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Abstract. The paper presents two case studies of multi-agent informa-
tion exchange involving generalized quantifiers. We focus on scenarios
in which agents successfully converge to knowledge on the basis of the
information about the knowledge of others, so-called Muddy Children
puzzle [1] and Top Hat puzzle. We investigate the relationship between
certain invariance properties of quantifiers and the successful convergence
to knowledge in such situations. We generalize the scenarios to account
for public announcements with arbitrary quantifiers. We show that the
Muddy Children puzzle is solvable for any number of agents if and only
if the quantifier in the announcement is positively active (satisfies a ver-
sion of the variety condition). In order to get the characterization result,
we propose a new concise logical modeling of the puzzle based on the
number triangle representation of generalized quantifiers. In a similar
vein, we also study the Top Hat puzzle. We observe that in this case an
announcement needs to satisfy stronger conditions in order to guarantee
solvability. Hence, we introduce a new property, called bounded thick-
ness, and show that the solvability of the Top Hat puzzle for arbitrary
number of agents is equivalent to the announcement being 1-thick.

Key words: generalized quantifiers; number triangle; invariance prop-
erties; Muddy Children Puzzle; Top Hat Puzzle, epistemic logic

1 Introduction

The Top Hat puzzle Imagine you are one of ten prisoners locked up for extensive
use of logic. To make you even more miserable, the guard comes up with a puzzle.
He gathers all ten of you and says: ‘Each of you will be assigned a random hat,
either black or white. You will be lined up single file where each can see the
hats in front of him but not behind. Starting with the prisoner in the back of
the line and moving forward, you must each, in turn, say only one word which
must be ‘black’ or ‘white’. If the word you uttered matches your hat color you
are released, if not, you are killed on the spot. You have half an hour to pray
for your life.’ Then he leaves. One of the prisoners says: ‘I have a plan! If you
∗The author’s research was supported by Vidi Grant NWO-639.072.904.
†The author’s research was supported by Vici Grant NWO-277-80-001.
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agree on it, 9 of us 10 will definitely survive, and the remaining one has a 50/50
chance of survival.’ What does he have in mind?

Most probably the strategy that he wants to implement is as follows. First,
the prisoners have to agree on the following meaning of the utterance of the
one who is the last in the line. If he says ‘white’, it means that he sees an even
number of white hats in front of him. If he says ‘black’ it means that he sees
an odd number of white hats in front of him. Hence, his utterance has nothing
to do with what he thinks his own hat is—he simply announces the parity of
black hats among the remaining 9 prisoners. There is a 50/50 chance of the total
number black hats being odd or even, and a 50/50 chance of his hat being black
or white, and the same is his chance of survival. However, after this utterance
the prisoner that stands in front of him knows for sure the color of his hat—he
compares the utterance of his predecessor with the number of white hats he sees
in front of him. If the parity is the same, he concludes that his hat is black,
otherwise it is white. He announces his conclusion. Now the person in front of
him takes into account the first announcement and the second utterance, sees
the number of white hats in front of her, and now she is also certain about her
hat’s color, etc.

The Muddy Children Puzzle Yet another thought experiment—you are now out
of prison, visiting a relative, who has three children. While you are having coffee
in the living-room, the kids are playing outside. When they come back home,
their father says: (1) ‘At least one of you has mud on your forehead’. Then,
he asks the children: (I) ‘Can you tell for sure whether you have mud on your
forehead? If yes, announce your status’. Children know that their father never
lies and that they are all perfect logical reasoners. Each child can see the mud
on others but cannot see his or her own forehead. Nothing happens. But after
the father repeats the question for the second time suddenly all muddy children
know that they have mud on their forehead. How is that possible?

Let us again explain away the surprising outcome, this time using a formal
machinery. The problem can be modeled with the help of Kripke structures
describing agents’ uncertainty. Let us give the three children names: a, b and
c, and assume that, in fact, all of them are muddy. Three propositional letters
ma, mb and mc express that the corresponding child is muddy. The standard
epistemic modeling is depicted in Figure 1, with the initial model of the situation
on the left (see [2]).

In the model, possible worlds correspond to the ‘distribution of mud’ on
children’s foreheads, e.g., w5 : ma stands for a being muddy and b and c being
clean in world w5. Two worlds are joined with an edge labelled with x, if they are
in the uncertainty range of agent x (i.e., if agent x cannot distinguish between
the two worlds; for clarity we drop the reflexive arrows for each state). The boxed
state stands for the actual world. Now, let us recall how the solution process can
be modeled in this setting. The first public announcement has the following form:
(1′) ma∨mb∨mc, and after the announcement (1′) becomes common knowledge
among children. As a result the children perform an update, i.e., they eliminate
world w8 in which (1′) is false. The result is depicted in the second part of Figure
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Fig. 1. The Classical Muddy Children Modeling

1. Then the father asks for the first time, who of them knows his status (I). The
agents’ reasoning can be as follows. In world w6 agent c knows that he is dirty
(there is no uncertainty of agent c between this world and another in which he
is clean). Therefore, if the actual world was w6, agent c would know his state
and announce it. The situation is similar for a and b in w5 and w7, respectively.
The silence of the children may also be interpreted as the announcement that
none of them know whether they are muddy. Hence, all agents eliminate those
worlds that do not make such announcement true: w5, w6, w7. The epistemic
model of the next stage is smaller by three worlds. Then it is again clear that if
one of the w2, w3, or w4 was the actual state, the respective agents would have
announced their knowledge. The children still do not respond so, in the next
round, everyone knows that the actual situation cannot be any of w2, w3, and
w4. Hence, they all eliminate the three states, which leaves them with just one
possibility, w1. All uncertainty disappears and they all know that they are dirty
at the same time.1

The above epistemic scenarios show that a very simple quantitative public
announcement carries powerful qualitative information. The similarity between
the Muddy Children puzzle and the Top Hats problem is striking: in both cases
agents need to reason about their properties on the basis of some general quanti-
tative statement; the settings differ with respect to the observational power of the
agents. Intuitively, the possibility of convergence to knowledge in such problems
depends on the trade-off between the internal structure of epistemic information
and the amount of information provided by the public announcement. To see
these differences in full light let us consider the following two cases:

1Note that the reasoning in the Top Hat puzzle can be modeled in a similar way.
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– The Top Hats puzzle: announcing ‘an even number of hats are white’ allows
epistemic reasoning that solves the puzzle for any configuration; announcing
‘at least one hat is black’ allows solving the problem only in a very limited
number of cases.

– The Muddy Children puzzle: announcing ‘at least one of you has mud on
your forehead’ allows epistemic reasoning that solves the puzzle for any con-
figuration, while announcing parity leads to an immediate one-step solution
that does not involve any epistemic reasoning.

Hence, it is fair to say that in some sense parity announcements bring more
information than existential announcements, at least with respect to the above-
mentioned epistemic situations.

2 Generalized Muddy Children Puzzle2

Let us recall the father’s first announcement in the Muddy Children puzzle. It has
the following form: (1) ‘At least one of you has mud on your forehead’. Sentence
(1) can be seen as a background assumption that makes the epistemic multi-
agent inferential process possible. In a way, the quantifier announcement prepares
the ground for epistemic reasoning, and enforces a particular structure on the
situation, that triggers the successful reasoning. What makes an announcement
‘good’ in this context?

A simple but crucial observation is that the information provided by the
father has the following form:

Q of you have mud on your forehead,

where Q may be substituted by various quantifiers, like ‘At least one’, ‘An even
number’, ‘One third’ and so on. Let us think of the Muddy Children situation as
M = (U,A), where U is the set of children and A ⊆ U is the set of children that
are muddy. Of course, after father’s announcement some models are no longer
possible. Only those satisfying the quantifier sentence, i.e., M |= QU (A), should
be still considered. Therefore, the model of a given Muddy Children scenario
consists of the structures satisfying the quantifier sentence. The agent’s goal is
to pinpoint one of them—the actual world. To explain this idea in more detail
let us start with introducing the notion of generalized quantifiers.

Definition 1 ([5]). A generalized quantifier Q of type (1) is a class of struc-
tures of the form M = (U,A), where A is a subset of U . Additionally, Q is closed
under isomorphism, i.e., if M and M ′ are isomorphic, then (M ∈ Q ⇐⇒ M ′ ∈
Q).

Now, the classical Muddy Children puzzle with the father saying ‘At least one
of you has mud on your forehead’ involves the existential generalized quantifier:

2This section is an extended discussion of the results published in [3] and reported
on in [4].



Invariance Properties of Quantifiers and Multiagent Information Exchange 5

∃ = {(U,A) : A ⊆ U & A 6= ∅}. The variations with the father using different
quantifiers may lead to other classes of possible situations, e.g., Most = {(U,A) :
A ⊆ U & |A| > |U − A|}. Furthermore, the father may be inspired by the
Top Hat puzzle and use a divisibility announcement of the form ‘A number
divisible by k of you. . . ’. This situation is captured by divisibility quantifiers:
Dk = {(U,A) : A ⊆ U & |A| = k × n},where n ∈ N.

Isomorphism closure gives rise to the number triangle representation of quan-
tifiers proposed by [6]. Every model belonging to a generalized quantifier of type
(1) may be represented as a pair of natural numbers (k, n), where k = |U − A|
and n = |A|. In other words, the first number stands for the cardinality of the
complement of A and the second number stands for the cardinality of A. The
following definition gives the formal counterpart of this notion.

Definition 2. Let Q be a type (1) generalized quantifier. For any numbers k, n ∈
N we define a quantifier relation: Q(k, n) iff there are U,A ⊆ U such that |U | =
n+ k, |A| = n, and QU (A).

Proposition 1. If Q is a type (1) generalized quantifier, then for all U and all
A ⊆ U we have: QU (A) iff Q(|U −A|, |A|).3

If we restrict ourselves to finite universes, we can represent all that is relevant
for type (1) generalized quantifiers in the structure called number triangle, which
simply enumerates all finite models of type (1). The node labeled (k, n) stands
for a model in which |U −A| = k and |A| = n. Now, every generalized quantifier
of type (1) can be represented by putting ‘+’ at those (k, n) that belong to Q
and ‘–’ at the rest. For example, the quantifier ‘At least one’ in number triangle
representation is shown in Figure 2. Number triangle plays a crucial role in
Generalized Quantifier Theory and it also comes handy in our study, as we can
now interpret the pairs (k, n) as possible worlds.

(0,0)
(1,0) (0,1)

(2,0) (1,1) (0,2)
(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

—
– +

– + +
– + + +

– + + + +

Fig. 2. Number triangle and the representation of ‘At least 1’

3For the proof see, e.g., [7], p. 96.
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2.1 Number Triangle Based Modeling of Muddy Children

How can Number Triangle be used to characterize the successful convergence in
the generalized Muddy Children puzzle? To answer that question let us analyze
a concrete Muddy Children scenario. As before, we take agents a, b, and c. All
possibilities with respect to the size of the set of muddy children are enumerated
in the third level of the number triangle. Let us also assume at this point that
the actual situation is that agents a, b are muddy and c is clean. Therefore, with
respect to our representation the real world is (1, 2), one child is clean and two
are muddy:

(3,0) (2,1) (1,2) (0,3)

Now, let us focus on what the agents observe. Agent a sees one muddy child
and one clean child. The same holds for agent b, in this sense they are perfectly
symmetric. Their observational state can be encoded as (1,1). Accordingly, the
observational state of c is (0,2). In general, if the number of agents is n, each
agent can observe n − 1 agents. As a result what agents observe is encoded in
the second level of the number triangle.

(3,0)

(2,0)

(2,1)

(1,1)

(1,2)

(0,2)

(0,3)

The question that each of the agents is facing is whether he is muddy. For
example, agent a has to decide whether he should extend his observation state,
(1, 1), to the left state (2, 1) (a decides that he is clean) or to the right state
(1, 2) (a decides that he is muddy). The same holds for agent b. The situation
of agent c is similar, his observational state is (0, 2) and it has two potential
extensions (1, 2) and (0, 3). In general, note that every observational state has
two possible successors.

Given this representation, we can now analyze what happens in the Muddy
Children scenario. Figure 3 represents the process, with the initial model at the
top. First, the announcement is given: ‘At least one of you is muddy’. According
to the number triangle representation (see Figure 2 on the right), this allows
eliminating those factual states representing finite models that are not in the
quantifier. In this case it is (3, 0). The resulting model is the second from the
top. Then the father asks: ‘Can you tell for sure whether or not you have mud on
your forehead?’ In our graph, this question means: ‘Does any of you have only
one successor?’ All agents know that (3, 0) has just been eliminated. Agent a
considers it possible that the actual state is (2, 1), i.e., that two agents are clean
and one is muddy, so that he himself would have to be clean. But then he knows
that there would have to be an agent whose observational state is (2, 0)—there
has to be a muddy agent that observes two clean ones. For this hypothetical
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a,b c

Fig. 3. The Number-Triangle Muddy Children Modeling

agent the uncertainty disappeared just after the quantifier announcement (for
(2, 0) there is only one successor left). So, when it becomes clear that no one
knows and the father asks the question again, the world (2, 1) gets eliminated
and the only possibility for agent a is now (1, 2) via the right successor, and this
indicates that he has to be muddy. Agent b is in exactly the same situation. They
both can announce that they know. And since c witnessed the whole process he
knows that the only way for them to know was to be in (1, 1) and decides on
(1, 2).

This epistemic reasoning took two steps. If the actual world was (2, 1) some
agent’s observation would be (2, 0), and this agent would know his status after
the first announcement, and the rest of the agents would follow. Accordingly, for
(0, 3) this would have taken three steps. This can be summed up in the following
way: the quantifier breaks the perfect ‘uncertainty structure’ of the model, and
the farther the actual state is from this break, the longer it takes to solve the
puzzle (as will become clear in Section 2.2).

In general, if there are n agents, we take the nth level of the triangle, i.e., finite
models with |U | = n, enumerating all possible settings (up to isomorphism). This
level will be called the factual level and it always consists of n + 1 states. It is
an analogue of the initial uncertainty domain of the children in the classical
modeling. Moreover, in the puzzle every child sees all other children, but not
himself, so every possible observation consists of n− 1 children. Therefore, level
n − 1 of the number triangle can be interpreted as enumerating every possible
observation of the agents. We will call it the observational level. Each observation
can be extended to one of the two factual states that are the closest below—to
the left if the observer in question is clean or to the right if he is muddy.
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2.2 Number of epistemic iterations

By reinterpreting the Muddy Children puzzle within the semantics of quantifiers
we can associate every finite model with the number of steps needed to solve the
puzzle, if it is solvable at all.
Definition 3. An epistemic quantifier is a pair QMC = (Q, fQ), where Q is
a quantifier and fQ : Q → N is a function that assigns to a pair of numbers
representing M ∈ Q the number of steps needed to solve the Muddy Children
puzzle with the background assumption containing quantifier Q.
Now, we need to know how to determine values of fQ for a given quantifier.
Proposition 2. Let Q be a generalized quantifier, and n be the number of chil-
dren. Then the corresponding epistemic quantifier QMC = (Q, fQ), where the
partial function fQ : Q ⇀ N is defined in the following way.

fQ((n−m,m)) = min(µx≤n−m (n−m−x,m+x) 6∈ Q, µy≤m (n−m+ y,m− y) 6∈ Q).

Proof. Observe that the function assigns a value x to (u− k, k) in the level u of
the number triangle if (u − k, k) ∈ Q and there is (u − `, `) in the level u such
that (u− `, `) 6∈ Q. Moreover, the value x encodes the distance from the nearest
(u− `, `) such that (u− `, `) 6∈ Q.

Concerning the assignment of the number of steps needed for solving the
puzzle, we can also ask what is the structure of those steps. Namely, we can
characterize situations in which some agents infer their status from the an-
nouncements of other agents, in contrast to the cases in which it happens simul-
taneously (we use ‘+’-superscripts to identify those situations). The definition
of the partial function f+

Q : Q ⇀ {+} can be then given in the following way.
f+
Q ((n−m,m)) = + iff:

(1) fQ((n−m,m)) is defined, and
(2) m 6= 0 and m 6= n and some agent considers two factual worlds possible.

For shaping the intuitions, let us give a few examples of epistemic quantifiers in
the number triangle representation. First let us consider the quantifier ‘At least
k’. It is easy to observe that increasing k causes the downward triangle to move
down along the (0, 0)–(0, n) axis.

This quantifier allows solving the Muddy Children puzzle for any configura-
tion of ‘muddiness’. However, within a certain level, the farther from a minus
the longer it takes.

Now let us have a look at the quantifier ‘At most k’. In Figure 5 the question-
marks occur in place of models that satisfy the quantifier, but for which it is
impossible to solve the Muddy Children puzzle. For example, if one child is
clean and one child is muddy (the actual world is (1, 1)) the Muddy Children
situation does not lead to a solution if the announcement is: ‘At most two of
you are muddy’. Again, the farther from a minus the longer it takes to solve the
puzzle.

Parity quantifiers in the Muddy Children setting do not involve much
inference—every situation is solvable in one step (see Figure 6) and all answers
are given simultaneously by all the agents.
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Fig. 4. Increasing muddy-quantifiers ‘At least 1’ and ‘At least 2’
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—

? ?
? ? ?

3 2+ 1+ –
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Fig. 5. Decreasing muddy-quantifiers ‘At most 1’ and ‘At most 2’

2.3 Characterization

The above discussion leads to the observation that solving the Muddy Children
puzzle is possible if the announcement of the quantifier leaves one observational
state with just one successor. Therefore the solvability of the particular Muddy
Children scenario can be characterized in the following way:

Theorem 1 (Muddy Children Solvability). Let n be the number of children,
m ≤ n the number of muddy children, and Q be the background assumption. A
Muddy Children situation is solvable iff (n −m,m) ∈ Q and there is an ` ≤ n
such that (n− `, `) 6∈ Q.

Proof. Let us fix n—the number of children and m ≤ n—the number of muddy
children, Q is the quantifier background assumption.

For left to right. Assume that the scenario ends successfully—all agents arrive
to knowledge about their status. Assume towards contradiction that it is not
the case that (n−m,m) ∈ Q or it is not the case that there is ` ≤ n such that
(n− `, `) /∈ Q.

– if (n −m,m) /∈ Q then the father’s announcement is not truthful. Contra-
diction.

– if for all ` ≤ n it is the case that (n−`, `) ∈ Q, then the public announcement
of Q does not eliminate any world an thus the iterated epistemic reasoning
is impossible and the convergence to knowledge fails for all the agents. Con-
tradiction.
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—
1 –

1 – 1
1 – 1 –

1 – 1 – 1
1 – 1 – 1 –

—
1 –

1 – –
1 – – 1

1 – – 1 –
1 – – 1 – –

Fig. 6. Muddy-quantifiers ‘Divisible by 2’ and ‘Divisible by 3’

For the other direction, assume that (n−m,m) ∈ Q and there is ` ≤ n such
that (m− `, `) /∈ Q. Then by Proposition 2 fQ((n−m,m)) is defined and hence
the puzzle is solvable in fQ((n−m,m)) steps.

In fact, the solvability issue coincides with a known and important property
of generalized quantifiers.

Definition 4 ([8]). A quantifier Q is active (alternatively: Q satisfies variety,
VAR) iff for every non-empty set U , there exists A ⊆ U such that QU (A) but
there is also B ⊆ U such that it is not the case that QU (B).

Note that VAR can be viewed as a conjunction of two weaker conditions4,
VAR+ and VAR−.

Definition 5.
VAR+ A quantifier Q is positively active (alternatively: Q satisfies VAR+) iff

for every non-empty set U if there exists A ⊆ U such that QU (A), then there
is also B ⊆ U such that it is not the case that QU (B).

VAR− A quantifier Q is negatively active (alternatively: Q satisfies VAR−) iff
for every non-empty set U if there exists A ⊆ U such that it is not the case
that QU (A), then there is also B ⊆ U such that QU (B).

Now, we can characterize the general Muddy Children Solvability in the
following way:

Corollary 1 (Muddy Children Solvability) A Muddy Children situation
with Q as the background assumption is solvable for any number of children
and any distribution of muddiness iff Q is positively active.

2.4 Various Quantifiers as Public Announcements

In this section let us consider a few examples—we will describe Muddy Children
quantifiers corresponding to various classes of generalized quantifiers.

4Our focus on such forms of VAR is consistent with the usefulness of weaker vari-
ability assumptions in Generalized Quantifier Theory [8].
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Increasing Quantifiers Let us first consider a class of quantifiers that is clos-
est to the classical version of the Muddy Children puzzle, namely: ‘At least
m’, where m ∈ N. In the puzzle this takes the form of the announce-
ment: At least k of you have mud on your foreheads. Quantifiers of this form
are monotone increasing and satisfy extension—once the quantifier is true in a
model, adding new elements to A or U−A will not change its logical value.5 The
number triangle representation gives us always a downward triangle starting in a
point (0,m). How do those quantifiers behave in the Muddy Children situation?

Observation 1 Let us take a Muddy Children situation, with n the number of
children, m ≤ n the number of muddy children. The Muddy Children puzzle with
the background assumption ‘At least k of you have mud on your forehead’ can
be solved in m− (k − 1) steps, where k ≤ m.

The proposition is verified in Figure 4. The number at the coordinates (c,m)
says how many steps the muddy children need in order to converge to knowledge
about their status (immediately after that all children know their status). The
numbers of steps needed to solve the puzzle form a triangle, with the values
increasing horizontally to the right. When increasing the parameter k in the
quantifier ‘At least k’ the whole triangle simply moves to the right and down-
wards.

Using a similar background assumption with inner negation
At least k of you do not have mud on your foreheads also makes the puz-
zle solvable. ‘At least k not’ behaves as ‘At least k’, but depends on the number
of clean children. In general, inner negation works this way for other quantifiers.

A simplifying observation about a similar class of upward monotone quanti-
fiers that satisfy extension is as follows:

Observation 2 Let us take a Muddy Children situation, with n the number of
children, m ≤ n the number of muddy children. The Muddy Children puzzle with
the background assumption ‘More than k of you have mud on your forehead’ can
be solved in m− k steps, where k ≤ m.

Decreasing Quantifiers Let us now consider another natural class,
downward monotone quantifiers that satisfy extension: ‘At most k’,
where k ∈ N. In the puzzle this takes form of the announcement:
At most k of you have mud on your foreheads.

Observation 3 Let us take a Muddy Children scenario, with n the number of
children, m ≤ n the number of muddy children. If n > k then the Muddy Children
puzzle with the background assumption ‘At most k of you have mud on your
forehead’ can be solved in (k + 1) − m steps. If n ≤ k the situation is not
solvable.

5In the case of (1,1) quantifiers this property corresponds to upward monotonicity
in the left argument, which is also called persistence [7].
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In Figure 5, like in the case of increasing quantifiers, we provided a triangle
with the numbers of steps needed for solving the puzzle in respective cases. By
doing this we indicate how the situation changes with the parameter k. We can
observe that the numbers of steps needed to solve the puzzle form a block, with
the values increasing horizontally to the left. When increasing the parameter k
in the quantifier ‘At least k’ , the whole block moves to the right and downwards
revealing the next column on the left. Also, in case when the parameter k in
the quantifiers is larger or equal to the number of muddy children, the puzzle
is not solvable. When the block of numbers moves downward together with k,
it leaves a trace consisting of question marks that correspond to the unsolvable
situations.

Cardinal and Parity Quantifiers Some kinds of quantifiers allow one-step im-
mediate solvability for all agents. Taking into consideration what they already
know, the announcement gives them full certainty about their state. This takes
place for example when the number of muddy children is explicitly announced
with the use of the quantifier ‘Exactly k’, where k ∈ N. The announcement
of: Exactly k of you have mud on your foreheads always leads to immediate an-
swers.

Observation 4 Every Muddy Children scenario with a background assumption
of the form ‘Exactly k’ is solvable in 1 step.

There are other, more interesting quantifiers with this property, e.g., divisibil-
ity quantifiers: ‘A number divisible by k’, where k ∈ N. An example of such an an-
nouncement for k = 2 is: An even number of you have mud on your foreheads.
A relevant fact is as follows.

Observation 5 Let us take a Muddy Children scenario. The Muddy Children
puzzle with the background assumption ‘The number of you that have mud on
your forehead is ` mod k’, for any `, k ∈ N, can be solved in 1 step.

In Figure 6 the columns that include solvable scenarios are isolated and
consists only of 1s. Moreover, if the number k in the quantifier ‘Divisible by k’
increases the gaps between the columns.

Proportional Quantifiers Proportional quantifiers indicate the ratio between the
number of elements in the predicate and the total number of elements. The first
that comes to mind is ‘Exactly 1

k ’, where k ∈ N. Update with this information
will be survived by cardinalities that are divisible by k. In those situations, where
|A| = k× `, for some ` ∈ N, it is equivalent to the cardinal quantifier ‘Exactly `’.
However, there are also more interesting cases of upward monotone proportional
quantifiers. Such class is, e.g., ‘More than 1

k ’, where k ∈ N. An example of such
announcement could be: ‘Most of you have mud on your foreheads.’

If we agree to interpret ‘Most’ as ‘More than half’, then the solvability of
the Muddy Children puzzle with this quantifier is depicted on the left in Figure
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—
– 1

– – 1
– – 1+ 2

– – – 1+ 2
– – – 1+ 2+ 3

– – – – 1+ 2+ 3

—
– 1

– 1+ 2
– – 1+ 2

– – 1+ 2+ 3
– – 1+ 2+ 3+ 4

– – – 1+ 2+ 3+ 4

Fig. 7. ‘More than half’ and ‘More than one third’

7. The table on the right shows the pattern for the quantifier ‘More than one
third’.

The patterns in Figure 7 might at first sight seem complex, but as a matter
of fact it is quite easy to observe that the pattern consists of smaller parts
resembling simple increasing quantifiers that satisfy extension (see Section 2.4).
In fact these muddy situations are reducible to those given by quantifiers ‘More
than k’. In a given situation, when |U | = n, ‘More than 1

k ’ is of course equivalent
to ‘More than n

k ’.

Observation 6 The epistemic quantifier ‘More than 1
k ’ consists of intervals

q0, q1, . . . such that:

(1) q0 consists of k − 1 rows in the triangle, and for i > 0, qi consists of k
rows.

(2) qi is the segment of size k of the table for ‘More than i’ starting in the i-th
row.

The number of steps needed to solve this puzzle is then characterized in the
following way.

Observation 7 Let us take a Muddy Children situation, with n the number of
children, m ≤ n number of muddy children. The Muddy Children puzzle with the
background assumption ‘More than 1

k of you have mud on your forehead’ can be
solved in dm− n

k e steps.

3 Generalized Top Hat Puzzle

In the Muddy Children puzzle the agents have symmetrical observation pow-
ers. Each of them sees all agents except himself. The fact of the symmetry of
the situation is common knowledge among the children and hence quite liberal
background assumptions lead to the convergence to knowledge for every agent.

Things are different in the Top Hats puzzle. The observation is not symmetric;
assuming there are n agents, the first one sees n− 1, the second n− 2, etc., and
in the end there is always one agent that sees no one. Moreover in the solution
of the puzzle it is required that they not only announce whether they know, but
that they also explicitly say what they know about themselves.
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Let us simplify the scenario. Assume that the first prisoner takes a role simi-
lar to the one of the father in Muddy Children puzzle. He simply announces the
parity of the set of prisoners wearing black hats. Assume there are four agents,
standing single file in the following order: a1, a2, a3, a4, and that a1 sees all
other agents, a2 sees a3 and a4, etc. Moreover, let us assume the following hat
distribution: a1 and a4 are wearing white hats and the others—black ones. Let
us get back to our number triangle representation and let us interpret each pair
(c,m) as standing for any situation in which there are c agents with white hats
and m with black ones. Picture 8 indicates the actual world (2,2), and observa-
tions of each agent (shaded states). Now, the truthful parity announcement is

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

a1 a1

a2 a2

a3a3

a4 a4

Fig. 8. The Number-triangle Top-hat puzzle model

given (recall the number triangle representation of the quantifier from Fig. 6).
The announcement divides the uncertainty range of each agent. However, only
in the case of agent a1 the announcement is fully informative in the first stage.
He knows the parity of the overall number of black hats (by announcement) and
he knows the parity of the number of black hats within the set of all agents
except him. It is hence enough for him to conclude the color of his hat. When he
announces it, the scenario repeats for agent a2, he now knows the parity of the
overall number of black hats (by announcement) and he knows the parity of the
number of black hats within the set of all agents except him; he can conclude
the the color of his hat. Let us see why it was not possible in the first place. In
the beginning, agent’s a2 observational state is (1,1), he considers two immedi-
ate extensions of his states (2,1) and (1,2). However, each of the two extensions
determine an observational state of agent a1 and hence, from the perspective of
agent a2, allow two possible observational states for a1.
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3.1 Solvability

Which quantifiers are suitable for this kind of reasoning? Besides parity, if the sit-
uation allows, they could also convey all information needed using, for instance,
‘all’, ‘no’ or ‘all but k’. Let us characterize the range of possibilities.

Definition 6. We say that Q of type (1) has bounded thickness if there is a
finite bound k ∈ N such that at any level in the number triangle Q allows not
more than k consecutive +’s in the row.

In particular, Q is 1-thick (has the thickness bounded by 1) iff the following
conditions are satisfied:

(1) If (c,m) ∈ Q and c > 0 then (c− 1,m+ 1) 6∈ Q, and
(2) If (c,m) ∈ Q and m > 0 then (c+ 1,m− 1) 6∈ Q.

To prove the characterization theorem we need the following lemma:

Lemma 1. Assume there are n agents: a1, . . . , an (ordered according to decreas-
ing observation power) and that the actual world is (c,m) such that c+m = n.
Then at k-th stage of the puzzle agent ak’s uncertainty range is either between
(c− 1,m+ 1) and (c,m) or (c+ 1,m− 1) and (c,m).

Proof. First of all note that for any round k agent ak’s uncertainty never includes
more than 2 neighboring possibilities. It is so because he is only unsure about
the color of his own hat. Moreover, observe that one of the possibilities have to
be the actual world, if only agents are truthful and perfect reasoners.

Theorem 2. A Top Hat situation with Q as the background assumption is solv-
able for any number of agents and any distribution of hats iff Q is 1-thick.

Proof. From left to right. Assume that the puzzle with quantifier Q is solvable
for any number of agents. Then take any (c,m). By the structure of the puzzle
(c,m) ∈ Q (the announcement is truthful). Now, assume towards contradiction
that (1) (c−1,m+1) ∈ Q or (2) (c+1,m−1) ∈ Q. Hence, if (1) then the puzzle
is not solvable for the distribution of hats in which a1 has a white hat, and if
(2) the puzzle is not solvable, analogously, for a1 having a black hat.

From right to left. Assume that Q is 1-thick. Take any situation (c,m) ∈ Q,
then (c− 1,m+ 1) 6∈ Q and (c+ 1,m− 1) 6∈ Q. Therefore, by Lemma 1 for any
round k of the puzzle agent ak has uncertainty either between (1) (c− 1,m+1)
and (c,m) or (2) (c+1,m−1) and (c,m). In both cases the worlds different than
(c,m) are not in Q and hence the announcement eliminates them as a possibility.

The property of thickness, as far as we know, has not been defined in the
literature. Through its name bounded thickness bears resemblance to the notion
of finite thickness used in the domain of inductive inference [9]. Finite thickness is
a sufficient condition for identifiability in the limit [10]. In our terms (consistent
with [11]) a class of quantifiers Q has finite thickness if for every finite model M
there are only finitely many quantifiers in Q that include M . Bounded thickness
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does not imply finite thickness. Note however, that this is not enough to conclude
that quantifiers satisfying bounded thickness are not learnable.

Bounded thickness is related to the oscillation properties of generalized quan-
tifiers [12].Q of type (1) has bounded oscillation property if there is a finite bound
m ∈ N such that at any level in the number triangle Q switches from + to –,
or vice versa, not more than m times. For example, any monotone quantifier
has bounded oscillation with m=1 and the quantifier ’either between 3 and 5 or
more than 8’ has bounded oscillation with m = 3 (see [7], Ch. 14.4). Obviously,
the quantifier does not have to satisfy bounded oscillation to make the puzzle
solvable (in the original formulation it includes unboundedly oscillating parity
quantifier). A different kind of restriction is required, namely, that the ‘wideness’
of each segment of states belonging to the quantifier relation within one level is
equal to one, i.e., if a model belongs to the quantifier none of its neighboring
models belong to it. We call that property 1-thickness. It has to do with the bi-
nary structure of the situation—the quantifier must eliminate one of two states
for every uncertainty range.

Various invariance properties of quantifiers are strongly present in the do-
main of generalized quantifier theory, especially because of their implications for
linguistic universals of natural language determiners [13]. We leave it as an open
question what is the exact relation of those issues to thickness, it seems however
that this property gives a quantifier a ‘high resolution’ in distinguishing similar
situation and, hence, implies a significant informational content. In order to re-
late to the Muddy Children puzzle let us note here that 1-thickness is a stronger
condition than positive variation:

Observation 8 For any Q, if it is 1-thick then it satisfies VAR+.

Moreover, 1-thickness of the Top Hat puzzle quantifiers justifies the counter-
intuitiveness of the whole scenario. Recall, that according to a popular view [13]
simple natural language determiners are expected to satisfy continuity (a prop-
erty that characterizes exactly conjunctions of an increasing and a decreasing
quantifier, see e.g. Ch. 5.3 in [7]). However, many non-trivial continuos quanti-
fiers are not 1-thick.

Definition 7. A type (1) quantifier QM is continuous (CONT) iff for any M
and all A′, A′′ ⊆M , if QM (A′), QM (A′′), and A′ ⊆ A ⊆ A′′, then QM (A).

Observation 9 Assume (for non-triviality) that QM (A′), QM (A′′) and that QM

is CONT then QM cannot be 1-thick.

Therefore, in a sense quantifiers satisfying bounded thickness are strongly non-
monotone.

4 Conclusions and Outlook

In this paper we analyzed and generalized the popular Muddy Children puzzle.
We investigated the epistemic and informational properties of the situation under
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various quantifier announcements. We characterized the solvability of the puzzle
as dependent on invariance properties of the quantifier involved in the public
announcement. In particular, we have shown that a weaker version of variance,
VAR+, is sufficient to trigger a successful epistemic reasoning. We applied a
similar analysis, based on the number triangle representation of quantifiers, to
the Top Hat puzzle in order to explicitly account for the difference in the infor-
mational power of various quantifiers. Here, it is not enough that a quantifier is
active to solve every instance of the puzzle. The announcement needs to make
sure that any two models neighboring each other in the number triangle do not
belong to the quantifier simultaneously.

We also proposed a concise modeling of epistemic scenarios that may be
attractive in all those applications where an agent’s internal representation of the
problem is crucial, like cognitive science or designing multi-agent systems in the
domain of artificial intelligence. One of the main aims of applying logic in those
disciplines is to model possible inferential strategies of an agent. An immediate
plausibility test is the complexity of the proposed representation. The classical
epistemic logic based modeling of such scenarios usually assume an extensive
representation including all possibilities (see e.g. [2]). In our case, the size of the
models is clearly connected to the properties of generalized quantifiers—their
isomorphism closure can increase the informational power of a message relatively
to the observational powers of the agents. Such informational ‘shortcuts’ are
rarely taken into account in the epistemic literature.

Our study provides an additional interesting link with formal epistemology.
An agent in the Muddy Children puzzle can be seen as a scientist who tries
to inductively decide a hypothesis, tries to discover what the actual world is
like (see e.g. [14], [15]). Our analysis shows that even if the agents have limited
observational capacities, the presence and interconnection with other scientists
doing similar research can influence the discovery in a positive way (cf. [16]).
In this sense the following paper can be positioned among various attempts to
study the learnability issues related to generalized quantifiers. One perspective
here is to study formal models of quantifier acquisition, for example in Gold
paradigm [10] it is interesting to ask whether certain classes of quantifiers are
identifiable in the limit (see [11]). Similarly, one can be interested in more algo-
rithmic approach and asks about the complexity of procedures learning certain
classes of quantifiers over finite models [17]. Another angle is to study the com-
putational complexity of deciding whether a given finite model satisfy various
classes of natural language quantifiers [18]. Those two perspectives of identifying
and verifying a quantifier hypothesis can be combined by studying the problems
on an inductively given information about the actual world [19]. Finally, in this
work we investigate how the nature of the world may be identified by a group
of agents on the basis of some quantifier information and restricted communi-
cation. There are many directions of follow-up research. One attractive idea is
to develop a general framework for investigating the informational properties of
generalized quantifiers in single- and multi-agent learning contexts that would
account for a wide variety of scenarios.
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