
– infinite sequences of announcements for environments;
– epistemic update for the progress in eliminating uncertainty over the hypothesis

space;
– preference relation for the underlying hypothesis space;
– in each step of the procedure, the most preferred hypothesis for the actual positive

guess of the learning function.

Scientist learns S by erasing from ε iff there is n such that for every m > n, the most
preferred state of the domain of the ε|m-generated epistemic model is hk , and k ∈ IS .

5 Hypotheses as protocols. A note on a temporal view

Recently, the correspondence results between dynamic epistemic logic and epistemic
temporal logic have been obtained (van Benthem et al. 2007). In this section we indi-
cate that such a double perspective (DEL + ETL) on the dynamics of learning is very
relevant for our purposes.

In formal learning theory each hypothesis from the given class is associated with
the corresponding set of environments. The latter can be seen as possible “streams
of events” or “histories” that may occur if the relevant hypothesis is true. A history
can in its turn be represented as a branch in the tree of all possible courses of events.
Accordingly, hypotheses can be viewed as trees (sets of histories).

Let us take � to be the set of events5 (all possible elementary information). Accord-
ingly, �∗ is the set of all finite sequences over � (all finite strings of events). Let now
us take a class of hypotheses HC and hn ∈ HC . The hypothesis hn is an epistemic
temporal frame

〈�, Hn,∼〉,

where � is the set of events; Hn ⊆ �∗ is a protocol (says which sequences of events
are allowed), that is closed under non-empty prefixes; and ∼ is a binary universal

5 In general, � can be infinite. This will allow us to consider many interesting, and still effective learning
cases.
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relation on Hn . Such ETL frame indicates which sequences of data can be expected
when the corresponding hypothesis is true. This way of thinking allows viewing the
class of hypotheses HC as a forest of such protocols.

The temporal treatment of hypotheses can give an important contribution to DEL.
Typically, the epistemic updates are memoryless in the sense that each time an event
occurs the epistemic model is modified and in the next step the procedure starts all
over again. Temporal treatment of epistemic states themselves allows putting addi-
tional conditions on the sequences of events that can lead to a particular change in an
epistemic model.

This view has other possible implications. Let us only mention that it allows consid-
ering properties of classes of hypotheses in the limit, in (possibly) infinite universes.
An example of such hypotheses are generalized quantifiers. Some of their formal
features, like verifiability and falsifiability in the limit (Gierasimczuk 2009), allow a
temporal analysis. This analysis can be semantically based on the so-called number
triangle representation (van Benthem 1986). Some work on learnability of general-
ized quantifiers exists, and relating its results to temporal validities would be very
interesting.

If we turn the above-defined frame into a temporal model, we create the possibility
of a temporal logic for hypothesis spaces. This is even more relevant if we recall that
learnability is defined for classes of hypotheses. We can mention here, for instance,
Angluin’s tell-tale set construction (Angluin 1980) which constitutes the basic con-
dition of learnability of a recursive class of recursive sets. Constructing a temporal
logic for hypothesis spaces allows expressing this condition as a temporal validity
and link it to properties of dynamic epistemic models for learning (Dégremont and
Gierasimczuk 2009).

6 Conclusions and further work

We have shown that some forms of inductive inference can be modelled in dynamic
epistemic logic and dynamic doxastic logic. The claim is supported by a translation
of the components of learning into a two-sorted semantics for DEL and DDL. In
particular, we show that DEL is an appropriate framework to simulate finite identifi-
ability. On the other hand, learning by erasing, that requires an underlying ordering
of the hypothesis space, can be formalized in DDL, where the preference relation is
a standard element of any model. The restrictiveness of the DEL and DDL modelling
suggests that some extension of the traditional DEL framework should be considered.
In particular, other epistemic update policies can be introduced and checked for their
LT counterparts.

In Sect. 5, we have proposed to view one component of the learning paradigm,
hypothesis spaces, as temporal frames.6 The continuation of that line of research
would be to analyze semantic properties of hypotheses (e.g. generalized quantifiers)
in a temporal framework.

6 Learnability-related temporal logic interpreted on this structures is introduced and extensively discussed
in (Dégremont and Gierasimczuk 2009).
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Modal analysis of the process of learning can be also continued in the following
directions:

– analyzing inductive inference process in game-theoretical terms, and discussing
strategies for learning and teaching (for an example see (Gierasimczuk et al. 2009));

– studying the notion of non-introspective operational knowledge and uncertainty in
inductive inference.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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